当前位置:文档之家› 正弦逆变器控制软件设计

正弦逆变器控制软件设计

正弦逆变器控制软件设计
正弦逆变器控制软件设计

●应用与设计

目前,正弦逆变器的控制通常采用模拟电路或数字电路实现。由于硬件的固有缺点和不能实施先进的控制策略,致使逆变器的性能不能极大的提高。随着高速微处理器的问世,特别是具有高速运算、处理和控制能力的DSP的出现,使得对正弦逆变器采用新的控制方法成为可能。文中将重点介绍采用DSP实现正弦逆变器控制的方法。

1全桥正弦逆变器

图1示出单相全桥逆变器的原理电路及波形。其中H桥和滤波电路完成直流到交流的变换,滤去谐波,获得交流电;控制电路完成对H桥中开关管的控制,并使输出交流电的电压、频率和波形稳定。

SPWM的生成原理及波形如图2所示。由于采用正弦波调制波(U

sinωSt)与三角波载波(幅值为UC的正三角波,频率为ωc)相交来获得SPWM波,因此,基波频率为调制波的频率,基波幅值与调制比M(M=US/UC)成正比关系,谐波含量少。正弦逆变器常采用SPWM控制,利用调制波控制输出波形频率,调整M来控制输出电压幅值。

工作时,H桥中V1、V4在前半周期内以图2中的SPWM信号闭合,V2、V3断开;在后半周期内V1、V4断开,V2、V3以SPWM信号闭合,故在整个周期内H桥输出波形如图1(b)所示。这样,对该波

正弦逆变器控制软件设计

王耀北,闫英敏

(军械工程学院电气工程系,河北石家庄050003)

摘要:介绍单相全桥逆变器的工作原理,阐述产生SPWM波和实现PI控制的算法,给出以DSP(数字信号处理器)实现控制的软件流程。实验表明利用软件完成逆变器控制是可行的。

关键词:正弦逆变器;控制;SPWM;PI;DSP

分类号:TM46文献标识码:A文章编号:1006-6977(2005)12-0037-03

Softwaredesignforsine-invertercontrol

WANGYao-bei,YANYing-min

(DepartmentofElectricEngineering,OrdnanceEngineeringCollege,Shijiazhuang050003,China)

Abstract:Theoperationprincipleofsingle-phasefull-bridgeinverterisintroduced.ThearithmeticofSPWMandPIisexpatiatedon,andthesoftwareflowbasedonDSPisgiven.Theexperimentindicatesthatsineinvertercontrolisviableusingofsoftware.

Keywords:sine-inverter;control;SPWM;PI;DSP

图1电压型单相全桥逆变器的原理电路及波形

形进行滤波,即可获得频率为ωS,幅值正比M与调制比M的正弦交流电。

2H桥控制方案和信号的数字化

2.1控制方案

对逆变器的控制主要包括对SPWM的控制(即

H桥开关管开关方式)和对SPWM脉宽的控制(即调整M,使输出电压稳定的反馈控制,一般采用平

均电压控制技术,即PI控制)二部分。

SPWM的控制方式可分为单极性和双极性二

种。在传统的单极性或双极性控制方式中,开关管均工作在高频条件下,这样虽然可以得到较理想的正弦输出电压波形,但也产生了较大的开关损耗,且频率越高,损耗越大。

图3所示的混合型单极性控制方式(HSPWM

UV1~UV4波形分别对应图1(a)中V1 ̄V4开关管的驱

动信号)可较好地解决这一矛盾,既能得到理想的正弦波形,又能适当地减小开关损耗。在这种工作方式下,工作在较高开关频率的2只功率管互补导通,得到理想的正弦波形,另外2只功率管工作在输出基波频率条件下,从而减小了开关损耗。

2.2SPWM波生成数字化

图4示出采用三角波作为载波的规则采样获得的SPWM波,在三角波零峰t

D时刻对正弦调制波采

样得到

D点,过D点作水平直线与三角波分别交于

A点和B点,在

A点的时刻tA

和B点的时刻tB间输出高电平,其他时刻输出低电平。根据三角关系,可以得出

其中σ为脉冲宽度。

逆变器控制信号中,调制波和载波频率一定,tD

时刻为n倍三角波周期(n=1,2,…,N。N=Ts/Tc,N为载波比,Ts为正弦波周期),如果一个周期内有N个矩形波,则第n个矩形波的占空比D为:

2.3PI调节器数字化

图5为模拟PI调节示意图,可以计算出

离散化后整理可得:

上式即为增量式PI算法,其中Δt为采样时间。

基于DSP的控制软件

实现逆变器控制主要依靠DSP的事件管理模

图4规则采样法

图2SPWM的生成原理及波形

图3混合型单极性控制方式

(1)

(2)

(3)

块和A/D转换模块。事件管理模块由通用定时器(提供时间基准)、非对称/对称波形发生器、可编程的死区发生单元、输出逻辑控制单元等组成,以实现SPWM波。A/D转换模块采样输入的平均电压并转换为数字信号。

3.1HSPWM控制方式软件实现

如图4所示,SPWM波是用三角波和正弦波相交比较而得到的。采用DSP产生SPWM波的设置如下:

三角波的获得是将事件管理器计数模式设置为连续增减计数,其计数从0增到TxPR再减到0,其周期为2TxPR,即载波的周期为2TxPR。由于正弦波采用在线计算会影响运行速度,所以采用离线计算方法。在程序开始时,按照规则采样法计算nTc处的正弦值(即三角波和正弦波比较点的值),并存于数组中,需要时通过中断调用该值。

SPWM波的获得是在DSP事件管理器的比较单元工作时,通用定时器的计数器TxCNT的值与比较寄存器CMPRx的值不断进行比较,当二者匹配时,PWM电路按照输出逻辑输出二路极性相反的PWM波。在逆变器控制中,载波比固定,半个周期内输出的脉冲个数、占空比固定,TxPR值固定,形成SPWM正弦波的CMPRx的值为TxPRMsinωnTc(即图4中D点正弦值),所以,在计数器计数最大时(TxCNT=TxPR,即三角波凸点处)中断,更新CMPRx的值,就可以输出SPWM。

在图3中HSPWM控制

信号U

V1与U

V2

、UV3与UV4极

性相反。在DSP中只需要两

个全比较单元。如U

V1与U

V2

控制信号,在前半周期,CMPRx设置为0,则输出相对应的高、低电平控制信号,在后半周期,利用中断更新CMPRx的值即可获得图3所

示的U

V1与U

V2

控制信号U

V3

与U

V4

控制信号。同理可获得。产生HSPWM控制信

号的软件流程如图6所示。

3.2PI算法的软件

采用平均电压反馈的逆变器,需要采样输出电

压的平均值。电压采样值低于3.3V可直接输入DSP

的A/D通道进行转换以获得V

(k),再确定Kp和KI

即可。

在实际应用中,还需对PI调节器加以限制,当

偏差值输入较大时,输出值会很大,可能会使输出饱

和,这样对开关管有很大的冲击,而且会导致系统不

稳定。所以需要对PI调节器的输出限幅,即当|u(k)

|>umax时,令u=umax或u=umin。

另外,PI控制器中积分环节的目的主要是消除

静差、提高精度。但在电压大幅度变化如启动、结束

时,在短时间内系统输出有很大的偏差,会造成PI

运算的积分积累,从而引起较大的超调,导致系统的

振荡。根据实际情况,设定阈值δ>0。当|e(k)|>δ时,

采用P控制,这样可避免过大的超调,而且保持较

快的响应速度。当|e(k)|≤δ时,采用PI控制,可保证

系统的控制精度。具体程序流程如图7所示。

4实验及结论

以DSP控制4kW、230V、400Hz逆变器时的各

部分波形如图8所示。实验结果表明,基于DSP控图5PI调节示意图

7PI调节程序流程

图6SPWM控制信号程序流程

制的逆变器可以满足要求。参考文献

[1]刘凤君.正弦波逆变器[M].北京:科技出版社,2002.

[2]JaiP.Agrawal.PowerElectronicSystems[M].北京:清华大学出版社,2001.

[3]胡兴柳,等.SPWM逆变器的单极性控制方式实现[J].机电工程,2004,(1):38-41.

[4]Mohan,Undeland,Robbins.PowerElectronics(Converters,Applications,andDesign)[M].北京:高等教育出版社,2004.

收稿日期:2005-04-28

咨询编号:051210

图8DSP产生HSPWM信号和400Hz230V正弦波形

引言

步进电机在电脑绣花机等纺织机械设备中有着广泛的应用,这类步进电机的特点是保持转矩不高,

频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。目前用于电脑绣花机的步进电机多数为五相混合式步进电机,目的是通过采用高相数的步进电机来减小步矩角和提高控制精度,但

基于LMD18245型驱动器的二相步进电机细分

驱动器设计

贾智贤,徐承深,佟宇

(大连理工大学机械工程学院,辽宁大连116024)

摘要:给出一种基于LMD18245型驱动器的二相步进电机细分驱动器的设计方法,着重介绍LMD-

18245的工作原理以及系统的硬件连接和软件设计。

关键词:LMD18245;步进电机;细分驱动分类号:TP215

文献标识码:A

文章编号:1006-6977(2005)12-0040-04

Designabouttwo-phasemicrostepstepperdriver

basedonLMD18245

JIAZhi-xian,XUCheng-shen,TONGYu

(SchoolofMechanicalEngineering,DalianUniversityofTechnology,Dalian116024,China)

Abstract:AdesignmethodoftwophasemicrostepstepperdriverbasedonLMD18245isgiven.AndtheoperationprincipleoftheLMD18245,thehardwareconnectionandsoftwaredesignofthesystemarees-peciallyintroduced.

Keywords:LMD18245;steppermotor;microstepdriver

●应用与设计

"""""""""""""""""""""""""""""""""""""""""""""

正弦波逆变电源设计

等级: 湖南工程学院 课程设计 课程名称电力电子技术 课题名称 SG3525正弦波逆变电源设计 专业 班级 学号 姓名 指导教师 2013年12 月16 日

湖南工程学院 课程设计任务书 课程名称单片机原理及应用 课题智能密码锁设计 专业班级 学生姓名 学号 指导老师 审批 任务书下达日期2013 年12 月16 日 设计完成日期2013 年12 月27 日

设计内容与设计要求 一.设计内容: 1.电路功能: 1)逆变就是将直流变为交流。由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经 过驱动电路驱动逆变电路进行逆变,再经过高频变压器与滤波电 路输出-50Hz的正弦波。 2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。控制电路主要环节:正弦信号发生电路、脉宽调制PWM、 电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 2. 系统总体方案确定 3. 主电路设计与分析 1)确定主电路方案 2)主电路元器件的计算及选型 3)主电路保护环节设计 4. 控制电路设计与分析 1)检测电路设计 2)功能单元电路设计 3)触发电路设计 4)控制电路参数确定 二.设计要求: 1.要求输出正弦波的幅度可调。 2.用SG3525产生脉冲。 3.设计思路清晰,给出整体设计框图; 4.单元电路设计,给出具体设计思路和电路; 5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。 6.绘制总电路图 7.写出设计报告;

主要设计条件 1.设计依据主要参数 1)输入输出电压:输入(DC)+15V、10V(AC) 2)输出电流:1A 3)电压调整率:≤1% 4)负载调整率:≤1% 5)效率:≥0.8 2. 可提供实验与仿真条件 说明书格式 1.课程设计封面; 2.任务书; 3.说明书目录; 4.设计总体思路,基本原理和框图(总电路图); 5.单元电路设计(各单元电路图); 6.故障分析与电路改进、实验及仿真等。 7.总结与体会; 8.附录(完整的总电路图); 9.参考文献; 11、课程设计成绩评分表 进度安排 第一周星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星期三:主电路设计 星期四:控制电路设计 星期五:控制电路设计; 第二周星期一: 控制电路设计 星期二:电路原理及波形分析、实验调试及仿真等 星期四~五:写设计报告,打印相关图纸; 星期五下午:答辩及资料整理

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

PWM逆变器控制电路设计

SPWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下目的:一个单相 50HZ/220V逆变电源,外部采用:交流到直流再到交流的逆变驱动格式。在220V/50HZ外电源停电时,蓄电池就逆变供电。在设计电路时,主要分为正负12V稳压电源到SPWM波发生器(其中载波频率5KHZ)至H逆变电路再到逆变升压变压器再由220V/50HZ输出. 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入直流流电源: 正负12V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:

电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 根据要求,整流电路采用二极管整流桥电容滤波电路,其电路图如图2.1所示:

SPWM逆变电路的工作原理 PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。 1.PWM控制的基本原理 PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同

单相正弦波变频电源设计

摘要 随着现代工业和科技的发展,电源在工作、生活等方面的作用越来越重要但许多用户的用电设备并非直接使用通用交流电网提供的交流电作为电能源,而是通过各种形式对其进行变换,从而得到各自所需的电能形式。把直流电能转变成交流电能供给负载的DC-AC逆变器,特别是正弦波逆变器,其种类繁多,应用领域广泛,优越性明显。因此,高性能的逆变器成为目前电力电子领域的研究热点之一。 正弦脉宽调制(SPWM)逆变器作为逆变器的一种,可输出谐波含量小的正弦波形。正弦波逆变电源已广泛用于基础直流电源、交流电源、各种工业电源、计算机电源,UPS 不间断电源、医疗和照明电源、雷达高压电源、音响和视频电源等。随着数字化控制技术的发展,SPWM脉冲波的生成和逆变器的全数字化控制渐趋方便,并可使逆变器的输出波形的稳态精度、暂稳态响应、可靠性等得到进一步提高。 论文设计的单相正弦波逆变电源属于交流电源(AC-DC-AC逆变)。该电源系统的设计包括主电路和控制电路。论文首先介绍了逆变电源的发展现状;阐述了逆变系统的工作原理;对PWM技术和IGBT进行了简单介绍;分析了正弦脉宽调制的原理及其几种主要的调制方式;还研究了逆变电源主电路的参数,包括整流滤波电路,IGBT的选择,输出滤波参数的确定;最后介绍了系统的软件设计实现的具体过程,并给出了系统主程序流程图和中断流程图,程序清单。 关键词:逆变电源;正弦脉宽调制;IGBT

Abstract With the development of modern industry, science and technology, power supply becomes more and more important in work and life. But many users' devices can't work with AC directly provided by public electricity, which should be converted by power electronics technique to the forms needed. DC-AC inverters, especially sinusoidal inverters, which convert alternating current to direct current, are various, widely used and excellent. Therefore, High performance inverters have been one of points of power electronics. As one of inverters, Sinusoidal Pulse Width Modulation (SPWM) inverters can achieve low total harmonic distortion (THD) output wave. Sinusoidal Pulse Width Modulation(SPWM) inverters have been applied in the following aspects widely. They are DC power supply, AC power supply, industry power supply, computer power supply, UPS power supply, power supply of medical treatment and lighting, high voltage power supply of radar, power supply of sound and video frequency and so on. With the development of digital control techniques, the production of SPWM and digital control of inverters become convenient, which makes the output wave's steady-state precision, transient and steady-state response, reliability improved. Single-phase Sinusoidal Pulse Width Modulation Inverter Power Supply in this thesis belongs to AC power supply (AC-DC-AC convert). The power supply system includes the main circuit design and control circuits. The thesis presents the current situation and development trends of the inverters, discusses the inverter system's working principle and mathematic model; gives an outline of PWM technology and IGBT device; analyses the principles of the sine width modulate and major modulate methods; describes the major parameters of the system to identify, including the rectifier filter circuit, IGBT choice, the output filter parameters of. Finally, it introduces specific achieved process of software design in the last chapter, providing the system flow chart of main program and interrupt program, and program list. Key words: Inverter; SPWM;IGBT

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

大学毕设论文__单相正弦波逆变电源的设计

第1章概述 任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。 正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具

关于高压正弦波变频逆变电源的原理

高压正弦波变频逆变电源原理 1 引言 当前,在臭氧发生器,污水处理,烟气脱硫,等离子体放电等技术领域,高压逆变电源正得到越来越多的应用。传统的高压逆变电源一般由工频或中频变压器直接升压或LC串联谐振获得,不可避免地具有体积大,效率低的缺点。在目前许多需要高压电源的场合,采用远远高于工频的高频高压电源效果更好,而且高频电源体积小,重量轻,是未来发展的方向。目前我公司使用的电源是一种解于介质阻挡放电和低温等离子电晕放电发生器专用的配套高压正弦波逆变电源。 该介质阻挡放电发生器由绝缘材料和在绝缘材料两端蚀刻而成的放电极两部分组成,如图1所示。在放电极间隙中加入介质层,可有效抑制放电电流的增大,有助于在介质两端形成稳定的等离子体层。 低温等离子电晕放电器由金属管和金属管内金属丝两部分组成放电极,从而在空间两极间形成稳定的等离子体层。 其等效电路可近似看成是电容和电阻并联组成,这种容性负载在电源设计时必须考虑其对滤波特性的影响。为了考虑在不同电压和频率下该放电装置的特性,需要配套的供电电源输出电压和频率变动范围较大。就本装置而言,对电源的要求是:输出电压要能达到20kV-50KV,输出电流可达0.1-0.2MA,频率变化范围为11~18kHz,波形为纯正弦。以下介绍该电源的技术要点。

2 高压正弦波变频逆变电源的基本原理 我公司的高压正弦波逆变电源原理图如图2所示。输入电源为二相380V,经单相桥整流后,可得约500V的直流电压(随电网电压的变化波动)。该直流电压经过DC/DC变换器,得到一个输出幅值可变的直流电压,变化范围约在0~500V(********) 。该变换是采用普通的Buck降压变换电路而实现的。可变直流电压经DC/AC全桥逆变电路得到方波输出。该方波经LC滤波后可得到正弦波输出。滤波电感由外加电感和变压器自身漏感组成,滤波电容由变压器自身杂散电容和负载本身的电容构成。低压正弦波最后经高压高频变压器升压得到所需要的高压正弦波。一般的逆变器仅仅靠DC/AC一级变换就可同时实现变频和变压的功

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

离网逆变器控制策略

逆变器控制策略: 逆变器的控制目标是提高逆变器输出电压的稳态和动态性能。稳态性能主要是指输出电 压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD 和负载突变时的动态响应水平。在这些指标中输出电压THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%。 1、离网逆变器的控制性能要求主要是使其输出电压具有良好的控制抗扰性。 离网逆变器采用输出电容电流内环和输出电压外环的双闭环控制。 电流调节器可以实现快速加减速和电流限幅作用,同时使系统的抗电源扰动和负载扰动 的能力增强。 电压调节器主要是控制输出电压的稳定。 2、基于LC 滤波器的离网型逆变器 图2 基于LC 滤波的电压型离网逆变器主电路 图3 基于LC 的VSI 输出电压单闭环控制结构 图5 基于电容电流反馈的单位调节器内环控制结构 1VD 3VD 5VD 2VD 6VD 4VD 1 V 3V 5V 4V 6V 2V U V W dc C C R L dc u + -L i o i C i L u C u i u 调节 器 PWM K 1sL R +-i u o i C *u C u L i -1sC -C i ? ? ?C u L u *Cq u cq u PI P PWM K 1sL sC 1iq u C *i C i ????oq i +----

图14 基于同步坐标系的LC-VSI 双环控制结构 PI PI P P Inv.Park Trans Inv.Clarke Trans SPWM Generator Clarke Trans Park Trans Clarke Trans Park Trans *q s U *sd U sd U q s U *sd I *q s I q s I d s I a s I βs I A U βs U a s U B U A I B I 1 1ov T s +11 e T s +1 1oi T s +PI 1Ls 1Cs P 11 oi T s +11 ov T s +*Cq u C *i iq u oq i cq u C i +-+- + -+ -电流内环

无源三相PWM逆变器控制电路设计-参考模板

无源三相PWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据

输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图

根据要求,整流电路采用二极管整流桥电容滤波电路, 其 电路图如图2.1所示: 图2.1 考虑电感时电容滤波的三相桥式整流电路及其波形 a )电路原理图 b )轻载时的交流侧电流波形 c )重载时的交流侧电流波形 1. 其工作原理如下所示: 该电路中,当某一对二级管导通时,输入直流电压等于交流 侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。 当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。 设二极管在局限电路电压过零点δ角处开始导通,并以二极 管VD 6和VD 1开始同时导通的时刻为时间零点,则线电压为 a)c)R 462 i i

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

基于SG3525设计单相正弦波SPWM逆变电源

摘要 本论文所需单相正弦波SPWM逆变电源的设计采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。 逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。通过对电路的分析,参数的确定选择出一种最适合的方案。输出频率由电压控制,波形幅值由电阻确定。 本论文以SG3525驱动芯片为核心,完成了单相正弦波SPWM逆变电源的参数设计,并利用所得结果,完成了实际电路的连接,通过调试与分析,验证了设计的正确性。 关键词: SPWM,SG3525 I

II

Title: Design of Sine Wave Inverter Power Supply By SG3525 Applicant: Cao Lei Speciality: Electrical Engineering And Automation ABSTRACT Design of sine wave inverter power supply by SG3525 was designed using operational amplifier,diodes,transistors,zener diodes,the capacitor and resistor voltage devices such as to constitute circuit. Inverter power supply is one kind of power electronics process transformation of electrical energy device.It alternating voltage or volts d.c input to acquire voltage stabilization constant amplitude the alternating voltage output.Get through the circuit analytical.To ensure the parameter to chose one kind of best fit program.The output frequence is confirmed by voltage and resistance ect. The thesis use SG3525 as a core to achieve design of sine wave inverter power supply.Take the advantage of the result to achieve circuit ligature.Get through the debug to check the validity. KEY WORDS:SPWM,SG3525 III

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

相关主题
文本预览
相关文档 最新文档