当前位置:文档之家› 葡萄糖加氢用Ru_活性炭催化剂__省略_法对活性炭表面性能的影响_英文_徐三魁

葡萄糖加氢用Ru_活性炭催化剂__省略_法对活性炭表面性能的影响_英文_徐三魁

葡萄糖加氢用Ru_活性炭催化剂__省略_法对活性炭表面性能的影响_英文_徐三魁
葡萄糖加氢用Ru_活性炭催化剂__省略_法对活性炭表面性能的影响_英文_徐三魁

葡萄糖加氢用Ru/活性炭催化剂:改性方法

对活性炭表面性能的影响

徐三魁1,2

李利民1,*

郭楠楠1苏运来1张朋1

(1郑州大学化学系,郑州450001;

2

河南工业大学材料科学与工程学院,郑州450001)

摘要:

分别采用超临界甲醇流体、浓硝酸氧化、浓硝酸结合超临界甲醇流体等不同手段对椰壳活性炭进行了

表面处理,用N 2物理吸附、Boehm 滴定、X 光电子能谱仪(XPS)、电感耦合等离子原子发射光谱分析(ICP)、透射电镜(TEM)等手段研究了处理方法对活性炭表面孔结构及表面基团的影响;并以活性炭为载体,三氯化钌为活性前驱体,采用等容水浸渍法制备了钌炭催化剂,以葡萄糖加氢生产山梨醇为模型反应对制备的钌基催化剂的催化活性进行了评价.结果表明:各种处理方法对活性炭的比表面、孔径等孔结构性能影响不大;但超临界甲醇处理活性炭可明显减少活性炭表面含氧酸性基团的含量,尤其是羧基等不稳定基团的含量;而硝酸处理活性炭则可大幅度提高活性炭表面含氧酸性基团的含量,尤其是羧基等不稳定基团的含量增加更大.ICP 分析结果表明:超临界甲醇处理活性炭并不改变活性炭样品对钌的吸附量,但硝酸氧化处理活性炭却能明显提高样品对钌的吸附能力.活性炭表面的这些含氧基团虽然有利于钌离子的吸附,但却不利于钌在活性炭表面的分散.由于超临界甲醇流体处理活性炭时的表面反应及萃取作用,可有效清除活性炭表面的不稳定含氧酸性基团,避免还原过程中钌的迁移聚集,使负载钌的分散度提高,有利于增强钌与活性炭间的相互作用,使钌部分缺失电子,钌的结合能升高;可明显提高负载钌炭催化剂葡萄糖催化加氢的活性.关键词:

表面改性;活性炭;钌基催化剂;表面含氧基团;氢化

中图分类号:

O643

Hydrogenation of Glucose Using Ru/Activated Carbon Catalysts:Effects of Modification Methods on Surface Properties of

Activated Carbon

XU San-Kui 1,2

LI Li-Min 1,*

GUO Nan-Nan 1

SU Yun-Lai 1

ZHANG Peng 1

(1Department of Chemistry,Zhengzhou University,Zhengzhou 450001,P .R.China ;

2

College of Material Science and Engineering,Henan University of Technology,Zhengzhou 450001,P .R.China )Abstract:Activated carbon (AC)was modified by supercritical methanol (scCH 3OH)treatment,HNO 3oxidation,and HNO 3oxidation in combination with scCH 3OH treatment.The pristine and modified AC samples were characterized by N 2physisorption,Boehm titration,X-ray photoelectron spectroscopy (XPS),inductively coupled plasma atomic emission spectroscopy (ICP-AES),and transmission electron microscopy (TEM).These modifications did not significantly change the surface area and the pore size distribution of the AC.ScCH 3OH treatment decreased the density of surface acidic groups,especially carboxylic groups.However,HNO 3oxidation increased the density of surface acidic groups.ICP analysis revealed that the scCH 3OH modified sample had a similar adsorptive capacity for ruthenium as the original AC,while the AC oxidized with HNO 3had the highest adsorptive capacity of all samples tested.Ru/AC catalysts were prepared with RuCl 3solution impregnation on the four aforementioned AC supports.The

[Article]

https://www.doczj.com/doc/281637108.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.?Chim.Sin .2012,28(1),177-183

January Received:September 14,2011;Revised:November 15,2011;Published on Web:November 18,2011.?

Corresponding author.Email:lilm@https://www.doczj.com/doc/281637108.html,;Tel:+86-371-67781064.

The project was supported by the National Natural Science Foundation of China (50955010).国家自然科学基金(50955010)资助项目

?Editorial office of Acta Physico ?Chimica Sinica

doi:10.3866/PKU.WHXB201111181

177

Acta Phys.?Chim.Sin.2012V ol.28

as-prepared catalysts were characterized by TEM,XPS and examined for their effectiveness in D-glucose hydrogenation as well.The modifications drastically affected the properties of the activated carbons and

the catalysts loaded on them.The dispersion of ruthenium after impregnation was highly dependent on the density of surface acidic groups.The AC sample treated by scCH3OH,which contained a lower amount of surface acidic complexes,showed the highest dispersion of ruthenium.The XPS results showed that the

scCH3OH modification enhanced the interaction between AC and Ru.The Ru/AC-scCH3OH catalyst showed the highest activity for hydrogenation of D-glucose;producing a reaction rate1.56times higher

than that produced by Ru/AC.

Key Words:Surface modification;Activated carbon;Ruthenium catalyst;Surface oxygen containing group;Hydrogenation

1Introduction

Because of high surface area,relative inertness,and high thermal stability,activated carbon(AC)has proved to be high-ly effective as a catalyst support.1-5It is known that catalyst support properties are determined by both their texture and sur-face chemistry.1,3-5Despite the abundance of literature has been published on it,the effect of AC texture and surface oxygen containing groups on the metal dispersion and activity is still under controversy.It has been well established in the literature that the surface oxygen containing groups,which are anchor-ing sites for metallic precursors as well as for metals,domi-nantly determine the properties of AC as a catalyst support ma-terial.1,3-5The acidic groups on the surface decrease the hydro-phobicity of the carbon,leading to the accessibility of the sur-face to aqueous metal precursors,while the less acidic groups increase the interaction of the metal precursor or the metal par-ticle with the support and,as a consequence,minimize the sin-tering propensity of metal on carbon.1,4,5Coloma et al.6reported that the dispersion of metal was highly dependent on the de-gree of carbon support oxidation,and the degree of dispersion is lower for AC containing higher amount of surface acidic complexes.The nature and density of surface functional groups can be modified by suitable thermal or chemical post-treatments such as gas oxidation,liquid phase oxidation with HNO3or other oxidants,ultrasonic treatment,and micro-wave treatment.7-15Recently,the supercritical fluid(SCF)tech-nology has been developed rapidly due to its unusual physical properties,which can be tunable by simply changing the pres-sure and temperature.The SCFs have been explored as poten-tial replacement for conventional solvents in various extractive processes,chemical reaction,and the preparation of new mate-rials owing to its high diffusivity,good solubility,better pene-tration,and wetting properties.16-18However,there is no report on the method for AC treated by SCFs to our knowledge.

The hydrogenation of D-glucose to D-sorbitol is of great in-dustrial importance because D-sorbitol is a valuable additive in foods,drugs,and cosmetics.Moreover,D-sorbitol is an inter-mediate in vitamin C production.Generally,Raney Ni is used as catalyst for this process due to its excellent settling proper-ties and lower cost.However,the dissolution of nickel occurs during the hydrogenation of D-glucose,resulting in the contam-ination of products which limits the applications of method. The maximum allowable concentration of Ni is2mg·kg-1for food industry application.19As a consequence,purification of sorbitol is necessary,which renders this process economically less attractive.In addition,the alkali leaching is employed dur-ing the catalyst preparation which will bring environmental problem.Thus,great attempts have been made to develop new efficient and environmentally friendly catalysts for this pro-cess.20Ruthenium-based catalysts as efficient and stable cata-lysts for the hydrogenation of glucose have received much at-tention in recent years.19-22

In this work,we report a Ru catalyst supported with novel modified AC,which was proved to be more effective than the catalysts supported with the original AC.Our work aims at us-ing scCH3OH,HNO3oxidation,and the HNO3oxidation com-bined with scCH3OH treatment to modify AC,and prepare Ru-based catalysts with them as support.The modified ACs and catalysts were characterized by various analytical tech-niques.The activity of catalysts was investigated through the hydrogenation of D-glucose to D-sorbitol.Correlation between the surface properties of AC and the activity of catalysts has been established.

2Experimental

2.1Chemicals

Coconut activated carbon was purchased from Fuzhou Sha-owu Xinshen Carbon Material Company,China.D-glucose (AR),nitric acid(AR),and methanol(AR)were supplied by Tianjin Damao Fine Chemical Incorporated Company,China. RuCl3(37%(w))was provided by Guiyan Rare Metal Material Company,China.H2with purity of99.99%was provided by Zhengzhou Gas Company.

2.2Modification of AC

The typical procedure for the treatment of the original AC (size0.25-0.38mm)was as follows:

(i)For scCH3OH treated sample(marked as AC-S):Firstly, 56mL CH3OH was added into a stainless steel autoclave of 150mL.Secondly,2.0g AC was placed in a stainless-steel cage fixed at the upper part of the autoclave.The autoclave

178

XU San-Kui et al.:Effects of Modification Methods on Surface Properties of Activated Carbon No.1

temperature was adjusted up to573K and maintained for8.0

h.Then,the autoclave was cooled to below353K and metha-

nol gas was vented.Finally,the activated carbon was removed

and dried at373K for6.0h.

(ii)For HNO3oxidized sample(marked as AC-H):4.0g AC

sample was oxidized in30%(w)HNO3solution at333K for

4.0h and washed with distilled water till the pH value of the

rinsed solution reached7.0.The AC-H sample was then dried

overnight at383K.

(iii)For the sample which was treated by HNO3oxidation and further by scCH3OH(marked as AC-H-S):2.0g of AC-H sample was modified with the method described in(i).

2.3Preparation of Ru/AC catalysts

Ru based catalysts were prepared by wet impregnation meth-od.In a typical experiment,0.6g AC sample was added to6.0 mL RuCl3solution.The loading amount of Ru is5%(w)based on metal.After impregnation for6.0h,the mixture was then dried at393K for8.0h.The solid products were reduced using pure H2at473K for2.0h,and at573K for another1.0h.

2.4Characterizations

The surface acidic oxygen containing groups of activated carbon were titrated by the Boehm method.23The surface areas, total pore volume,and pore diameter of AC samples were mea-sured by nitrogen adsorption at77K after degassing at373K for 2.0h using a Quantachrome NOV A1000e analyzer (Quantachrome Instrument Corporation,America).Surface electronic states and surface atom amount of activated carbon were analyzed by X-ray photoelectron spectroscopy(XPS)on a Perkin-Elmer PHI5300instrument(Perkin Elmer Corporation, America).Binding energy values were calibrated using the val-ue of contaminant carbon(C1s,284.6eV)as a reference.The adsorption capacity of Ru3+on AC was analyzed by inductively coupled plasma(ICP)on an ICAT6000SERIES instrument (Heme Electron Corporation,America).The surface morpholo-gy and the particle size of Ru catalysts were determined by transmission electron micrograph(TEM)on a JEM-2100mi-croscope(Japan Electronics Corportion).

2.5Activity test

The activity test was performed in a150mL stainless auto-clave containing0.3g of catalyst and50.0mL of50%(w)glu-cose aqueous solution.The initial H2pressure was4.0MPa with a reaction temperature of393K and a stirring rate of 1000r·min-1.The specific activity of the hydrogenation was obtained by recording the decrease of H2pressure with time, which was then converted to the hydrogen uptake rate per gram of Ru(mmol·min-1·g-1)according to the ideal gas equa-tion.In addition,the stirring effect was preliminarily investigat-ed and our experiment proved that the rate was sufficient to eliminate the diffusion limit.

3Results and discussion

3.1Effect of treatment methods on surface area

and pore structure of AC

The pore volume,total surface area,and mean pore diameter of samples are given in Table1.For AC-S,the surface area dropped while the pore volume increased.It implied that some small pores disappeared while some new large pores formed. The pore volume,total surface area,and mean pore diameter of AC-H is almost unchanged compared with AC.However, these parameters increase for AC-H-S which was treated with HNO3and scCH3OH.The increase in pore volume after scCH3OH treatment can be explained that scCH3OH has a pow-erful extraction ability and good chemical reaction property. Because the experimental material was coconut AC,AC surely contains some organic ingredients.Thus the extraction process must take place in scCH3OH.Some organic ingredients on the outer-layers of AC were leached.

3.2Surface acid sites

The surface of AC showing acidic properties is due to the presence of carboxyl groups(also in the form of their cyclic an-hydrides),lactones or lactols,and phenolic hydroxyl groups. These groups differ in their acidities and can be differentiated by neutralization with solutions of NaHCO3,Na2CO3,and NaOH,respectively.Table2shows the amount of the surface acidic groups of each sample.It can be seen that scCH3OH treatment dramatically decreases the amount of surface acidic groups on AC due to scCH3OH extraction and chemical reac-tion with the surface acidic oxygen containing groups.To fur-ther prove the scCH3OH extraction and reaction,the chemical composition of methanol mother solution was analyzed by GC-MS7890A5975C(AgiLent America).The analytic results showed that the methanol mother solution contained certain amount of organic chemical compositions such as dimethyl ether and methyl propionate compared to pure methanol.

Nitric acid oxidation treatment significantly increased the content of acidic surface groups,as reported in literature.9For Table2,it can be seen that the total amount of acid sites and the amount of carboxylic group increase evidently.It is pro-posed that liquid oxidation by HNO3leads to the formation of

3

AC-H:activated carbon oxidized by HNO3;AC-H-S:activated carbon treated

with HNO3oxidation and scCH3OH

179

Acta Phys.?Chim.Sin .2012

V ol.28

oxygen containing groups.

The sample AC-H-S,which was treated by HNO 3oxidation and further by scCH 3OH,has much lower acidic surface group content compared to AC-H sample.The results further prove that the scCH 3OH treatment would result in a decrease in acid-ic surface group content of AC.

3.3XPS characterization of activated carbon

XPS is a surface technique which can provide information of the chemical composition of the few uppermost layers of the material.Table 3gives the XPS results of the four samples.It can be seen that the AC-S has the lowest oxygen content,while AC-H shows an increase in the oxygen content.

In order to further investigate the nature of the functional groups on the surface,deconvolution of the O 1s peak was per-formed using a sum of Lorentzian-Gaussian functions.2Fig.1and Table 4give the results obtained by the XPS deconvolu-tion of the O 1s peak.The deconvolution of the O 1s peak gives additional information of the nature of the surface oxy-gen containing groups.The functionalities shown in Fig.1is at-tributed to carbonyl group (peak a,531.1eV),phenol (peak b,532.3eV),pyrone (peak c,533.4eV),and carboxylic group

(peak d,534.2eV).24-26The amount of surface oxygen contain-ing groups was calculated from the corresponding peak areas.As shown in Table 4,scCH 3OH treatment can decrease the con-tent of all the oxygen-containing acidic groups,especially the carbonyl and phenol groups.The nitric acid oxidized sample (AC-H)has the highest surface oxygen containing groups,es-pecially carboxylic group.The XPS results are consistent with the Bohem titration results discussed above.3.4Adsorptive capacity test

In order to study the effects of the oxygen containing groups on the adsorption capacity of AC samples,the adsorptive ca-pacities of Ru 3+on the AC support samples were examined (Ta-ble 5).The results showed that AC-H sample had the highest adsorptive capacity.The previous experiment (XPS and Bo-hem titration)indicated that nitric acidic oxidization greatly in-creased the oxygen containing acidic groups on AC.The in-crease of the surface oxygen containing groups,which are an-choring sites for metallic precursors,could enhance the adsorp-tion of Ru 3+.Although the AC-S sample had lower surface oxy-gen containing groups than original AC sample,the two sam-

Fig.1O 1s XPS spectra and deconvolution results

Table 4O 1s peak deconvolution analysis results of

the activated carbons

Sample AC AC-S AC-H AC-H-S

w /%

carbonyl 2.0931.2532.6051.807

phenol 0.9920.7762.6881.603

pyrone 1.2581.0142.8561.527

carboxylic group

1.0670.9973.533 1.863

C o u n t s C o u n t s

C o u n t s C o u n t s

180

XU San-Kui et al.:Effects of Modification Methods on Surface Properties of Activated Carbon No.1

ples had almost the same adsorptive capacity.Coloma et al.6re-ported that the decomposition-reduction of the oxygen contain-ing surface groups formed active centers.It is possible that the scCH3OH extraction and chemical reaction with the surface acidic oxygen containing groups could lead to generate new ac-tive centers which are anchoring sites for metallic precursors.

3.5TEM characterization of Ru catalysts

In order to investigate the effect of the oxygen containing groups of AC on the particle size distribution of ruthenium on AC supports,the morphology of these supported Ru catalysts was characterized by TEM.It can be seen from Fig.2that the particle size of Ru varies in the order of AC-H>AC-H-S>AC> AC-S.The AC-S sample exhibits uniformly dispersed metal particles with a particle size of1.2-3.7nm.And the AC-H sample has the largest particle size(2.6-25.8nm)with the broadest particle size distribution.The surface oxygen contain-ing groups are the anchoring centers for the ruthenium precur-sor.It is reasonable that scCH3OH treatment increases rutheni-um dispersion because some surface acidic oxygen containing groups of activated carbon are extracted or reacted,which re-duces the gathering chance of ruthenium.On the contrary, HNO3oxidization greatly increases the oxygen containing acid-ic groups,and enhances the adsorption of Ru3+.However,some of those groups have a limited thermal stability.The decomposi-tion of the less stable oxygen containing surface groups could result in metal gathering on the surface of supporter;thus the fi-nal dispersion of the metal phase drops.Similar results have al-so reported in literature,6which reported that metal dispersion was highly dependent on the degree of carbon support oxida-tion,being lower for the catalyst support containing higher amount of surface acidic groups.

3.6XPS characterization of catalysts

Fig.3presents the XPS spectra of the selected Ru/AC and Ru/AC-S catalysts.Three binding peaks(binding energy)con-tribute with peaks located at Ru3d5/2(280.6eV),Ru3d3/2 (284.4eV),27and Ru3p3/2(462.8eV)in two samples.Two sam-ples had higher Ru binding energy than pure Ru.27It is pro-posed that there is strong electron interaction between Ru and activated carbon supports.Furthermore,sample AC-S has high-er Ru binding energy than sample AC.The result proves that the supercritical methanol treatment increases the electron in-teraction.This electron interaction between Ru and AC support results in Ru lacking electron,and this helps catalyst to chemi-sorb hydrogen and increase the activity which will be proved latter.

3.7Catalytic activity test

Table5Ru3+adsorptive capacity on AC samples

Sample AC

AC-S AC-H AC-H-S Initial concentration/(mg·L-1)

500.0

500.0

500.0

500.0

Mother liquid concentration/(mg·L-1)

386.9

381.8

329.1

352.3

Adsorption rate/%

22.62

23.64

34.18

29.54

Relative adsorption

1.00

1.04

1.51

1.31

Fig.2TEM images of the Ru based catalysts

Fig.3Ru XPS profiles of the Ru/AC and Ru/AC-S catalysts

181

Acta Phys.?Chim.Sin.2012V ol.28

The catalytic behaviors for the liquid phase hydrogenation of D-glucose are summarized in Fig.4.It can be seen that the activity of Ru catalysts follows the order of Ru/AC-S>Ru/AC> Ru/AC-H-S>Ru/AC-H,which is same as the order of the dis-persion of Ru.The Ru/AC-S catalyst shows the highest activi-ty,which is1.56times as large as that of Ru/AC catalyst.And the activity of the commercial Ru/C(Engelhand)catalyst has also been tested.The activity of Ru/C catalysts was compared between the import commercial Ru/C and home-made cata-lysts as shown in Fig.4.The Ru/AC-S catalyst has higher activ-ity.

The activity result shows that scCH3OH treatment can in-crease the activity,whereas nitric acidic oxidization greatly de-creases the activity.It has been proposed that the extraction and some chemical reaction may take place on the surface of AC in scCH3OH,and therefore result in the leaching of some oxygen containing groups.This is confirmed by previous Bohem titration,GC-MS,and XPS results.Coloma et al.6re-ported that the oxygen surface groups on the support had a high influence during the catalyst preparation step,acting as an-choring centers for the metal precursor.However,some of oxy-gen containing groups has low thermal stability at the reduc-tion of the metal precursor.The decomposition of the less sta-ble surface groups could result in the gathering of metal on the surface of supporter.The treatment by scCH3OH can decrease the density of surface oxygen containing groups of activated carbon,decrease metal gathering and finally increase the dis-persion of ruthenium as confirmed by TEM.The higher disper-sion of metal could increase the electron interaction between ruthenium composition and AC support as confirmed by XPS. And the electron interaction results in the lack of electron on Ru,benefiting the chemisorption of hydrogen which increases the activity of catalysts.Nitric acid oxidation treatment increas-es the density of surface oxygen containing acidic groups of ac-tivated carbon,but some of the oxygen containing groups have a limited thermal stability at the reduction of the metal precur-sor,which results in the gathering of metal and the decrease of activity.It can be concluded that the surface acidic oxygen con-taining groups of AC is not beneficial for Ru/AC catalysts in our experimental conditions.This is consistent with reference28 which reported that HNO3treated activated carbon could in-crease the content surface acidic oxygen containing groups of activated carbon,lead to lower Ru dispersion and decrease the activity of Ru/AC in ammonia synthesis.

4Conclusions

The activated carbon was modified by scCH3OH treatment, HNO3oxidation,and HNO3oxidation combined with scCH3OH treatment,respectively.The effect of modification methods on the structure parameters of AC including surface area,pore size,and pore volume is not obvious.Modification by scCH3OH could greatly decrease the density of surface acid-ic groups,especially carboxylic group,owing to scCH3OH ex-traction and chemical reaction.HNO3oxidation leads to the for-mation of surface oxygen containing groups.The surface oxy-gen containing groups are beneficial for the adsorption of Ru3+. But surface oxygen containing groups will also results in the gathering of metal on the surface of AC.Modification by scCH3OH leads to a better dispersion of Ru,enhances interac-tion force between activated carbon and Ru.Thus the activity of the catalyst is obviously increased.The maximum reaction rate for hydrogenation of glucose is94.23mmol·min-1·g-1and 1.56times as large as the original AC.The Ru/AC-S catalyst has higher activity than the commercial Ru/C catalyst.

References

(1)Rodriguez,R.F.Carbon1998,36,159.

(2)Figueiredo,J.L.;Pereira,M.F.R.;Freitas,M.M.A.;Orfao,J.

J.M.Carbon1999,37,1379.

(3)Radovic,L.R.;Rodriguez,R.F.Carbon Materials in Catalysis.

In Chemistry and Physics of Carbon,V ol.25;Thrower,P.A.

Ed.;Dekker:New York,1997;pp243-358.

(4)Auer,E.;Freund,A.;Pietsch,J.;Tacke,T.Appl.Catal.A1998,

173,259.

(5)Hagen,S.;Barfod,R.;Fehrmann,R.;Jacobsen,C.J.H.;

Teunissen,H.T.;Chorkendorff,I.B.J.Catal.2003,214,327. (6)Coloma,F.;Sepulveda-Escribano,A.;Fierro,J.L.G.;

Rodriguez-Reinoso,F.Appl.Catal.A1997,150,165.

(7)Aksoylu,A.E.;Madalena,M.;Freitas,M.A.;Fernando,M.;

Pereira,R.;Figueiredo,J.L.Carbon2001,39,175.

(8)Aksoylu,A.E.;Freitas,M.A.;Figueiredo,J.L.Appl.Catal.A

2000,192,29.

(9)Song,W.;Li,Y.;Guo,X.H.;Li,J.;Huang,X.M.;Shen,W.J.

J.Mol.Catal.A2010,328,53.

(10)Zheng,X.L.;Zhang,S.;Xu,J.X.;Wei,K.M.Carbon2002,40,

2597.

(11)Rasheed,A.;Howe,J.Y.;Dadmun,M.D.;Britt,P.F.Carbon

2007,45,1072.

(12)Kowalczyk,Z.;Sentek,J.;Jodzis,S.;Mizera,E.;Goralski,J.;

Paryjczak,T.;Diduszko,R.Catal.Lett.1997,45,65.

(13)Han,W.F.;Liu,H.Z.;Zhu,https://www.doczj.com/doc/281637108.html,mun.2007,8,351.

Fig.4Activity of commercial Ru and Ru catalysts on

different AC supports

182

XU San-Kui et al.:Effects of Modification Methods on Surface Properties of Activated Carbon No.1

(14)Takaoka,M.;Yokokawa,H.;Takeda,N.Appl.Catal.B2007,

74,179.

(15)Ding,L.X.;Wang,S.R.;Zheng,X.L.;Chen,Y.;Lu,T.H.;

Cao,D.X.;Tang,Y.W.Acta Phys.-Chim.Sin.2010,26,1311.

[丁良鑫,王士瑞,郑小龙,陈煜,陆天虹,曹殿学,唐亚文.

物理化学学报,2010,26,1311.]

(16)Erkey,C.J.Supercritical Fluids2009,47,517.

(17)Jiao,J.X.;Xu,Q.;Li,L.M.J.Colloid Interface Sci.2007,316,

596.

(18)Kim,J.;Kelly,M.J.;Lamb,H.H.;Roberts,G.W.;Kiserow,D.

J.J.Phys.Chem.C2008,112,10446.

(19)Hoffer,B.W.;Crezee,E.;Mooijman,P.R.M.;Langeveld,A.

D.;Kapteijn,F.;Moulijn,J.A.Catal.Today2003,79-80,35.

(20)Gorp,K.V.;Boerman,E.;Cavenaghi,C.V.;Berben,P.H.

Catal.Today1999,52,349.(21)Pierre,G.;Nathalie,N.;Flèche,G.;Fuertes,P.;Perrard,A.

J.Catal.1998,180,51.

(22)Kusserow,B.;Schimpf,S.;Claus,P.Adv.Synth.Catal.2003,

345,289.

(23)Boehm,H.P.Carbon1994,32,759.

(24)Mangun,C.L.;Benak,K.R.;Economy,J.;Foster,K.L.Carbon

2001,39,1809.

(25)Boehm,H.P.Carbon2002,40,145.

(26)Lucas,A.D.;Valverde,J.L.;Canizares,P.;Rodriguez,L.Appl.

Catal.A1998,172,165.

(27)Sun,Z.Y.;Liu,Z.M.;Han,B.X.;Miao,S.H.;Miao,Z.J.;An,

G.M.J.Colloid Interface Sci.2006,304,323.

(28)Han,W.F.;Zhao,B.;Huo,C.;Liu,H.Z.Chin.J.Catal.2004,

25,194.[韩文锋,赵波,霍超,刘化章.催化学报,2004,

25,194.]

183

活性炭的功能化处理极大的影响钯碳催化剂活性

活性炭的功能化处理极大的影响钯碳催化剂活性 2016-07-26 14:01来源:内江洛伯尔材料科技有限公司作者:研发部 钯碳催化剂TEM和粒径分布图 活性炭由于具有较大的比表面积、丰富的孔道结构和良好的导电性能, 是一类燃料电池催化剂的理想载体. 常用的活性炭有乙炔黑、VulcanXC72、Vulcan XC72R、Black Pearls 2000 和Ketjen Black等. 大量研究表明, 活性炭表面的官能团一方面能够增强表面亲水性, 作为活性沉积中心促进金属前驱体在表面的吸附和沉积, 从而有效提高金属粒子的分散度和抑制粒子的团聚长大, 另一方面, 表面官能团与负载金属之间的相互作用能够改变金属粒子的表面电子状态, 从而影响金属催化剂的活性和稳定性. 因此, 对炭载体的功能化处理具有重要的实际应用价值. 目前, 对炭载体的功能化处理通常采用强氧化剂, 如HNO3、HNO3/H2SO4、H2O2, 或强碱如KOH等进行表面氧化和修饰以形成大量的羧基、羰基、酯基和羟基等含氧官能团. 然而, 此类强氧化处理一方面容易破坏活性炭的石墨结构, 造成电导率的降低; 另一方面也会导致活性炭的比表面积急剧减小, 金属粒子在载体表面分布不均, 出现团聚. 最近亦有研究者采用弱氧化性物质如柠檬酸、乙酸等修饰炭载体, 引入适量含氧官能团, 同时改善负载金属粒子的分散度, 从而提

高催化剂的催化活性. 此外, 在炭载体表面引入含氮官能团, 一方面能够产生可参与催化反应的活性位; 另一方面, 由于表面氮原子强的供电子行为和π-π共轭作用提供高的电子迁移率并显著影响载体的表面化学活性, 从而可以提高载体的电导率, 增强催化剂的长程稳定性. 近年来, 不少研究者尝试采用多种方法, 如用化学气相沉积(CVD)、NH3高温活化、固相反应、溶剂热反应和等离子体处理等在炭载体表面引入含氮官能团.Jiang等通过依次在HNO3/H2SO4和氨水中超声处理, 在纳米碳纤维表面引入含氮和含氧基团, 作为Pt纳米催化剂载体. 唐亚文等用氨水处理活性炭, 引入含氮基团, 用作Pd催化剂的载体. 常州大学石油化工学院曹剑瑜等人采用乙二胺四乙酸(EDTA)对活性炭进行功能化处理, 研究了其对表面基团、炭载Pd纳米粒子结构及Pd催化剂电催化性能的影响. 傅里叶变换红外(FTIR)光谱和X射线光电子能谱(XPS)表征表明, EDTA处理在炭表面引入了含氮基团. X射线粉末衍射(XRD)光谱、透射电镜(TEM)和电化学测试结果显示, 活性炭经EDTA处理后, 负载的Pd 粒子粒径虽有所增大, 但由于炭载体与Pd粒子相互作用的增强, Pd利用率增加, 催化剂对甲酸氧化的活性和稳定性均显著提高. 电化学阻抗谱(EIS)分析进一步揭示, 甲酸在该催化剂电极上的电氧化反应具有较低的电荷传递电阻.

一种改性活性炭的制备方法

一种改性活性炭的制备方法,黎福根,唐怀远Patents Publication number CN103043659 A Publication type Application Application number CN 201210548722 Publication date Apr 17, 2013 Filing date Dec 17, 2012 Priority date Dec 17, 2012 Publication number 201210548722.1, CN 103043659 A, CN 103043659A, CN 201210548722, CN-A-103043659, CN103043659 A, CN103043659A, CN201210548722, CN201210548722.1 Inventors 黎福根, 唐怀远 Applicant 湖南丰日电源电气股份有限公司 Export Citation BiBTeX, EndNote, RefMan Patent Citations (3), Classifications (1), Legal Events (3) External Links: SIPO, Espacenet 一种改性活性炭的制备方法 CN 103043659 A Abstract 本发明公开了一种改性活性炭的制备方法,所述改性活性炭是采用抑氢剂改性的活性炭;所述的抑氢剂为负载在活性炭表面的氧化铅;其制备过程是先使用活性炭吸附铅离子;再使用碱将铅离子沉积在活性炭表面;最后通过热处理使氢氧化铅分解成氧化铅,并负载在活性炭表面;活性炭、铅盐与碱通过球磨方法发生化学反应,然后在保护气环境下通过高温处理制备。本发明制备工艺简单,生产周期短,易于工业化生产,设备投资较少;绿色环保;应用广泛;能够增大活性炭的比电容。 Claims(2) 1. 一种改性活性炭的制备方法,其特征在于,所述改性活性炭是采用抑氢剂改性的活性炭;所述的抑氢剂为负载在活性炭表面的氧化铅;所述的改性活性炭的制备过程是:1.先使用活性炭吸附铅离子; 2.再使用碱将铅离子沉积在活性炭

活性炭的制作方法

活性炭的制作方法 郑州虹阳净水材料有限公司整理 活性炭电极材料的干法室温改性方法 活性炭电极材料的干法室温改性方法,利用滚压振动磨机作为改性设备;在惰性气体环境、干法和室温条件下按如下步骤进行:a)将滚压振动磨机置于手套箱中,封闭出料口,将待加工的活性炭样品由加料口加入磨机筒体内;b)用空气过滤网将磨机加料口封闭,再将整个手套箱封闭,利用真空泵将手套箱及振动磨机筒体抽成真空,然后充入惰性气体。抽气和充气应反复进行,直到整个手套箱中的气氛完全由惰性气体控制,并且与外部大气压平衡为止;c)根据原料的颗粒尺度和形貌,通过*机设定并控制所需的振动频率和研磨时间。本发明能优化活性炭的孔径分布,改善活性炭的结晶性和导电性,操作简便,能耗低,效率高,无附加污染和后续处理工艺。 活性炭电极材料的干法室温改性方法 活性炭电极材料的干法室温改性方法,利用滚压振动磨机作为改性设备;在惰性气体环境、干法和室温条件下按如下步骤进行:a)将滚压振动磨机置于手套箱中,封闭出料口,将待加工的活性炭样品由加料口加入磨机筒体内;b)用空气过滤网将磨机加料口封闭,再将整个手套箱封闭,利用真空泵将手套箱及振动磨机筒体抽成真空,然后充入惰性气体。抽气和充气应反复进行,直到整个手套箱中的气氛完全由惰性气体控制,并且与外部大气压平衡为止;c)根据原料的颗粒尺度和形貌,通过*机设定并控制所需的振动频率和研磨时间。本发明能优化活性炭的孔径分布,改善活性炭的结晶性和导电性,操作简便,能耗低,效率高,无附加污染和后续处理工艺。 高活性光催化的空气净化粉体材料及其制备方法与应用 本发明公开了一种在紫外、可见光和*辐射条件下都具有较好的光催化效果的空气净化粉体材料及其制备方法和应用,空气净化粉体材料为带有掺杂元素的纳米氧化钛包覆*米极性矿物电气石颗粒形成的纳米-*米复合粉体材料,所述掺杂元素为稀土元素或/和过渡元素,其中稀土元素为选自Ce、Pr、La、Sm、Eu、Nd元素的氧化物或硝酸盐中的一种或几种,所述过渡元素为选自Fe、Ag、Co、Cu、Zn元素中的一种或几种。本发明的空气净化材料在紫外、可见光和*波条件下都具有较好的光催化效果,光催化产生的· 含活性炭的球状颗粒复合材料及其制备工艺 本发明公开了一种含活性炭的球状颗粒复合材料及其制备工艺,该材料由含活性炭的内核与陶质薄膜层外壳组成。其制备工艺是:在活性炭、膨润土和凹凸*土中加入添加剂,制得内核;在膨润土和凹凸*土中加入添加剂,制得外壳材料,将外壳材料粘合于内核表面,高温烧结,得到球状颗粒复合材料。这种含活性炭的复合材料,表面为多孔状的陶质薄膜层外壳,该结构在确保活性炭吸附性能的同时,提高了材料的耐压性、耐磨性,可防止活性炭碎屑、粉末的掉落;同时,在使用一段时间后,用户可自行对材料进行脱附处理,恢复材料的吸附活性。该颗粒复合材料可应用于有*、有害气体的吸附去除。

活性炭的吸附性能及有机物吸附介绍

活性炭的吸附性能及有机物吸附介绍 活性炭的吸附性能及有机物吸附的一般概念 活性炭的强吸附性能除与它的孔隙结构和巨大的比表面积有关 外(其比表面积可500-1700m2/g),还与细孔的行状和分布以及表面化学性质有关。 活性炭的细孔一般为1~10nm,其中半径在2nm以下的微孔占95%以上,对吸附量影响最大;过渡孔半径一般为10~100nm,占5%以下,它为吸附物质提供扩散通道,影响扩散速度;半径大于100nm、所占比例不足1%的大孔也是作为提供扩散通道的。 活性炭的吸附通道决定影响吸附分子的大小,这是因为孔道大小影响吸附的动力学过程。有报道认为,吸附通道直径是吸附分子直径的1.7~21倍,最佳范围是1.7~6倍,一般认为孔道应为吸附分子 的3倍。

活性炭表面化学性质可以说其本身是非极性的,但由于制造过程中处于微晶体边缘的碳原子共价键不饱和而易与其他元素(如H、O)结合成各种含氧官能团,如羟基、羧基、羰基等,以致活性炭又具有微弱的极性,并具有一定的化学和物理吸附能力。这些官能团在水中发生离解,使活性炭表面具有某些阴离子特性,极性增强。为此,活性炭不仅可以除去水中的非极性物质,还可吸附极性物质,优先吸附水中极性小的有机物,含碳越高范德华力越大,溶解度越小的脂肪酸愈易吸附,甚至微量的金属离子及其化合物。 活性炭过滤用以脱除水中的微量污染物和对反渗透膜产生损害 的游离氯。因为活性炭是一种非极性吸附剂,外观为暗黑色,粒状。主要成分碳、氧、硫、氢,具有良好的吸附性能和稳定的化学性质,可以耐强酸、强碱,能经受水浸、高温、高压作用,不易破碎。活性炭是用动植物、煤、石油及其它有机物作原料,经加热脱水、炭化、活化制成的。具有巨大的比表面积和发达的微孔,微孔直径为20~30埃。此外,活性炭的表面有大量的羟基和羧基官能团,可以对各种性质的有机物进行化学吸附、以及静电引力作用。因此,可以脱色,除臭味,脱除重金属、各种溶解性有机物、放射性元素、胶体及游离氯等。 活性炭对有机物的去除 活性炭去除有机物的影响因素

催化剂载体活性炭相关资料

贵金属催化剂用载体活性炭 A、粉状活性炭:鑫森化工新开发的载体炭可达国际同类产品性能,活性高,具有大比表积面积(1500-2000 m2)和丰富的中孔容积,20-50 A。中孔容占总孔容的50%以上)和超纯特点,碳含量90-99%,灰份1-2%,适用于催化剂及催化剂载体(钯催化剂、钌催化剂、铑催化剂、铂催化剂),贵重金属回收及金刚石行业。已在国内数十家科研单位及使用厂家得已应用。100目,200目,325目过90%,40-100目可选 B、柱状活性炭:适用于附载钯Pd、铂pt、钌Ru、镍Ni等贵金属催化剂应用于石油化工加氢催化裂化反应、林产化工加氢催化反应、医药化工加氢催化反应及制冷剂/食品等行业,直径3mm、4mm可选,强度大于99.9%,高比例的中孔率20-100 A。中大孔容占总孔容的70%以上。 C、球形颗粒活性炭:适用于铂、钌等贵金属催化剂载体及制冷剂/食品等行业6-8目,颗粒状, 堆积密度=0.30克/毫升,比表面积: 1750 平米/克,孔容积: 1.4 立方厘米/克,中孔率: >70%,吸附性能: 良好 D.椰壳颗粒载体炭:4-8目50-80目50-100目比表面积:1300cm2,2000cm2可选,中孔,大孔,微孔可调控. 贵重金属催化剂 适用于医药和化学工业中,石化行业催化剂载体(钯、铂、铑)对苯二甲酸加轻工艺,例如在合成噻吗心安、氟呱啶、合成甲苯二异氰酸酯,在己内酰胺精制松香加氢与歧化等反应均以活性炭载钯(钯炭)为催化剂。在精对苯二甲酸生产中,对苯二甲酸加氢精制除去其中的对羧基苯甲酸时也用活性炭载钯催化剂。 活性炭作为催化剂和催化剂载体活性炭重要用途之一是作催化剂载体和助催化剂,也可直接用作催化剂。 鑫森活性炭在催化剂载体上的应用如下: (1)异构化作用用镍—炭催化剂使植物油(如棉籽油、亚麻油、菜籽油等)异构化,从非共轭的油变成共轭的形式。 (2)氢化、脱氢和脱氢芳构化,环化及异构化作用:用载钯或铂的活性炭作催化剂可起到这种催化作用。 (3)烯烃的低压聚合作用用含镍、钴或它们的氧化物的活性炭作催化剂能使烯烃聚合。(4)合成纤维在维尼纶生产上用含醋酸锌的活性炭作催化剂,使乙炔和醋酸合成醋酸乙烯酯。 (5)松香再加工用含钯的活性炭作催化剂生产岐化松香和氢化松香等。 (6)合成氯乙烯用含二氯化汞的活性炭作催化剂,使乙炔和氯化氢合成氯乙烯。 鑫森活性炭作催化剂方面如: (1)制造过氧化氢用活性炭覆盖的多孔管作阴极,使从阴极上放出的氢同压入的氧作用生成过氧化氢。 (2)使硫化氢转化为元素硫活性炭能吸附硫化氢并使氧化成元素硫,以除去气体中的硫化

活性炭改性方法及其在水处理中的应用

活性炭改性方法及其在水处理中的应用 活性炭是用生物有机物质(包括煤、石油和沥青等在内)经过炭化、活化等过程制成的一种无定形炭。它具有多孔结构、巨大的比表面积、吸附容量大、速度快和饱和可再生等特点,能够有效地去除水中的臭味、天然和合成溶解的有机物、微污染物以及一些大气中的污染气体等,但是普通活性炭比表面积小、孔径分布不均匀和吸附选择性能差,故普通活性炭需要进一步的改性,满足实验和工程需要。现在常采用工艺控制和后处理技术对活性炭的孔隙结构进行调整,对表面化学性质进行改性,进而提高其吸附性能。 标签:活性炭;改性方法;水处理 活性炭是一种吸附性很强的环境友好型吸附剂,有很好的吸附性能和催化性能。活性炭的原料来源广泛并且具有很高的安全性和稳定性,具有耐酸碱、耐热、易再生等特点。实践表明,活性炭对水中溶解的有机溶剂有很好的吸附性能,对水质浑浊有明显的澄清作用,并且能够去除水中的异味、臭味等,还能够过滤水中的微生物,因此在水处理行业中有着非常广泛的应用。本文就活性炭的改性方法和其在水处理方面的应用进行了简述,旨在为活性炭及其改性产物在水处理行业中的应用提供一定参考。 1、活性炭的改性方法 1.1表面氧化改性 表面氧化改性是通过氧化剂对活性炭进行处理,从而使活性炭表面的官能团发生氧化,提高含氧的官能团(羧基、酚羟基、酯基等)数量,增强活性炭的亲水性能,即极性,增强对极性物质的吸附能力的改性方法,常用的氧化剂主要是双氧水、硝酸、臭氧、高氯酸等。其中硝酸的氧化性最强,能够产生许多的酸性基团,其他氧化剂则相对温和,可以用于调整活性炭的表面酸性。氧化改性后的活性炭材料表面几何形状更加均匀,并且使用不同的氧化剂能够得到韩阳官能团数量和极性不同的活性炭材料,其中,酸性含氧官能团含量的多少与氧化程度有很大的关系。 1.2 活性炭表面化学性质的改性方法 活性炭表面化学性质的改变主要是通过一定的方法改变活性炭表面的官能团以及表面负载的离子和化合物,从而改变其表面的化学性质达到活性炭的吸附能力的提高。活性炭表面化学性质改性方法可分为:表面氧化法、表面还原法、负载原子和化合物法、酸碱法等。在改性过程中常常联合不同的改性方法对活性炭进行改性,从而达到更好的改性效果。 1.2.1 表面氧化法

影响活性炭吸附性能的因素

影响活性炭吸附性能的因素 在水处理中,活性炭对水中有机物的吸附量与很多因素有关,去除率在20%~80%之间,。 1 .活性炭的结构及特性 活性炭的孔径、空容分布及比表面积影响吸附容量。因活性炭吸附有机物主要在微孔中进行,微孔所占空容和表面积的比例愈大,吸附容量愈大。 由于活性炭表面带微弱的电荷,水中极性溶质竞争活性炭表面的活性位置,导致活性炭对非极性溶质的吸附量降低,而对某些金属离子产生离子交换吸附或络合反应。 2 .被吸附有机物的性质 a.分子结构和表面张力 芳香族有机物比脂肪族有机物更易被活性炭吸附;越是能降低溶液表面张力的有机物越容易被活性炭吸附。 b.有机物的分子量 一般水中有机物的分子量增加,吸附量也增加。但也有出现随分子量的增大,吸附速度降低的现象。当活性炭微孔大小为有机物分子的3~6时能够有效地吸附,由于分子筛的作用而使扩散阻力增加,吸附速度就降低。 c.有机物的溶解度 活性炭在本质上是一种疏水性物质,因此被吸附有机物的疏水性愈强愈易被吸附。因此,在水中溶解度愈小的有机物愈易被活性炭吸附。 3 .影响活性炭吸附的因素 a.水中有机物的浓度 大多数的有机物在浓度和吸附量之间存在特定的关系,而且一般是浓度增加吸附量按指数关系增加。

b.温度和共存物质 活性炭对水中有机物的吸附,温度的影响可以忽略不计。一般天然水中存在的无机离子对活性炭吸附有机物也几乎没有影响。但汞、铬、铁等金属离子含量较高时,则可能因为在活性炭表面起化学反应并生成沉淀、积累在炭粒内,使活性炭的孔径变小,影响活性炭的吸附效果。 c.接触时间 因为吸附是液相中的吸附质向固相表面的一个转移过程,所以吸附质与吸附剂之间需要一定的接触时间,才能使吸附剂发挥最大的吸附能力。在水处理量一定的情况下,增加接触时间,意味着增加水处理设备或增大水处理设备,而且接触时间太长时,吸附量的增加并不明显。因此,一般设计时接触时间约20~30分钟。 d. pH值 在多数情况下,先把水的pH值降低到2~3,然后再进行活性炭吸附往往可以提高有机物的去除率。这是因为水中的有机酸在低pH值下电离的比例较小,为活性炭提供了容易吸附的条件。

如何制作活性炭

现代农业以大量化肥代替原有农家有机肥的使用,以人工饲料代替农业废弃物饲料的使用,加之现代农业集约化和规模化的发展,打破了传统农业中废弃物的循环利用环节,结果造成了农业废弃物的大量积累,进而产生了较为严重的环境问题和资源浪费问题。因此,农业废弃物资源的合理利用已日益成为当前世界大多数国家共同面临的问题。国内外实践表明,农业废弃物的资源化利用和无害化处理,是控制农业环境污染、改善农村环境、发展循环经济、实现农业可持续发展的有效途径。 活性炭是一种具有特殊微晶结构、发达孔隙结构、巨大比表面积和较强吸附能力的含碳材料。其化学稳定性好,具有耐酸、耐碱、耐高温等特点。作为一种优良的吸附剂,人们对活性炭的应用开发研究越来越多。20世纪70年代前,活性炭在国内的应用主要集中于制糖、制药和味精工业:后来又扩展到水处理和环保等行业;20世纪90年代,除以上领域外,扩大到溶剂回收、食品饮料提纯、空气净化、脱硫、载体、医药、黄金提取、半导体等众多应用领域[1-5]。 2农业废弃物利用现状 农业废弃物(agriculturalresidue)是指在农业和林业生产与加工过程中产生的副产品、数量巨大、具有可再生、再生周期短、可生物降解、环境友好等诸多优点,是重要的生物质资源。主要有树皮、果壳、锯末、秸秆、蔗渣等。据有关资料,我国产生的农业废弃物按目前的沼气技术水平能转化成沼气3111.5亿

m3,户均达1275.2m3,可解决农村能源短缺。以农作物秸秆为例,将目前的6.5亿吨秸秆转化为电能,按1kg秸秆产生电1千瓦时计算,就具有产生6.5亿千瓦时电能的潜力;作为肥料可提供氮大约2264.4万吨、磷459.1万吨、钾2715.7万吨;作为饲料,仅玉米秸秆就能提供1.9~2.2亿吨。然而,目前我国农业废弃物的利用率却很低乃至没有利用。因此,农业废弃物一方面成为最大的搁置资源之一,另一方面又成为巨大的污染源[6]。 从资源经济学的角度上看,农业废弃物本身就是某种物质和能量的载体,是一种特殊形态的农业资源,蕴含着丰富的能源和营养物质。目前,随着石油、煤炭等不可再生资源的日益短缺,越来越多的国家特别是发达国家已经把农业废弃物等可再生资源的转化利用列入社会经济可持续发展的重要战略,以农业废弃物等可再生资源为原料制备工业新产品的研究引起了世界各国的关注。在我国,随着经济的迅速发展,开发利用农业废弃物资源,逐步补充或替代化石资源,是关系到我国社会经济可持续发展的重大问题。 3农业废弃物制备活性炭及其改性 目前活性炭制备原料的使用也是由木屑和木片到煤和各种 农林产品的充分利用。产品由单一品种向多品种发展:由低档活性炭向高档活性炭转变。农业废弃物制备活性炭的过程一般经过原料粉碎、压棒、炭化、活化、漂洗、烘干和活性炭粉碎等几个

竹质活性炭作为催化剂载体的研究

竹质活性炭作为催化剂载体的研究1 章健,马磊,张群峰,祝一锋 浙江工业大学工业催化专业,浙江杭州 (310014) E-mail:xnli@https://www.doczj.com/doc/281637108.html, 摘要:利用SEM、N2-物理吸附、联碱滴定法等表征手段系统比较了竹质活性炭和普通竹炭与其它材质活性炭在物理-化学等性质方面的异同,同时利用CO-化学吸附考察了这些材料作为催化剂载体对负载钯催化剂金属钯分散的影响。实验结果表明,竹质活性炭在比表面积、孔结构、灰份含量、表面基团等物理-化学性质方面都已具备作为催化剂载体的条件,显示出成为新的催化剂载体的潜力。 关键词:竹质活性炭;催化剂载体;物理-化学性质 中图分类号:O643 竹子在我国南方诸省有着广泛分布,其无性繁殖能力强、生长周期短、成林快、成材早、可持续发展等特点,使其具有重要的经济价值[1]。但目前对竹子利用还多停留在制作日用品和工艺品等初级阶段,近年来竹炭在家用吸附剂开辟了一个新的领域[2-3],启迪我们将竹子的功能进一步延伸到催化剂载体领域[4]。 本研究系统比较了竹质活性炭和普通竹炭与其它材质活性炭在物理-化学性质方面的区别以及它们作为催化剂载体对负载钯催化剂金属钯分散的影响,从而为竹质活性炭拓展在催化剂载体领域的应用提供实验依据。 1.实验部分 1.1 活性炭载体物理-化学性质表征 竹质活性炭由杭州市竹子研究所提供,竹炭由宁波市冠峰竹炭有限公司提供(700℃下焙烧而成),木质活性炭由巩义市奥林滤材有限公司提供,煤质活性炭由唐山联合炭业科技有限公司提供,椰壳活性炭由山西祁县洪凯有限公司提供。 SEM采用Hitachi S-4700Ⅱ型扫描电子显微镜对样品进行扫描,工作电压15 kv。 样品的Brunauer-Emmett-Teller(BET) 比表面积及孔结构由NOV A 1000e型孔结构比表面积测试仪测定。样品经250℃脱气处理,在液氮温度下进行N2吸附测定。 灼烧残渣的测定按照GB/T 12496.11-90中规定的方法,在SX2箱式电炉中测定,即试样于800下灼烧至恒重,用所得残留物占试样质量的百分数表示灼烧残渣。 pH值的测定按照GB/T 12496.20-90中规定的方法,称取未干燥的试样2.5g,置于100mL 的锥形瓶中,加入不含二氧化碳的水50mL,加热缓和煮沸5min,补添蒸发的水,过滤,弃去初滤液5mL。余液冷却到室温后用PB-20酸度计测定pH值。 活性炭的表面基团测定采用联碱滴定法[4-5]。准确称取一定量干燥好的活性炭样品三份,分别用0.1N碳酸氢钠、0.1N碳酸钠、0.1N的氢氧化钠溶液浸泡样品,过滤后用0.1N盐酸标准溶液滴定碱液,计算每克样品消耗的碱量,即为活性炭的表面羟基、内酯基和表面羧基的含量。 1.2 负载钯催化剂的制备 称取一定量的活性炭和适量的水,在80℃下搅拌形成浆液,滴加化学计量比的H2PdCl4 1本课题得到浙江省科技厅项目(2004C21029)的资助。

活性炭的表面改性及其研究

活性炭的表面改性及其研究 摘要:活性炭表面的不饱和电子云和炭结构中存在的杂原子影响了其应用范围,为了满足应用要求,必须对其表面进行改性;介绍了活性炭表面改性的方法,包括对活性炭外观、形状的改变,采用碳沉积技术对孔结构的改变,针对不同应用条件对活性炭表面极性的改性等。 关键词:活性炭;表面改性;改形;极性基团 Abstract: unsaturated electron cloud on the surface of the activated carbon and structure of the carbon hetero-atom affected its application scope, in order to meet the application requirements, must be on the surface modification; The method of the surface modification of activated carbon are introduced, including the appearance, the shape of the activated carbon change, using carbon deposition technology to the change of pore structure, according to different application conditions on the surface polarity of the modified activated carbon, etc. Key words: activated carbon; The surface modification; Change shape; Polar groups 前言 1 【活性炭应用领域扩大对其性能提出了更新、更高的要求,在“高吸附、多功能、高强度”的总要求下,(减低活性炭的使用成本,扩大使用范围,提高利用效率的有效突进)【4,6】。出现了对专用炭质吸附材料需求量越来越多的趋势。目前用传统工艺生产出来的活性炭只能识活性炭表面结构的基础上,采用某种可行的途径对其进行表面改性,从而达到实际应用的目的。现在的活性炭种类少,技术含量低,缺少功能化高品质专用的活性炭,【3-5】】 一、前言 与树脂、硅胶、沸石等吸附剂相比,活性炭具有许多独特且不可替代的特性。 活性炭吸附剂的优点 1、活性炭的表面特性活性炭具有的表面化学性质、孔径分布和孔隙形状不同,是活性炭具有选择性吸附的主要原因。 2、化学性质稳定、容易再生活性炭的化学性质稳定、能耐酸、耐碱,所以能在较大的酸碱度范围内应用;活性炭不溶于水和其他溶剂,能在水溶液和许多溶剂中使用。 3、催化性质活性炭作为接触催化剂用于各种异构化、聚合、氧化和卤化反应中。它的催化活性是由于炭的表面和表面化合物以及灰分等的作用。 4、有较发达的孔隙结构活性炭具有发达的孔隙结构,除了活性分子筛以外,孔径分布范围较广,具有孔径大小不同的孔隙,能吸附分子大小不同的各种物质。

活性炭吸附实验报告

《环工综合实验(1)》(活性炭吸附实验) 实验报告 专业环境工程(卓越班) 班级 姓名 指导教师 成绩 东华大学环境科学与工程学院实验中心 二0一六年 11月

附剂的比表面积、孔结构、及其表面化学性质等有关。 吸附等温线(Adsorption Isotherm): 指一定温度条件下吸附平衡时单位质量吸附剂的吸附量 q 与吸附质在流体相中的分压 p (气相吸附)或浓度 c (液相吸附)之间的关系曲线。 水中苯酚在树脂上的吸附等温线

水中苯酚在活性炭上的吸附等温线 吸附机理和吸附速率 吸附机理: 吸附质被吸附剂吸附的过程一般分为三步:(1)外扩散 (2)内扩散 (3)吸附 ①外扩散:吸附质从流体主体通过扩散传递到吸附剂颗粒的外表面。因为流体与固体接触时,在紧贴固体表面处有一层滞流膜,所以这一步的速率主要取决于吸附质以分子扩散通过这一滞流膜的传递速率。 ②内扩散:吸附质从吸附剂颗粒的外表面通过颗粒上微孔扩散进入颗粒内部,到达颗粒的内部表面。 ③吸附:吸附质被吸附剂吸附在内表面上。 对于物理吸附,第三步通常是瞬间完成的,所以吸附过程的速率由前二步决定。

?活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。 ?由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。活性炭的吸附能力以吸附容量q e表示: ?qe=X/M=V(Co-C)/M ?在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体表面的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。 1、吸附剂的比表面积越大,其吸附容量和吸附效果就越好吗?为什么? 答:比表面积越大,不一定吸附容量就越好。吸附剂的比表面积越大,只能说明其吸附能力较大,并不代表吸附容量就越大。吸附容量的大小还与脱吸速度有关,如果脱吸速度很快,就算吸附能力再大,吸附容量也还是没多大提升。吸附容量是一个动态平衡的过程。? 吸附剂的良好吸附性能是由于它具有密集的细孔构造,与吸附有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g);b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g;c.孔径

浸渍改性活性炭脱除低浓度H_2S的研究

浸渍改性活性炭脱除低浓度H 2 S的研究① 秦 悦,张永春,陈绍云 (大连理工大学精细化工国家重点实验室,辽宁大连 116012) 摘要:研究了活性炭种类、浸渍剂种类及浓度、添加剂种类及浓度、反应温度六种因素对改性活性炭脱硫效果的影响,结果表明活性炭和浸渍剂种类是决定改性活性炭硫容量的关键因素。最优的改性活性炭脱硫剂组成是光华GH216杏壳活性炭负载7%Na OH浸渍液,并以1%的MC M241分子筛作为添加剂,这样制得的改性活性炭硫容量可提高200%以上。 关键词:活性炭;浸渍;硫化氢;脱硫;添加剂 中图分类号:T Q42411文献标识码:A文章编号:100727804(2009)0420020204 doi:1013969/j1issn1100727804120091041005 Re m ova l of H2S of L ow Concen tra ti on by Im pregna ted Carbon Q IN Yue,Z HANG Yong2chun,CHE N Shao2yun (State Key Laborat ory of Fine Chem ical,Dalian University of Technol ogy,Dalian116012,China) Abstract:The effects of such six fact ors as the variety of activated carbon,the i m p regnant and its p r oporti on,the additive and its a mount,the temperature of reacti on on the sulfur capacity of the i m p regnated activated carbon have been investiga2 ted.It is concluded that the pore structure of activated carbon and variety of i m p regnant are the key fact ors t o deter m ine the sulfur capacity.The best desulfurizing agent is composed of GH216activated carbon,7%Na OH as i m p regnant and1% MC M241as additive,and its sulfur capacity may i m p r ove more200%than common one. Key W ords:activated carbon;i m p regnated;hydr ogen sulfide;desulfurizati on;additive 硫化氢是一种有毒有害气体,它不仅会危害人身健康,而且还会在湿热的环境下腐蚀金属管道和设备。工厂排放的尾气及天然气里即使很少量的硫化氢也会造成环境污染,所以硫化氢的排除尤其是低浓度的硫化氢的排除是急需解决的问题[122]。利用活性炭作为催化剂将硫化氢催化氧化成单质硫而脱除,是一种有效而经济的脱硫方法。在活性炭中浸渍某些金属化合物作为改性剂,可以显著增强其催化活性,既降低脱硫温度,又可大大提高硫容量[325]。本实验采用浸渍法对活性炭进行改性的方法来提高脱硫效率。 1 实验部分 111 活性炭的改性 实验中选择碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液、氢氧化钾溶液和碘化钾溶液等作为浸渍液对活性炭进行改性[627]。首先用去离子水洗涤活性炭数次,然后将活性炭在去离子水中浸泡2h,在100℃下干燥12h,然后用一定浓度的浸渍液浸渍干燥好的活性炭2h,放入100℃的干燥箱内干燥12h,制得成品。 112 实验分析方法 实验结果分析是以每克活性炭所吸附的硫化氢的质量作为衡量硫容量(q)的标准,硫容量单位为mg/g,穿透硫容量的时间取出口硫化氢浓度为1×10-6的时间。硫化氢的检测采用上海天美科学仪器有限公司出品的GC7890FP型色谱,检测出口硫化氢浓度。色谱采用火焰光度检测器(FP D),气化温度为323K,检测柱温度为323K,检测器 第27卷第4期低温与特气Vol127,No14 2009年8月Low Te mperature and Specialty Gases Aug1,2009  ①收稿日期:2009205211

活性炭负载型催化剂的制备及其在渣油加氢中的应用

2011年第30卷第10期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·2209· 化工进 展 活性炭负载型催化剂的制备及其在渣油加氢中的应用 刘元东1,宗保宁2,赵愉生1,赵元生1,范建光1,郜亮2,温朗友2 (1中国石油天然气股份有限公司石油化工研究院,北京100195; 2中国石化石油化工科学研究院,北京 100083) 摘 要:渣油加氢工艺是一项重要的渣油深度转化技术,高性能渣油加氢催化剂的研发是其核心。本文介绍了一种新型渣油加氢催化剂——金属/活性炭负载型催化剂,从催化剂制备方法、反应活性、活性相等多个方面,阐述了其在渣油加氢中的应用研究情况。提出应该从增强催化剂机械强度、改进催化剂成型工艺、提高催化剂稳定性等方面改进催化剂的性能。 关键词:渣油加氢;活性炭;催化剂 中图分类号:TE 626.25 文献标志码:A 文章编号:1000–6613(2011)10–2209–06 Preparation of activated carbon supported catalysts and their application in residue hydroprocessing LIU Yuandong1,ZONG Baoning2,ZHAO Yusheng1,ZHAO Yuansheng1,FAN Jianguang1, GAO Liang2,WEN Langyou2 (1PetroChina Petrochemical Research Institute,Beijing 100195,China; 2Research Institute of Petroleum Processing,SINOPEC,Beijing 100083,China)Abstract:Residue hydroprocessing is a significant residue upgrading technology,and the development of catalysts with high performance is the core content. The latest research progress of activated carbon supported catalysts is introduced,including preparation method,activity and active phase. More attention should be paid to increasing mechanical strength,improving extrusion molding and keeping stability of catalyst in future research and development. Key words:residue hydroprocessing;activated carbon;catalyst 近年来,原油质量日益变差,轻质油品需求却逐年增加,因此,提高渣油的有效转化和利用,增加产品的附加值,具有重要的现实意义。渣油加氢技术,作为生产清洁油品的有效手段之一,开发与之配套的高性能加氢催化剂越发显得重要。渣油加氢催化剂的反应性能既取决于活性组分的固有催化特性,又与催化剂载体的性质密切相关。载体的比表面积、孔结构、表面酸性等对活性组分的分散度、活性组分与载体间的相互作用、反应物分子的扩散以及催化剂抗中毒能力有着重要的影响。目前,在渣油加氢领域中使用最广泛的载体是γ-Al2O3,γ-Al2O3力学性能好、价格低,但是其与活性组分间有较强的相互作用,导致活性金属硫化不完全,同时,γ-Al2O3表面积较低,不利于提高活性组分分散度,这些因素都限制了其在渣油加氢中催化反应性能的进一步提高。 目前,一种以活性炭为载体的新型渣油加氢催化剂以其独特的优势引起人们的广泛关注。活性炭是一种由不同大小的类石墨微晶构成的无定形炭,由于价格低廉,性质稳定,孔结构丰富,比表面积 收稿日期:2010-04-28;修改稿日期:2010-05-28。 第一作者:刘元东(1984—),男,博士。联系人:宗保宁,教授级高级工程师,研究方向为催化材料和反应工程。E-mail zongbn@https://www.doczj.com/doc/281637108.html,。

活性炭表面化学改性及应用研究进展

第8卷 第19期 2008年10月167121819(2008)1925463205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 18 No 119 Oct . 2008 Ζ 2008 Sci 1Tech 1Engng 1 化工技术 活性炭表面化学改性及应用研究进展 陈孝云 林秀兰 魏起华 林金春 欧水丽 (福建农林大学材料工程学院,福州350002) 摘 要 活性炭表面官能团的种类与数量决定了活性炭的表面化学性质,而化学性质决定了活性炭的化学吸附特性。通过改变活性炭表面官能团的种类与数量、消除某些基团或者负载增加活性中心,可以改善活性炭对特定吸附质的吸附能力。论述了活性炭表面化学性质的氧化、还原、酸碱、等离子体、金属负载和电化学等改性及其应用研究进展。关键词 活性炭 吸附 表面化学改性 表面化学性质中图法分类号 T Q42411; 文献标志码 A 2008年5月27日收到国家自然科学基金(30571461)、福建省科技 厅星火计划项目(3182)、福建省自然科学基金(2008J0225)、青年教师基金(08B20)资助 第一作者简介:陈孝云,男,硕士,讲师,研究方向:离子液体和炭材料。E 2mail:chenxy_dicp@1261com 。 活性炭因孔隙结构发达、比表面积大、表面官能团丰富、灰分含量低、化学性质(耐酸、耐碱、耐热)稳定、机械强度高、不溶于水和有机溶剂、可再生重复利用等优点,被广泛用于治理水体、空气、土壤等环境中有机、无机、细菌及尘埃等污染物 [1—3] 。 但由于活性炭品种少、技术含量低、缺少功能化高品质专用活性炭,制约我国活性炭行业迈向更高层次的应用 [3—5] 。将活性炭改性处理,研制出对污染物高效、深度净化的功能活性炭,是降低活性炭使用成本、扩大其使用范围、提高其利用效率的有效途径,是活性炭行业未来发展方向 [4,6] 。活性炭改性主要是通过一些物理、化学处理,改变其孔隙结构(如孔容、孔径大小与分布等);改变活性炭表面的酸、碱性;或者在活性炭表面引入或去除某些官能团使活性炭具有某种特殊的吸附性能和催化特性 [7—10] 。此外,采用不同的活化方法或不同的活化 剂也可以实现制备不同孔径分布及不同表面化学特性的活性炭 [11] 。目前,针对活性炭表面化学性质 改性的方法主要有氧化改性、还原改性、酸碱改性、等 离子体改性、金属负载改性和电化学改性等[8—15] 。 1 活性炭表面化学性质 活性炭的吸附特性不但取决于它的孔隙结构,而且取决于其表面化学性质,表面化学性质决定了活性炭的化学吸附 [9] 。化学性质主要由表面的化 学官能团的种类与数量、表面杂原子和化合物确定,不同的表面官能团、杂原子和化合物对不同的吸附质的吸附有明显差别 [16] 。因此对活性炭表面 化学结构进行化学改性,使其吸附具有更高的选择性具有重要的意义。活性炭表面官能团一般分为含氧官能团(图1)和含氮官能团(图2);含氧官能团主要有羧基、酚羟基、羰基、内酯基及环式过氧基等,含氮官能团可能存在形式有两类酰胺基、酞亚胺基、乳胺基,类吡咯基、类吡嘧啶基等 [11—13] 。 图1 活性炭表面含氧官能团

改性活性炭2

1 活性炭的表面官能团 活性炭的表面化学性质决定了其化学吸附特性。化学性质主要指活性炭表面的化学官能团,可分为含氧官能团和含氮官能团;含氧官能团又可分为酸性含氧官能团和碱性含氧官能团:酸性基团有羧基、酚羟基、醌型羰基、正内酯基及环式过氧基等,碱性氧化物普遍认为是苯并噁口英钅翁的衍生物或类吡喃酮结构基团。酸性氧化物使活性炭具有极性的性质,有利于吸附各种极性较强的化合物;碱性化合物易吸附极性较弱或非极性物质。 2 活性炭的表面改性 化学官能团作为活性中心支配了活性炭表面化学性质,而活性炭表面官能团的数量和种类主要是由生产活性炭的原材料所决定,从而对成品活性炭进行改性处理以改善其吸附性能就有一定的意义。活性炭表面化学性质的改性可以从氧化改性、还原改性、酸碱处理改性、负载金属改性、酸碱改性等方面进行。下面分别加以论述: 2. 1 氧化改性 一般活性炭属于非极性物质,由于它的疏水性,使它可以在水溶液中有效吸附各种非极性有机物,但吸附溶液中具有一定极性的亲水性的溶质就有困难。天然有机物中的非腐殖质物质包括碳水化合物质、蛋白质、肽类、氨基酸、脂肪和色素等许多低分子量有机物以及藻类有机物等。一般说来,这类有机物易被微生物分解。近年来的研究表明,消毒副产物相当一部分是来自水中的非腐殖质部分的天然有机物,按DOC 计算,与腐殖质部分的天然有机物形成的消毒副产物相比,二者比例相当。而这部分物质在常规处理工艺中的去除作用较弱,因此可以通过改变活性炭表面碱性和酸性基团的含量,从而对活性炭进行氧化处理以提高对此类物质的吸附能力。氧化改性主要是利用强氧化剂在适当的温度下对活性炭表面的官能团进行氧化处理,从而提高表面含氧基团的含量,增强表面的极性。表面极性较强的活性炭易吸附极性 物质,从而可以达到吸附回收或废水处理的目的。当前对活性炭氧化改性研究主 要以硝酸氧化改性为主,此外针对过氧化氢和次氯酸的研究也较多。对活性炭进行氧化改性处理可使其化学性质和微孔结构同时发生改变,缓和的氧化改 性处理可使活性炭表面的含氧集团增多,结构的微孔变化不大,吸附性能变化也不大;强氧化改性则使其微孔结构遭破坏,过渡孔系增多,吸附性能明显降低。活性炭经氧化处理后,表面酸性基团大量增加, 表面亲水性增强, 零电点p H(p Hpzc) 值降低,而硝酸氧化同时可导致活性炭的结构塌陷,比表面积降低,过氧化氢对纤维活性炭(ACF) 有一定的活化作用。氧化改性可增强活性炭对CO2,SO2。、苯、金属离子等极性较强的物质的吸附,但减弱了对苯酚、腐殖酸等有机物质的吸附。王琳发现利用强氧化剂对活性炭进行改性,改变了活性炭表面官能团的性质,使原来具有催化还原能力的官能团,改性为具有氧化能力的官能团,从而抑制了活性炭中亚硝酸盐的形成,使出水中亚硝酸盐浓度从未改性活性炭的2 . 0mg/ L 降低为改性后的0. 01mg/ L 改性后活性炭的吸附性能有不同程在硝酸改性过程中,活性炭的孔隙结构在破坏的同时也不断生成,改度的升高和降低,应根据活性炭的应用领域选择不同的改性工艺。与市售活性炭比较,改性活性炭的碘吸附值总体下降,说明硝酸改性对活性炭的微孔结构产生破坏。随着温度的升高和处理时间的延长,改性活性炭 的吸附性能总体呈先升后降的趋势。在本实验条件下,硝酸改性活性炭的较

相关主题
文本预览
相关文档 最新文档