当前位置:文档之家› 32构造函数巧证双元不等式

32构造函数巧证双元不等式

32构造函数巧证双元不等式
32构造函数巧证双元不等式

万方数据

万方数据

万方数据

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

34用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。 证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥,

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

构造函数证明不等式

构造函数证明不等式 构造函数证明不等式构造函数证明:[2的平方/(2的平方-1)*3的平方/(3的平方-1)*...*n的平方/(n的平方-1)]>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n +3) 不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1) =ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)] 构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3) 对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2 当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有 f(n)>=f(2)=ln(4/3)-4/15=0.02>0 即有ln[n^2/(n+1)]>(4n-4)/(6n+3) 原不等式等证 【解】: ∏{n^2/(n^2-1)}[n≥2] > e^((4n-4)/(6n+3)) ∵n^2/(n^2-1)=n^2/(n+1)(n-1) ∴∏{n^2/(n^2-1)}[n≥2] = 2n/(n+1) 原式可化简为:2n/(n+1) > e^((4n-4)/6n+3)) 构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2 ∵e^((4n-4)/(6n+3)) ∴F’(n)>0 [n≥2] 而F[2]=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0 所以F(n)>0 [n≥2] 即:2n/(n+1) > e^((4n-4)/6n+3)) 故得证。 一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式例1 若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c求证:9b2>4ac. 证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0), 由f(2)=4a+6b+c>0, f(-1)=a-3b+c根据勘根定理可知:f(x)在区间(-1,2)内必有零点. 又f(x)为二次函数,由勘根定理结合可知: f(x)必有两个不同的零点. 令ax2+3bx+c=0可知△=(3b)2-4ac>0, 所以可得:9b2>4ac.命题得证. 评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决. 二、结合构造函数的单调性证明不等式 例2 (2005年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c 是实数,求证:

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧.技法一:“比较法”构造函数 [典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解](1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练] 已知函数f(x)=x e x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线, 求证:f(x)≤g(x).

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

常见构造函数解不等式归纳

常见构造函数解不等式归纳 1. 对于不等式()(0)f x k k '>≠,构造函数()()g x f x kx b =-+ 2. 对于不等式()()0xf x f x '+>,构造函数()()g x xf x = 3. 对于不等式()()0xf x f x '->,构造函数()()(0)f x g x x x = ≠ 4. 对于不等式()()0xf x nf x '+>,构造函数()()n g x x f x = 5. 对于不等式()()0xf x nf x '->,构造函数()()(0)n f x g x x x = ≠ 6. 对于不等式()()0f x f x '+>,构造函数()()x g x e f x = 7. 对于不等式()()0f x f x '->,构造函数()()x f x g x e = 8. 对于不等式()()0f x kf x '+>,构造函数()()kx g x e f x = 9. 对于不等式()2()0f x xf x '+>,构造函数2()()x g x e f x = 10. 对于不等式0)(ln )('>+x af x f a x ,构造函数()()x g x a f x = 11. 对于不等式()()tan 0f x f x x '+>,构造函数()()sin g x f x x = 12. 对于不等式()()tan 0f x f x x '->,构造函数()()cos g x f x x = 13. 对于不等式:0cos )(sin )(' >-x x f x x f ,构造 x x f x h sin )()(= 14.对于不等式:0sin )(cos )('>+x x f x x f ,构造 x x f x h cos )()(= 15. 对于不等式()0() f x f x '>,构造函数()ln () g x f x = 16.对于不等式()()ln 0f x f x x x '+ >,构造函数()()ln g x f x x = 17.对于不等式:0)()()()(''>+x g x f x g x f ,构造 )()()(x g x f x h = 18.对于不等式:0)()()()(''>-x g x f x g x f ,构造 )()()(x g x f x h =

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

四种构造函数法证明不等式

四种构造函数法证明不等式 利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键. 考点一“比较法”构造函数证明不等式 当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=ln x,进而证明在某个取值范围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可 以类比作商法,构造函数h(x)=f(x) g(x)? ? ? ? ? φ(x)= g(x) f(x),进而证明h(x)min≥1(φ(x)max≤1). 【例题】已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)求证:当x>0时,x2<e x. 【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增.

构造函数证明数列不等式

数列不等式求证 题目1:求证2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 题目2:求证<+) 1(2 n n n ln 4ln 3ln 2ln ?????? 题目3:求证 n n n 1 ln 44ln 33ln 22ln

构造函数法证特殊数列不等式 题目1:求证 2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 (一)构造函数①)0(1)1ln()(>+-+=x x x x x f 分析:2)1()1(11)(x x x x x f +-+-+= '=2 ) 1(x x +>0,函数)(x f 在(0,+∞)上单调递增。 所以当0>x 时,有)(x f >f(0)=0,即有)0(1)1ln(>+> +x x x x 因而有21111)111ln(=+> +,3121121 )211ln(=+>+,41 3 131)311ln(=+>+, (11) 111)11ln(+= +>+n n n n 故:)111ln(++)211ln(++)311ln(++……+)11ln(n +>21+31+41+……+11 +n 即>+)1ln(n 21+31+41+……+1 1 +n (二)构造函数②)0()1ln()(>-+=x x x x f 分析:111)(-+= 'x x f =x x +-1<0,函数)(x f 在(0,+∞)上单调递减。 所以当0>x 时,有)(x f <+x x x 因而有1)111ln(<+,21)2 11ln(<+,31)311ln(<+,……, n n 1 )11ln(<+ 故:)111ln(++)211ln(++)311ln(++……+)11ln(n +<1+21+31+41+……+n 1 即<+)1ln(n 1+21+31+41+……+n 1 综上有: 2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 小结:记住函数不等关系㈠x x +1<)0()1ln(><+x x x 题目2:求证 <+) 1(2 n n n ln 4ln 3ln 2ln ??????

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。

证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥, a a a a a a a a a a a a n n n n 222323221144 +++≥+++≥,…,。 又∵a a a a a a a a a n n 12231124441212 ++++++=+++=……(), ∴把以上各个同向不等式相加,整理得: a a a a a a a a a a a a n n n 12122223211212 1+++++++≥+++=…… 故a a a a a a a a a n n 121222232112 ++++++≥…。 例4. 设a b c R ,,∈*,且abc =1,求证: 111333a b c b c a c a b ()()()+++++≥32。 (第36届IMO ) 证明:由a ,b ,c 在条件中的对称性知,只有当a b c ===1时,才有可能达到最小值32,此时刚好1412 3a b c b c bc ()+=+=。所以,可构造如下局部不等式。 ∵14214133a b c b c bc a bc a ()+++≥=, 14214133b a c a c ac b ac b ()+++≥=, 14214133c a b a b ab c ab c ()+++≥=, ∴ 11111114333a b c b c a c a b a b c b c bc a c ac a b ab ()()()()()+++++≥++-+++++ =++≥=1211132132 3()a b c abc 例5. 设a b c R ,,∈*,且a b c ++=2,求证:a b c b c a c a b 222 1+++++≥。

构造函数解不等式小题

专题:构造函数解决问题 ——函数单调性与导数 1:设()()f x g x 、 是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( ) .()()()()A f x g b f b g x > .()() ()(B f x g a f a g x > .()()()()C f x g x f b g b > .()()()(D f x g x f b g a > 变式1:设()()f x g x 、 是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,则不等式()()0f x g x <的解集. 变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()f x g x f x g x +>,(3)0g -=,则不等式()()0f x g x <的解集. 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2 f f g g -+=-,则关于x 的不等式log 1a x >的解集 . 3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >,若)2(ln 2 1ln ,)2(2,)21(21f c f b f a =--== ,则下列关于,,a b c 的大小关系正确的是( ) .A a b c >> .B a c b >> .C c b a >> a c b D >>. 4已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( ) 2013.(1)(0)(2013)(0)A f e f f e f >??、 2013.(1)(0)(2013)(0)C f e f f e f >?>?、 2013.(1)(0)(2013)(0)D f e f f e f

构造函数解不等式解集

1 构造函数解不等式解集1: 1.已知定义在R 上的可导函数y=f(x)的导函数为f’(x),满足f’(x)<f(x)且y=f(x+1) 为偶函数,f(2)=1,则不等式f(x)<e x 的解集为 . 2.已知三次函数f(x)=x 3+x 2+cx+d(a <b)在R 上单调递增,则 的最小值为 . 3.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数 ,则关于x 的不等 式的解集为 . 4.已知函数f(x)是定义在R 上的奇函数,其中f(1)=0,且当x >0时,有 >0,则不等式f(x)>0的解集是 . 5.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时f’(x )g(x)+f (x)g ’(x)>0且g(﹣3)=0,则f(x)g(x)<0的解集为 . 6.若函数)(x f 对定义域R 内的任意x 都有)()2(x f x f =-,且当1≠x 时,其导函数)('x f 满足)(')('x f x xf >,若21<1, 则不等式e x ·f(x)>e x +1的解集为(A) A .{x|x>0} B .{x|x<0} C .{x|x<-1或x>1} D .{x|x<-1或0

相关主题
文本预览
相关文档 最新文档