当前位置:文档之家› 第十章 糖类代谢习题

第十章 糖类代谢习题

第十章   糖类代谢习题
第十章   糖类代谢习题

第十章糖类代谢习题

一、填空

1.由6-磷酸葡萄糖进入糖酵解和磷酸戊糖途径的趋势主要取决于细胞对己糖激酶和葡萄

糖-6-磷酸两者的相对需要量。

2.糖异生的原料是甘油、丙酮酸、乳酸,生糖氨基酸等

3.糖酵解中,丙酮酸加氢变成乳酸时,其中2H由NADH提供。

4.每一轮三羧酸循环可产生1分子GTP,3分子NADH和1分子FADH。

二、单项选择题

1、在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?(C )

A、丙酮酸

B、乙醇

C、乳酸

D、CO2

2、磷酸戊糖途径的真正意义在于产生( A )的同时产生许多中间物如核糖等。

A、NADPH+H+

B、NAD+

C、ADP

D、CoASH

3、磷酸戊糖途径中需要的酶有(C )

A、异柠檬酸脱氢酶

B、6-磷酸果糖激酶

C、6-磷酸葡萄糖脱氢酶

D、转氨酶

4、下面哪种酶既在糖酵解又在葡萄糖异生作用中起作用?( B )

A、丙酮酸激酶

B、3-磷酸甘油醛脱氢酶

C、1,6-二磷酸果糖激酶

D、已糖激酶

5、生物体内ATP最主要的来源是( B )

A、糖酵解

B、TCA循环

C、磷酸戊糖途径

D、氧化磷酸化作用

6、在TCA循环中,下列哪一个阶段发生了底物水平磷酸化?(B )

A、柠檬酸→α-酮戊二酸

B、α-酮戊二酸→琥珀酸

C、琥珀酸→延胡索酸

D、延胡索酸→苹果酸

7、下列化合物中哪一种是琥珀酸脱氢酶的辅酶?(B )

A、生物素

B、FAD

C、NADP+

D、NAD+

8、糖酵解是在细胞的什么部位进行的。( B )

A、线粒体基质

B、胞液中

C、内质网膜上

D、细胞核内

9、糖异生途径中哪一种酶代替糖酵解的己糖激酶?(C )

A、丙酮酸羧化酶

B、磷酸烯醇式丙酮酸羧激酶

C、葡萄糖-6-磷酸酯酶

D、磷酸化酶

10、糖原分解过程中磷酸化酶催化磷酸解的键是(C )

A、a-1,6-糖苷键

B、b-1,6-糖苷键

C、a-1,4-糖苷键

D、b-1,4-糖苷键

11、丙酮酸脱氢酶复合体中最终接受底物脱下的2H的辅助因子是(C )

A、FAD

B、CoA

C、NAD+

D、TPP

12、酵解过程中的脱H反应是( C )

A.F-6-P→F-1,6-BP

B.3-P-甘油醛→磷酸二羟丙酮

C.3-磷酸甘油醛→1,3-DP-甘油酸

D.3-P甘油酸→磷酸烯醇或丙酮酸

E.烯醇式丙酮酸→丙酮酸

13、.糖在体内的主干代谢途径是( A )

A.有氧氧化

B.酵解途径

C.戊糖途径

D.合成糖原

E.转变成脂肪

14、糖原中一个葡萄糖残基转变成两分子乳酸净生成的ATP数是( B )

A.1个

B.2个

C.3个

D.4个

E.5个

15、糖在下列哪种脱氢反应中,脱下的氢是通过FAD传递的( C )

A.异柠檬酸→草酰琥珀酸

B.α酮戊二酸→琥珀酸CoA

C.琥珀酸→延胡索酸

D.苹果酸→草酰乙酸

E.丙酮酸→乙酰CoA

16、反馈激活FPK-1的别构物是( B )

A.AMP

B.F1,6-BP

C.F6P

D.F2,6-BP

E.NADP+

17、联系糖代谢各分支途径的重要枢纽产物是( C )

A.葡萄糖

B.F1,6BP

C.G-6-P

D.丙酮酸

E.乙酰CoA

18、参与丙酮酸脱氢反应的辅酶有( E )

A.TPP&NAD+

B.硫辛酸

C.FAD

D.HSCoA

E.所列都是

19、.血糖浓度低时,脑仍可摄取葡萄糖而肝不能,是因为(:C )

A.胰岛素的作用

B.脑已糖激酶的Km值低

C.肝葡萄糖酶的Km值低

D.葡萄糖激酶具有特异性

E.血-脑屏障在血糖低时不起作用

20、为合成糖原运输葡萄糖的下列哪种物质?( E )

A.TTP

B.ATP

C.GTP

D.CTP

E.UTP

21、当肝细胞内A TP供应充分时,下列叙述中哪项是错误的?( D )

A.丙酮酸激酶被抑制

B.磷酸果糖激酶I被抑制

C.异柠檬酸脱氢酶被抑制

D.果糖二磷酸酶被抑制

E.进入三羧酸循环的乙酰辅酶A减少

22、肌糖原分解不能直接补充血糖的原因是( A )

A.肌肉中缺乏糖原磷酸化酶

B.缺乏脱枝酶

C.缺乏G-1-P变位酶

D.缺乏葡萄糖-6-磷酸酶

E.肌糖原含量远低于肝糖原含量

23、葡萄糖在体内代谢时,通常不会转变生成的化合物是:( B )

A.乙酰乙酸

B.胆固醇

C.脂肪酸

D.丙氨酸

E.核糖

24、PPP途径的主要生理意义是( B )

A.产生大量的NADH

B.产生NADPH和五碳糖

C.产生七碳糖

D.氧化供能

E.产生四碳糖

25、临床所称的血糖是指血液中的( A )

A.葡萄糖

B.果糖

C.半乳糖

D.蔗糖

E.所有糖类

26、酵解途径中不可逆的反应是( E )

A.3-磷酸甘油醛脱氢酶反应

B.甘油磷酸激酶反应

C.醛缩酶反应

D.烯醇化酶反应

E.丙酮酸激酶反应

27、三羧酸循环的下列叙述正确的是( E )

A.循环一周可生成4分子NADH

B.循环一周可使2个ADP磷酸化成ATP

C.循环一周可生成3分子CO2

D.循环一周有12个A TP生成

E.循环第一周乙酰辅酶A上的碳不会在CO2

31、糖酵解途径中生成的丙酮酸之所以要进入线粒体内氧化,关键在于( C )

A.LDH在线粒体内

B.线粒体能提供继续氧化的最适条件

C.丙酮酸脱氢酶系在线粒体内

D.线粒体膜上有转运丙酮酸的载体

E.除此去路别无他途

三、多选题

1.主要在胞液中进行的代谢有( BC )

A.糖异生作用

B.糖酵解

C.脂肪酸合成

D.脂酸β-氧化

2.饥饿能诱导肝下述哪些代谢途径的酶活性增高( D )

A.磷酸戊糖途径

B.脂肪合成

C.糖酵解

D.糖异生

3.F6P +ATP→F1,6BP+ADP ( AC )

A.是酵解过程的限速反应

B.是可逆反应

C.催化此反应的酶是变构酶

D.是底物水平磷酸化反应

4.胰岛素的作用包括( ABC )

A.促进葡萄糖进入细胞

B.促进糖原合成

C.促进糖有氧氧化

D.促进糖异生

5.丙酮酸脱氢酶系催化下列哪些反应. ( ABC )

A.脱氢

B.转乙酰基

C.脱羧

D.脱水

6.在糖异生途径中,参与丙酮酸羧化支路的酶为. ( AC )

A.丙酮酸羧化酶

B.丙酮酸激酶

C.磷酸烯醇式丙酮酸羧激酶

D.烯醇化酶

7.从葡萄糖→→CO2的下列叙述正确的是( AD )

A.6C阶段耗能,3C和2C阶段产能

B.3C段只底物水平磷酸化产能,2C段只氧化磷酸化产能

C.酵解在无氧条件下进行,不存在氧化反应

D.有氧氧化可抑制酵解反应

8.糖原合成酶的正确描述是( ABC )

A.以UDPG为底物

B.与分枝酶联合作用下可合成许多新的糖原分支

C.存在有活性、无活性两种形式,其相互转变受激素调节

D.把葡萄糖逐个相加成糖原

9.丙酮酸脱氢酶系需要下列哪些因子作为辅酶?(AD )

A、NAD+

B、NADP+

C、FMN

D、CoA

10.在三羧酸循环中,由α-酮戊二酸脱氢酶系所催化的反应需要(AC )

A、NAD+

B、NADP+

C、CoASH

D、ATP

四、是非题(在题后括号内打√或×)

1.每分子葡萄糖经三羧酸循环产生的ATP分子数比糖酵解时产生的ATP多一倍。(X )

2.哺乳动物无氧下不能存活,因为葡萄糖酵解不能合成ATP。(X )

3.6—磷酸葡萄糖转变为1,6-二磷酸果糖,需要磷酸己糖异构酶及磷酸果糖激酶催化。(X )

4.葡萄糖是生命活动的主要能源之一,酵解途径和三羧酸循环都是在线粒体内进行的。(X )

5.糖酵解反应有氧无氧均能进行。(V )

6.动物体内合成糖原时需要ADPG提供葡萄糖基,植物体内合成淀粉时需要UDPG提供葡萄糖基。(x )

7.乙醛酸循环在所有的高等动植物中都存在。(x )

8.糖酵解的限速酶为丙酮酸激酶。(x )

9.三羧酸循环中,琥珀酸脱氢酶催化琥珀酸氧化成延胡索酸时,电子受体为NAD+。(x )

10.三羧酸循环是糖有氧分解代谢途径,但不是机体内一切有机物的碳链骨架氧化生成CO2和H2O的必经途径。(x )

11.淀粉或糖原在细胞内的降解是经磷酸化酶的磷酸解作用,生成1-磷酸葡萄糖。(v )

12.所有来自磷酸戊糖途径的还原能都是在该循环的前三步反应中产生的。(v )

五、问答题:

1、何谓三羧酸循环?它有何特点和生物学意义?

答:三羧酸循环(tricarboxylic acid cycle,TAC)是以乙酰辅酶A的乙酰基与草酰乙酸缩合为柠檬酸开始,经过若干反应步骤,最后又以草酰乙酸的再生为结束的连续酶促反应过程。因为这个反应过程的第一个产物是含有三个羧基的柠檬酸,故称为三羧酸循环,也叫做柠檬酸循环。

特点:1. 循环反应在线粒体(mitochondrion)中进行,为不可逆反应。

2. 每完成一次循环,氧化分解掉一分子乙酰基,可生成12分子ATP。

3. 循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。

4. 三羧酸循环中有两次脱羧反应,生成两分子CO2。

5. 循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。

6. 循环中有一次底物水平磷酸化,生成一分子GTP。

7. 三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶系。

生物学意义:

(1)三羧酸循环是三大营养物质的最终代谢通路:糖、脂肪、氨基酸在体内进行生物氧化都将产生乙酰CoA,然后进入三羧酸循环进入三羧酸循环被降解成为CO2和H2O,并释放能量满足机体需要。

(2)三羧酸循环也是糖、脂肪、氨基酸代谢联系的枢纽:

由葡萄糖分解产生的乙酰CoA可以用来合成脂酸和胆固醇;许多生糖氨基酸都必须先转变为三羧酸循环的中间物质后,再经苹果酸或草酰乙酸异生为糖。三羧酸循环的中间产物还可转变为多种重要物质,如琥珀酰辅酶A可用于合成血红素;α-酮戊二酸、草酰乙酸可用于合成谷氨酸、天冬氨酸,这些非必需氨基酸参与蛋白质的生物合成。

2、磷酸戊糖途径有何特点?其生物学意义何在?

答:特点:①6分子葡糖-6-磷酸经戊糖途径循环一次重新组成5分子葡糖-6-磷酸,1分子葡糖-6-磷酸完全氧化成6分子CO2并产生12分子NADPH

②不需要ATP作为反应物,低ATP浓度情况下葡萄糖经过戊糖循环也可进行氧化。

③可以说明机体内无糖,赤藓糖,景天庚酮糖磷酸等的存在,显然然是以此(HMS)为主要途径。

生理意义:

①供给生物体能量,每循环一次讲解1分子葡糖-6-磷酸,可以产生12分子NADPH,通过呼吸链氧化课产生36分子ATP.

②磷酸戊糖途径可以产生大量的NADPH,可供组织中合成代谢的需要,如脂酸的合成、固醇的合成。

③戊糖磷酸途径中产生的核糖-5-磷酸是合成ATP/CoA/NAD(P)/FAD/RNA及DNA等重要生物分子的原料。

④戊糖磷酸途径也是戊糖代谢的重要途径。

⑤戊糖代谢途径与糖酵解有许多共同的酶及中间产物,因此,这两条途径有着密切的关系。

⑥戊糖磷酸途径与光合作用中二氧化碳的固定和还原密切有关。

3、糖酵解和发酵有何异同?糖酵解过程需要那些维生素或维生素衍生物参与?

答:1. 相同点:(1)都要进行以下三个阶段:葡萄糖——>1,6-二磷酸果糖;1,6-二磷酸果糖——>3-磷酸甘油醛;3-磷酸甘油醛——>丙酮酸。(2)都在细胞质中进行。

不同点:通常所说的糖酵解就是葡萄糖——>丙酮酸阶段。根据氢受体的不同可以把发酵分为两类:(1)丙酮酸接受来自3-磷酸甘油醛脱下的一对氢生成乳酸的过程称为乳酸发酵。

有时也将动物体内的这一过程称为酵解。)(2)丙酮酸脱羧后的产物乙醛接受来自3-磷酸甘油醛脱下的一对氢生成乙醇的过程称为酒精发酵。

糖酵解过程需要的维生素或维生素衍生物有:NAD+。

4、试述糖异生与糖酵解代谢途径有哪些差异。

答:糖酵解途径是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。 糖异生:由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程。 所以糖异生是与糖酵解相反的过程。

5、试述从营养物质的角度,解释为什么减肥者要减少糖类物质的摄入量?(写出有关的代谢途径及其细胞定位、主要反应、关键酶)

答:答:因为糖能为脂肪合成提供原料,即糖能转变为脂肪。

(1)葡萄糖在细胞浆中经酵解途径分解成丙酮酸,其关键酶有己糖激酶、磷酸果糖激酶和丙酮酸激酶。(2)丙酮酸进入线粒体在丙酮酸脱氢酶系的作用下,氧化脱羧生成乙酰辅酶A, 后者与草酰乙酸在柠檬酸合酶催化下合成柠檬酸,柠檬酸出线粒体在细胞浆中经柠檬酸裂解酶催化生成乙酰辅酶A,后者可作脂肪的合成原料。(3)细胞浆中的乙酰辅酶A在乙酰辅酶A羧化酶的催化下生成丙二酸单酰辅酶A在经脂酸合成酶的催化合成软脂酸。(4)细胞浆中经酵解途径生成的磷酸二羟丙酮还原成а-磷酸甘油,后者与脂酰辅酶A在脂酰转移酶催化下生成三脂酰甘油(脂肪)。

由上可见,摄入大量糖类物质可转变为脂肪贮存于脂肪组织中,因此减肥者要少摄入糖类物质。

6、为什么说6-磷酸葡萄糖是各个糖代谢途径的交叉点?

答:葡萄糖经过激酶的催化转变成葡萄糖-6-磷酸,可进入糖酵解途径氧化,也可进入磷酸戊糖途径,产生核糖-5磷酸,赤藓糖-4-磷酸等重要中间体和生物合成所需的还原性辅酶Ⅱ;在糖合成方面,非糖物质经过一系列的转变生成葡萄糖-6-磷酸,葡萄糖-6-磷酸在葡萄糖-6-磷酸酶作用下,生成葡萄糖,葡萄糖-6-磷酸还可以在磷酸葡萄糖变构酶作用下生成葡萄糖-1-磷酸,进而生成糖原。由于葡萄糖-6-磷酸是各糖代谢途径的共同中间体,由它沟通了糖代谢分解与合成代谢的众多途径,因此葡萄糖-6-磷酸是个糖代谢途径的交叉点。

六、名词解释

糖酵解:在缺氧条件下,葡萄糖或糖原在细胞中分解生成乳酸的过程

三羧酸循环:由乙酰CoA与草酰乙酸缩合成为柠檬酸开始,经脱氢、脱羧再生成草酰乙酸的循环反应的过程。

磷酸戊糖途径:是指糖从6–磷酸葡萄糖开始,不经过糖酵解和柠檬酸循环,直接将其分解为核糖(5碳糖),同时将能量以一种还原力的形式贮存下来,供机体生物合成时使用。这个途径是从1931年Otto Warburg发现6–磷酸葡萄糖脱氢酶开始研究的,称为磷酸戊糖途径(Pentose phosphate pathway)。

糖的有氧分解和无氧分解:

糖异生作用:由非糖化合物如丙酮酸、乳酸、甘油、氨基酸等在肝脏转变为葡萄糖或糖原的过程。

第十一章脂类代谢习题

一、选择题

1、线粒体基质中脂酰CoA脱氢酶的辅酶是:(A )

A、FAD

B、NADP+

C、NAD+

D、GS-SG

2、在脂肪酸的合成中,每次碳链的延长都需要什么直接参加?(C )

A、乙酰CoA

B、草酰乙酸

C、丙二酸单酰CoA

D、甲硫氨酸

3、合成脂肪酸所需的氢由下列哪一种递氢体提供?(B )

A、NADP+

B、NADPH+H+

C、FADH2

D、NADH+H+

4、脂肪酸活化后,β-氧化反复进行,不需要下列哪一种酶参与?(D )

A、脂酰CoA脱氢酶

B、β-羟脂酰CoA脱氢酶

C、烯脂酰CoA水合酶

D、硫激酶

5、软脂酸的合成及其氧化的区别为(D )

(1)细胞部位不同(2)酰基载体不同(3)加上及去掉2C单位的化学方式不同

(4)?β-酮脂酰转变为β-羟酯酰反应所需脱氢辅酶不同(5)β-羟酯酰CoA的立体构型不同

A、(4)及(5)

B、(1)及(2)

C、(1)(2)(4)

D、全部

6、在脂肪酸合成中,将乙酰CoA从线粒体内转移到细胞质中的化合物是(C )

A、乙酰CoA

B、草酰乙酸

C、柠檬酸

D、琥珀酸

7、β-氧化的酶促反应顺序为:(B )

A、脱氢、再脱氢、加水、硫解

B、脱氢、加水、再脱氢、硫解

C、脱氢、脱水、再脱氢、硫解

D、加水、脱氢、硫解、再脱氢

8、胞浆中合成脂肪酸的限速酶是(D )

A、β-酮酯酰CoA合成酶

B、水化酶

C、酯酰转移酶

D、乙酰CoA羧化酶

9、脂肪大量动员肝内生成的乙酰CoA主要转变为:(B)

A、葡萄糖

B、酮体

C、胆固醇

D、草酰乙酸

10、乙酰CoA羧化酶的变构抑制剂是:(C )

A、柠檬酸

B、ATP

C、长链脂肪酸

D、CoA

11、脂肪酸合成需要的NADPH+H+主要来源于(C )

A、TCA

B、EMP

C、磷酸戊糖途径

D、以上都不是

12、生成甘油的前体是(C )

A、丙酮酸

B、乙醛

C、磷酸二羟丙酮

D、乙酰CoA

13.除下列哪种激素外都能激活甘油三酯脂肪酶(激素敏感脂肪酶)?(C)

A.肾上腺素

B.胰高血糖素

C.胰岛素

D.ACTH

E.TSH

14脂酰CoA在肝脏进行β-氧化,其酶促反应的顺序为(C)

A.脱氢、再脱氢、加水、硫解

B. 硫解、脱氢、加水、再脱氢

C.脱氢、加水、再脱氢、硫解

D.脱氢、脱水、再脱氢、硫解

E.加水、脱氢、硫解、再脱氢

15.酮体生成与利用的下列描述错误的是(B)

A.主要反应场所都在肝线粒体中

B.HMG-CoA还原酶是肝内生酮的限速酶

C.肝外组织中乙酰乙酰硫激酶、乙酰乙酰转硫酶及乙酰乙酰CoA

硫解酶活性最高,肝内组织中很低

D.酮体分子小、水溶性强,便于经血液运输进入肝外组织氧化供能

E.引起血中游离脂肪酸增多的因素能促进酮体生成与利用

16.脂酸生物合成(B)

A.不需乙酰CoA

B.需要丙二酰CoA

C.在线粒体内进行

D.以NADH为还原剂

E.最终产物为十碳以下脂酸

17.下列有关脂肪酸合成的叙述错误的是:(D)

A.脂肪酸合成酶系存在于胞质中

B.生物素是参与合成的辅助因子之一

C.合成时需要NADPH

D.合成过程中不消耗能量

E.丙二酰coA是合成的中间代谢物

18.下列哪一生化反应主要在线粒体内进行?(B)

A.脂酸合成

B.脂酸β氧化

C.脂酸ω氧化

D.胆固醇合成

E.甘油三酯分解

19.肝中生成酮体的基本原料是(C)

A.葡萄糖

B.丙酰酸

C.乙酰CoA

D.脂肪酸

E.磷脂

20.下列关于脂酸氧化分解的叙述哪一项是正确的?(C)

A.起始代谢物是自由脂酸

B.起始代谢物是脂酰CoA

C.整个过程在线粒体内进行

D.整个过程在胞质中进行

E.反应产物是CO2及H2O

21.脂肪细胞合成脂肪所需的甘油主要来自(A)

A.葡萄糖分解

B.糖异生

C.脂肪水解

D.磷脂水解

E.经甘油激酶作用生成的甘油磷酸提供

22.下列关于肉碱功能的叙述哪一项是正确的?(D)

A.转运脂酸进入肠上皮细胞

B.转运脂酸进入内质网基质

C.参与视网膜的暗适应

D.参与脂酰基转移的酶促反应,将脂酰基转移到线粒体内

E.为脂酸合成时所需的一种关键酶

23.乙酰CoA羧化酶的变构抑制剂是(E)

A.柠檬酸

B.异柠檬酸

C.Mn2+

D.ATP

E.长链脂酰CoA

二、是非题(在题后括号内打√或×)

1、脂肪酸氧化降解主要始于分子的羧基端。(√)

2、脂肪酸的从头合成需要NADPH+H+作为还原反应的供氢体。(√)

3、脂肪酸彻底氧化产物为乙酰CoA。(×)

4、CoA和ACP都是酰基的载体。(×)

5、脂肪酸合成酶催化的反应是脂肪酸-氧化反应的逆反应。(×)

6、在哺乳动物体内,脂肪酸的活化和β-氧化都发生在线粒体中。(×)

7、动物长期饥饿会动用体内贮存的脂肪,此时酮体生成的速度会大于其分解的速度。(×)

8、脂肪酸合成过程中所需的H(还原力)全部有磷酸戊糖途径提供。(×)

9、从乙酰CoA合成1分子软脂酸需消耗8分子ATP。(×)

10、人体可以合成各种类型的饱和与不饱和脂肪酸。(×)

三、填空题

1.在所有细胞中乙酰基的主要载体是CoA ,ACP是酰基载体蛋白,它在体内的作用是以脂酰基载体的形成作为脂肪酸合成酶系的核心。

2.脂肪酸在线粒体内降解的第一步反应是酰脂辅酶A 脱氢,该反应的载氢体是 FAD 。3.脂肪酸B—氧化中有三种中间产物:甲、羟脂酰-CoA; 乙、烯脂酰-CoA 丙、酮脂酰- C oA,按反应顺序排序为乙甲丙。

4.每分子脂肪酸被活化为脂酰-CoA需消耗 2 个高能磷酸键。

5.一分子脂酰-CoA经一次b-氧化可生成一个乙酰CoA 和比原来少两个碳原子的脂酰-C oA。

6.一分子14碳长链脂酰-CoA可经 6 次b-氧化生成 7 个乙酰-CoA, 6 个NADH+H +, 6 个FADH

2

7.真核细胞中,不饱和脂肪酸都是通过氧化脱氢途径合成的。

8.脂肪酸的合成,需原料乙酰辅酶A 、 NADPH 、和 ATP. HCO3-等。9.脂肪酸合成过程中,乙酰-CoA来源于葡萄糖分解或脂肪酸氧化,NADPH主要来源于磷酸戊糖途径。

10.脂肪酸B-氧化是在线粒体中进行的,氧化时第一次脱氢的受氢体是 FAD ,第二次脱氢的受氢体 NAD+。

四、问答题

1、试比较饱和脂肪酸的β-氧化与从头合成的异同。

异同β-氧化从头合成

1、部位线粒体细胞质

2、酰基载体CoA ACP

3、参与的二碳单位乙酰CoA 丙二酰单酰CoA

4、电子供体或受体FAD,NAD NADPH

5、羟脂酰中间体立体异构L型D型

6、对HCO3和柠檬酸的要求不要求要求

7、酶系4种酶7种酶蛋白组成复合体

8、能量变化+129ATP -7ATP - 14NADPH

2、为什么人摄入过多的糖容易长胖?

答:糖进入体内后代谢的主要方式包括:1)进入糖酵解和三羧酸循环彻底氧化分解为二氧化碳和水,并释放出大量的能量;2)转化为糖原贮藏于体内。当体内摄取入的糖过多时,由糖分解产生的能量也充分,此时体内能荷高,即ATP多,由糖分解产生的乙酰CoA不能进入TCA循环,而利用体内的NADPH 合成脂肪酸,再转化为脂肪。从而导致人发胖。3.试述油料作物种子萌发时脂肪转化成糖的机理。

答:油料种子在发芽过程中,细胞出现虚度奥乙醛酸体,贮藏脂肪首先水解为甘油和脂肪酸,然后脂肪酸在乙醛酸体内氧化分解为乙酰CoA,并经过乙醛酸循环转化为糖。

4、写出1摩尔软脂酸在体内氧化分解成CO2和H2O的反应历程,并计算产生的A TP摩尔数。(网上)

答:楼上athrunjuve,你在想什么呀?17个乙酰辅酶A有34个C原子,软脂酸才16个C,服你了,打字时认真点。

软脂酸耗两个ATP(其实是一个ATP变成了一AMP)活化为软脂酰-CoA进入线粒体,然后进行7次β-氧化后生成8个乙酰辅酶A、7个FADH2、7个NADH和7个质子。

一、其中7个FADH2可以经氧化呼吸链(在这里O2作为最终电子受体得到由FADH2经电子传递链传来的电子后被还原为H2O)氧化,得到7*1.5=10.5个ATP。

二、其中7个NADH可以经氧化呼吸链(在这里O2作为最终电子受体得到由NADH经电子传递链传来的电子后被还原为H2O)氧化,得到7*2.5=17.5个ATP。

三、其中8个乙酰辅酶A进行三羧酸循环完全氧化(在这里生成CO2)后放出的FADH2与NADH再经氧化呼吸链(在这里O2作为最终电子受体得到由FADH2、NADH经电子传递链传来的电子后被还原为H2O)氧化,总共能得到8*10=80个ATP。

所以总共可得到10.5+17.5+80-2(活化软脂酸时用的)=106个ATP。

第十二章

蛋白质降解及氨基酸代谢习题

一、选择题

1、生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面那种作用完成的?(C)

A、氧化脱氨基

B、还原脱氨基

C、联合脱氨基

D、转氨基

2、下列氨基酸中哪一种可以通过转氨作用生成α-酮戊二酸?(A)

A、Glu

B、Ala

C、Asp

D、Ser

3、转氨酶的辅酶是(B)

A、TPP

B、磷酸吡哆醛

C、生物素

D、核黄素

4、以下对L-谷氨酸脱氢酶的描述哪一项是错误的?(D)

A、它催化的是氧化脱氨反应

B、它的辅酶是NAD+或NADP+

C、它和相应的转氨酶共同催化联合脱氨基作用

D、它在生物体内活力不强

5、下述氨基酸除哪种外,都是生糖氨基酸或生糖兼生酮氨基酸?(C)

A、ASP

B、Arg

C、Leu

D、Phe

6、鸟氨酸循环中,尿素生成的氨基来源有:(C )

A、鸟氨酸

B、精氨酸

C、天冬氨酸

D、瓜氨酸

7、磷酸吡哆醛不参与下面哪个反应?(D )

A、脱羧反应

B、消旋反应

C、转氨反应

D、羧化反应

8、下列氨基酸中能为嘧啶环的合成提供N原子的是(D )

A、Gly

B、Asn

C、Glu

D、Asp

9、尿素循环的叙述正确的是(C )

A分解尿素提供能量B全部在线粒体内进行

C将有毒物质转变成无毒物质D分解尿素提供氮源

10、丙氨酸-葡糖糖循环的功能是(B )

A将肌肉中的C和N运送到肾脏B将肌肉中的C和N运送到肝

C将肾脏中的C和N运送到肝D将肝中的C和N运送到肾脏

E将脑中的C和N运送到肝

二、是非题(在题后括号内打√或×)

1、Lys为必需氨基酸,动物和植物都不能合成,但微生物能合成。(×)

2、人体内若缺乏维生素B6和维生素PP,均会引起氨基酸代谢障碍。(√)

3、磷酸吡哆醛只作为转氨酶的辅酶。(×)

4、动物产生尿素的主要器官是肾脏。(×)

5、参与尿素循环的酶都为线粒体内。(×)

三、问答题

1、如果你的饮食中富含Ala但缺乏Asp,那么你能否看到你缺乏Asp的症状呢?请解释。答:中富含Ala但缺乏Asp,不会有缺乏Asp的症状。因为Ala含量高时,Ala可通过转氨基作用将氨基转移给α-酮戊二酸,生成丙酮酸和Glu。丙酮酸又可羧化成草酰乙酸。草酰乙酸和Glu经转氨基作用生成Asp和α-酮戊二酸。

2、请举例说明谷氨酰胺在代谢中的作用。

答(1)谷氨酰胺中性无毒,易通过细胞膜,是氨的主要运输形式,由谷氨酰胺合成酶催化谷氨酸和氨结合生成谷氨酰胺,运送至肝脏后,由谷氨酰胺酶将其分解成谷氨酸和氨。(2)谷氨酰胺还参与了嘌呤碱的合成。嘌呤碱的合成第一阶段先有PRPP与谷氨酰胺反应,生成5-磷酸核糖胺,再与甘氨酸结合,形成嘌呤的咪唑环。

3、提高天冬氨酸和谷氨酸的合成会对TCA循环产生何种影响?细胞会怎样应付这种状况?

答: 提高天冬氨酸和谷氨酸的合成,将会减少草酰乙酸和α-酮戊二酸的量,因为前两者可由后两者通过转氨基作用形成。如果这两种物质不能有效补充,将会影响到TCA循环,进而影响乙酰COA的氧化和A TP的合成。细胞内存在的一系列的回补可及时补充草酰乙酸和α-酮戊二酸的量。

4、如果1分子乙酰COA经TCA循环氧化成二氧化碳和水可产生10分子ATP,那么分子丙氨酸在哺乳动物体内彻底氧化净产生多少分子的ATP?

答:22吧

第十三章

核酸的酶促降解及核苷酸代谢

一、选择题

1、嘌呤环中第4位和第5位碳原子来自下列哪种化合物?(A )

A、甘氨酸

B、天冬氨酸

C、丙氨酸

D、谷氨酸

2、嘌呤核苷酸的嘌呤核上第1位N原子来自(C )

A、Gly

B、Gln

C、ASP

D、甲酸

3、dTMP合成的直接前体是:( A )

A dUMP B、TMP C、TDP D、dUDP

4、最直接联系核苷酸代谢与糖代谢的物质是(D )

A葡萄糖 B 6-磷酸葡萄糖 C 1,6-二磷酸葡萄糖D5-磷酸核糖

5、下列哪个物质既参与嘌呤核苷酸的合成,又参与嘧啶核苷酸的合成(B )

A Glu

B Gln

C Gly

D Asn

二、判断题

1、嘧啶合成所需要的氨甲酰磷酸合成酶与尿素循环所需要的氨甲酰磷酸合成酶是同一个酶。(X)

2、核苷酸的从头合成和补救合成途径都需要PRPP。( √)

3、生物体内嘌呤核苷酸合成时,通常先合成嘌呤碱,再与糖环结合。(×)

4、嘧啶核苷酸生物合成时,先合成CMP,再由CMP合成UMP。(×)

5、在生物体内,通常情况下,先合成核苷一磷酸,然后再还原成脱氧核糖核酸。(×)

三、填空题

1、嘧啶核苷酸从头合成的第一个核苷酸是(尿嘌呤核苷酸),嘌呤核苷酸从头合成的第一核苷酸是(次黄嘌呤核苷)

2、人类对嘌呤代谢的终产物是(尿酸)

3、治疗痛风可用(别嘌呤醇)作为黄嘌呤氧化酶的自杀性底物。

4、dTMP的直接前体是(4dUMP)

5、5-氟尿嘧啶的抗癌机理是(抑制胸苷酸的合成)

四、简答题

1、为什么一种嘌呤或嘧啶的生物合成抑制剂往往可用作抗癌或抗病毒药物?(网上)

答:构成遗传物质DNA的基本单位是核苷酸,核苷酸又由磷酸、戊糖还有碱基组成,这中间的碱基就是嘌呤和嘧啶。抑制了嘌呤或嘧啶的生物合成那么就抑制了核苷酸的合成,进而抑制DNA的合成。

阻断了DNA的复制意味着阻断了肿瘤细胞或者病毒的增殖,从而达到抗肿瘤或者抗病毒的效果

这类药物都属于抗代谢药物一类,除了嘌呤类和嘧啶类,还有叶酸类抗代谢药

2、PRPP是一个重要的代谢中间物,试举出两个反应例子。(网上)

答:核苷酸补救途径原料

植物水分代谢试题

一、是非题 1、将植物细胞放入一定浓度的溶液中,如果这个细胞既不从外界溶液中吸水,也不向外界溶液中排水,则这个细胞的水势等于零。(×)(难度3) 2、当植物细胞处于浓度高的溶液中时,由于溶液的水势大于细胞液的水势,便发生质壁分离现象。(×)(难度2) 3、植物根系要吸收土壤中的水分,土壤溶液浓度必须小于细胞液的浓度。(√)(难度2) 4、成长的叶片水分散失主要是通过气孔。(√)(难度1) 5、蒸腾效率高的植物,一定是蒸腾量小的植物。(×)(难度2) 6、深秋早晨,树木花草叶面上有许多水滴,这种现象叫吐水。(×)(难度1) 7、吐水多说明植物根系代谢活动旺盛。(√)(难度1) 8、苍耳种子开始萌芽时的吸水属于吸胀吸水。(√)(难度1) 9、水分在植物体内的运输要经活细胞和死细胞,其中经活细胞的运输速度快。(×)(难度1) 10、种子吸胀吸水和植物蒸腾作用都是不需要呼吸作用直接供能的生理过程。(√)(难度2) 11、植物在白天和晚上都有蒸腾作用。(√)(难度1) 12、正常条件下,植物地上部分的水势大于地下部分的水势。(×)(难度1) 13、当细胞内的ψw等于0时,该细胞的吸水能力很强。(×)(难度2) 14 15、将ψp=0的细胞放入等渗溶液中,细胞的体积会发生变化。(×)(难度3) 16、压力势(ψp)与膨压的概念是一样的。(×)(难度1) 17、细胞间水分的流动取决于它的ψS差。(×)(难度2) 18、土壤中的水分在根内是不可通过质外体进入导管的。(×)(难度1) 19、蒸腾拉力引起被动吸水,这种吸水与水势梯度无关。(×)(难度1) 20、植物根内是因为存在着水势梯度才产生根压。(√)(难度1) 21、保卫细胞进行光合作用时,渗透势增高,水分进入,气孔张开。(×)(难度1) 22、气孔频度大且气孔大时,内部阻力大,蒸腾较弱;反之阻力小,蒸腾较强。(×)(难度2)

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

生物化学-考试知识点_3脂质代谢

脂类代谢一级要求单选题 1 2 3 下列对血浆脂蛋白描述,哪一种不正确? A是脂类在血浆中的存在形式 B C D E 是脂类在血浆中的运输形式 是脂类与载脂蛋白的结合形式 脂肪酸-清蛋白复合物也是一种血浆脂蛋白 可被激素敏感脂肪酶所水解 E 用电泳法或超速离心法可将血浆脂蛋白分为四类,它们包括: A B C D E CM+α-脂蛋白+β-脂蛋白+高密度脂蛋白(HDL) CM+β-脂蛋白+α-脂蛋白+低密度脂蛋白(LDL) CM+α-脂蛋白+前β-脂蛋白+HDL CM+β-脂蛋白+前β-脂蛋白+HDL CM+β-脂蛋白+前β-脂蛋白+极低密度脂蛋白(VLDL) D 对于下列各种血浆脂蛋白的作用,哪种描述是正确的? A B C D E CM主要转运内源性 TG VLDL主要转运外源性 TG HDL主要将Ch从肝内转运至肝外组织 中间密度脂蛋白(IDL)主要转运 TG LDL是运输Ch的主要形式 E 4 5 6 7 8 胰高血糖素促进脂肪动员,主要是使: A C E LPL活性增高 B D DG脂肪酶活性升高 MG脂肪酶活性升高 TG脂肪酶活性升高 组织脂肪酶活性升高 C 控制长链脂肪酰辅酶A进入线粒体氧化速度的因素是: A脂酰辅酶A(CoA)合成酶活性 B D ADP含量 C E 脂酰CoA脱氢酶的活性 HSCoA的含量 肉毒碱脂酰转移酶的活性 D 脂肪酸的β-氧化需要下列哪组维生素参加? A维生素B1+维生素B2+泛酸 B D 维生素B12+叶酸+维生素B2 生物素+维生素B6+泛酸 C E 维生素B6+泛酸+维生素B1 维生素B2+维生素PP+泛酸 E 脂肪酸进行β-氧化前,必需先活化转变为脂酰CoA,主要是因为: A脂酰CoA水溶性增加 B D 有利于肉毒碱转运 C E 是肉毒碱脂酰转移酶的激活作为脂酰CoA脱氢酶的底物激活物 作为烯脂酰CoA水合酶的底物 D 下列哪种描述不适合于脂肪酸的β-氧化? Aβ-氧化是在线粒体中进行的 B C D E β-氧化的起始物是脂酰 CoA β-氧化的产物是乙酰 CoA β-氧化中脱下的二对氢给黄素腺嘌呤二核苷酸(FAD)及辅酶II(NADP+) 每经一次β-氧化可产生5摩尔三磷酸腺苷(ATP) D

(完整版)第二章植物的水分代谢复习题参考答案

第二章植物的水分代谢复习题参考答案1、植物细胞吸水方式有、和 。 2、植物调节蒸腾的方式有、和 。 3、植物散失水分的方式有和。 4、植物细胞内水分存在的状态有和。 5、水孔蛋白存在于细胞的和上。水孔蛋白活化依靠 作用调节。 6、细胞质壁分离现象可以解决下列问题:、 和。 7、自由水/束缚水比值越大,则代谢;其比值越小,则植物的抗逆性。 8、一个典型细胞的水势等于;具有液泡的细胞的水势等于;干种子细胞的水势等于。 9、形成液泡后,细胞主要靠吸水。 10、风干种子的萌发吸水主要靠。 11、溶液的水势就是溶液的。 12、溶液的渗透势决定于溶液中。 13、在细胞初始质壁分离时,细胞的水势等于,压力势等于。 14、当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。 15、将一个ψp=-ψs的细胞放入纯水中,则细胞的体积。 16、相邻两细胞间水分的移动方向,决定于两细胞间的。 17、植物可利用水的土壤水势范围为。 18、植物根系吸水方式有:和。前者的动力是________后者的动力是。 19、证明根压存在的证据有和。 20、对于大多数植物,当土壤含水量达到永久萎蔫系数时,其水势约为 MPa,该水势称为。 21、叶片的蒸腾作用有两种方式:和。 22、某植物制造10克干物质需消耗5公斤水,其蒸腾系数。 23、水分在茎、叶细胞内的运输有两种途径1. 细胞,2. 细胞。 24、小麦的第一个水分临界期是,第二个水分临界期是 。 25、常用的蒸腾作用的指标有、和 。 26、影响气孔开闭的因子主要有、 和。 27、影响蒸腾作用的环境因子主要是、、和。 28、C3植物的蒸腾系数比C4植物。 29、可以较灵敏地反映出植物的水分状况的生理指标有、 、和 。 30、近年来出现的新型的灌溉方式有、和 。 四、选择题 1、植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为()。 A、水具有高比热; B、水具有高气化热; C、水具有表面张力; D、水分子具有内聚力。 2、一般而言,进入冬季越冬作物组织内自由水/束缚水的比值:()。 A、升高; B、降低; C、不变; D、无规律。 3、有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:() A、变大; B、变小; C、不变; D、可能变小,也可能不 变。 4、已形成液泡的植物细胞吸水靠()。 A、吸涨作用; B、渗透作用; C、代谢作用; D、扩散作 用。 5、已形成液泡的细胞,其衬质势通常省略不计,其原 因是:()。 A、初质势很低; B、衬质势不存在; C、衬质势很高, 绝对值很小;D、衬质势很低,绝对值很小。 6、植物分生组织的细胞吸水靠()。 A、渗透作用; B、代谢作用; C、吸涨作用; D、扩散作 用。 7、将一个细胞放入与其渗透势相等的外界溶液中,则 细胞()。 A、吸水; B、失水; C、既不吸水也不失水; D、既可能 失水也可能保持平衡。 8、在土壤水分充足的条件下,一般植物的叶片的水势 为( ) 。 A、-0.2- -0.8 Mpa; B、–2- -8 Mpa; C、-0.02- 0.08 Mpa;D、0.2- 0.8 Mpa。 9、在气孔张开时,水蒸气分子通过气孔的扩散速度 ()。 A、与气孔的面积成正比; B、与气孔周长成正比; C、 与气孔周长成反比;D、与气孔面积成反比。 10、蒸腾作用快慢,主要决定于()。 A、叶内外蒸汽压差大小; B、气孔长度; C、叶面积大 小;D、叶片形状。 11、保卫细胞的水势变化与下列无机离子有关 ()。 A、Ca2+; B、K+; C、Cl-; D、Mg2+。 12、保卫细胞的水势变化与下列有机物质有关 ()。 A、丙酮酸; B、脂肪酸; C、苹果酸; D、草酸乙酸。 13、调节植物叶片气孔运动的主要因素是 ( )。 A、光照; B、温度; C、氧气; D、二氧化碳。 14、根部吸水主要在根尖进行,吸水能力最大的是 ()。 A、分生区; B、伸长区; C、根毛区; D、根冠。 15、土壤通气不良使根系吸水量减少的原因是 ()。 A、缺乏氧气; B、水分不足; C、水分太多; D、CO2浓 度过高。 16、植物体内水分长距离运输的途径是 ( )。 A、筛管和伴胞; B、导管和管胞; C、通道细胞; D、胞 间连丝。 17、植物体内水分向上运输的动力有 ( )。 A、大气温度; B、蒸腾拉力; C、水柱张力; D、根压。 18、土壤温度过高对根系吸水不利,因为高温会 ()。 A、加强根的老化; B、使酶钝化; C、使生长素减少; D、 原生质粘度增加。 19、植物的水分临界期是指植物()。 A、对水分缺乏最敏感的时期; B、需水量最多的时期; C、需水终止期; D、生长最快的时期。 20、作为确定灌溉时期的灌溉生理指标有:( ) 。 A、叶片水势; B、细胞汁液浓度; C、渗透势; D、气孔 开度。 五、是非判断题 1、影响植物正常生理活动的不仅是含水量的多少,而 且还与水分存在的状态有密切关系。() 2、在植物生理学中被普遍采用的水势定义是水的化学 势差。() 3、种子吸胀吸水和蒸腾作用都是需要呼吸作用直接供 能的生理过程。() 4、植物根系吸水快慢和有无,决定于导管汁液与外界 溶液之间的水势差异的大小有无。() 5、植物细胞吸水方式有主动吸收和被动吸水。 () 6、植物的临界水势越高,则耐旱性越强。 ( ) 7、在细胞初始质壁分离时,细胞水势等于压力势。 () 8、在细胞为水充分饱和时,细胞的渗透势为零。 () 9、把一个细胞放入某溶液中体积不变,说明该细胞液 的浓度与此溶液的浓度相等()。 10、蒸腾效率高的植物,一定是蒸腾量小的植物。 () 11、蒸腾作用与物理学上的蒸发不同,因为蒸腾过程 还受植物结构和气孔行为的调节。() 12、空气相对湿度增大,空气蒸汽压增大,蒸腾加强。 () 13、低浓度CO2促进气孔关闭,高浓度CO2促进气孔迅 速张开。() 14、糖、苹果酸和K+、Cl-进入液泡,使保卫细胞压力 势下降,吸水膨胀,气孔张开。() 15、就利用同单位的水分所产生的干物质而言,C3植物 比C4植物要多1-2倍。() 16、干旱时细胞内磷酸酯酶活性减弱;硝酸还原酶活 性增强。() 17、植物轻度缺水时,光合作用尚未受影响,但生长 已受抑制。( ) 18、灌溉的形态指标易于观察,它比生理指标更及时 和灵敏。 ( ) 19、植物体内的水分平衡是有条件的、短暂的。 ( ) 20、作物一定时期缺水并不一定会降低产量,还可能 对作物增产更为有利。( ) 一、名词解释 1、水分代谢( water metabolism):植物对水分的吸收、 运输、利用和散失的过程。 2、水势(water potential ):每偏摩尔体积水的化学势 差。符号:ψw 3、渗透势(osmotic potential ):由于溶液中溶质颗 粒的存在而引起的水势降低值,符号ψπ。用负值表示。亦称 溶质势(ψs)。 4、压力势(water potential ):由于细胞壁压力的存 在而增大的水势值。一般为正值。符号:ψp。初始质壁分离 时,ψp为0;剧烈蒸腾时,ψp会呈负值。 5、衬质势(water potential): 由于细胞胶体物质亲 水性和毛细管对自由水的束缚而引起的水势降低值,以负值表 示。符号:ψm 6、重力势(water potential ):由于重力的存在而 使体系水势增加的数值。符号:ψg 。 7、自由水:距离胶粒较远而可以自由流动的水分。 8、束缚水:靠近胶粒而被胶粒所束缚,不易自由流动 的水分。 9、渗透作用:水分从水势高的系统通过半透膜向水势 低的系统移动的现象。 10、吸涨作用:亲水胶体吸水膨胀的现象。 11、代谢性吸水:利用细胞呼吸释放出的能量,使水 分经过质膜进入细胞的过程。 12、水的偏摩尔体积:在温度、压强及其他组分不变 的条件下,在无限大的体系中加入1摩尔水时,对体系体积的 增量。符号V-w 13、化学势:一种物质每mol的自由能就是该物质的 化学势。 14、水通道蛋白:存在于生物膜上的一类具有选择性、 高效转运水分功能的内在蛋白,亦称水孔蛋白。 15、吐水:从未受伤的叶片尖端或边缘的水孔向外溢 出液滴的现象。 16、伤流:从受伤或折断的植物器官、组织伤口处溢 出液体的现象。 17、根压:植物根部的生理活动使液流从根部上升的 压力。 18、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度 使导管中水分上升的力量。 19、蒸腾作用:水分以气体状态通过植物体表面从体 内散失到体外的现象。 20、蒸腾速率:又称蒸腾强度,指植物在单位时间内, 单位叶面积通过蒸腾作用而散失的水分量。(g/dm2·h) 21、蒸腾比率:植物每消耗1kg水时所形成的干物质 重量(g)。 22、蒸腾系数:植物制造1g干物质所需消耗的水分量 (g)。又称为需水量。它是蒸腾比率的倒数。 23、小孔扩散律:指气孔通过多孔表面的扩散速率不与 其面积成正比,而与小孔的周长成正比的规律。 24、永久萎蔫:萎蔫植物若在蒸腾速率降低以后仍不能 恢复正常,这样的萎蔫就称为永久萎蔫。 25、临界水势:气孔开始关闭的水势。 26、水分临界期:植物对水分缺乏最敏感的时期。一般 为花粉母细胞四分体形成期。 27、生理干旱:盐土中栽培的作物,由于土壤溶液的水 势低,吸收水分较为困难或者是原产热带的作物遇低于10℃ 的温度时而出现的萎蔫现象。 28、内聚力学说:又称蒸腾流一内聚力—张力学说。即 以水分的内聚力来解释水分沿导管上升的原因的学说。 29、初干:在蒸腾失水过多或水分供应不足的条件下, 细胞间隙及气孔下腔不再为水蒸气所饱和,这时即使气孔张 开,蒸腾作用也受到抑制的现象。 30、节水农业:是充分利用水资源、采取水利和农业措 施提高水分利用率和生产效率,并创造出有利于农业可持续发

第八章 脂类代谢

第八章脂类代谢 【目的与要求】 1、了解脂类物质的组成、种类和生理功能及在体内的消化与吸收过程。 2、重点掌握脂肪酸的β-氧化途径:包括脂肪酸进入线粒体的运载、β-氧化的反应 过程、过程中的能量变化。 3、了解酮体的合成与分解途径。 4、掌握脂肪酸的从头合成途径。 5、了解不饱和脂肪酸的合成过程。 【教学内容】 1、脂肪的分解代谢。 2、脂肪的生物合成。 【重点与难点】 1、脂肪的合成部位、原料及基本过程。 2、脂酸的β-氧化反应过程、限速酶、能量的生成。 3、软脂酸的合成部位、合成原料、合成酶系及反应过程。 【教学方法】 多媒体授课。 【教学时数】 5学时

第一节脂类概述 一、脂类的定义及分类 (一)定义 脂类是脂肪和类脂的总称是一类不溶于水而溶于有机溶剂的生物有机分子(根据溶解性定义),对多数脂质,其化学本质是脂肪酸和醇形成的酯类及其衍生物。 脂肪酸:4C以上的长链(饱和或不饱和)一元羧酸 月桂酸(12:0)、豆蔻酸(14:0)、软脂酸(棕榈酸)(16:0)、硬脂酸(18:0)必需脂酸—亚油酸、亚麻酸、花生四烯酸等多不饱和脂酸是人体不可缺乏的营养素,不能自身合成,需从食物摄取,故称必需脂酸。 醇:甘油、鞘氨醇、高级一元醇和固醇 (二)分类 脂类按化学结构和组成可分为三大类: 1、单纯脂质: 是脂肪酸(C4 以上)和醇(甘油醇和高级一元醇)构成的酯。又分为: 脂肪(室温下:液态→油;固态→脂):甘油+3 个不同脂肪酸(多为偶数碳原子→脂肪) 蜡:高级脂肪酸(C12-C32)+高级醇(C26-C28)或固醇→蜡 2、复合脂质: 单纯脂质+非脂溶性物质 磷脂含磷酸的单纯脂质衍生物,生物膜的主要成分包括甘油磷脂、鞘磷脂 糖脂即糖脂酰甘油,糖苷与甘油分子第三个羟基以糖苷键相连,甘油的另两个羟基被脂肪酸脂化。主要存在于:动物神经系统、植物叶绿体及代谢活跃部位。包括脑苷脂和神经节苷脂。 3、衍生脂质 (1)取代烃:脂肪酸、高级醇,少量脂肪醛、脂肪胺。 (2)固醇类(甾类)是环戊烷多氢菲的衍生物,因含有醇基故命名为固醇。 (3)萜 (4)其它:V A、VD、VE、VK、脂酰CoA、脂多糖、脂蛋白 二、功能 1、贮存能量和供给能量是脂肪最重要的生理功能(90%的脂肪贮存)。 2、结构脂质。 3、生物活性物质。 (1)胆固醇 (2)萜类:包括脂溶性维生素(A,D,E,K)和多种光合色素(如类胡萝卜素)。 (3)电子载体:泛醌、质体醌 (4)信号分子:磷脂酰肌醇、肌醇三磷酸

生物必修一知识点复习提纲完整版

第一章走进细胞 第1节从生物圈到细胞 1.病毒没有细胞结构,必须依赖活细胞才能生存。 2.生命系统结构层次:细胞、组织、器官、系统、个体、种群、群落、生态系统、生物圈。 [血液:组织][皮肤:器官][植物没有系统结构] [组织——①人:结缔、肌肉、神经、保护②植物:保护、疏导、营养、分生] 3.细胞是除病毒外的生物体结构和功能的基本单位。(还是代谢和遗传的基本单位) 4.单细胞生物:单个细胞就能完成各种生命活动; 多细胞生物:依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。 [代谢:生物与环境间物质和能量的交换;增殖、分化:生长发育;基因的传递和变化:遗传和变异] 5.各种生物的生命活动都是在细胞内或细胞参与下完成的。 第2节细胞的多样性和统一性 ◎显微镜 1.高倍镜:“不要动粗” 2.高倍镜视野暗,低倍镜视野亮 *3.物镜:有螺纹。镜筒越长,放大倍数越大。 目镜:无螺纹。镜筒越短,放大倍数越大。 4.放大倍数=物镜放大倍数×目镜放大倍数 *5.①一行细胞数目计算方法:个数×放大倍数的倒数=最后看到的细胞数。 (如:在目镜10×,物镜10×的视野中有一行细胞,数目是20个,目镜不换,物镜换成40×那么在视野中能看见多少个细胞: 答:20×?=5) ②圆形视野范围细胞的数目计算方法:个数×放大倍数的倒数2=最后看到的细胞数。 一、原核细胞和真核细胞(有无以核膜为界限的细胞核) 1.原核生物:细菌(球、杆、螺旋菌、乳酸菌)、衣原体、蓝藻、支原体(没有细胞壁,最小的细胞生物)、放线菌、立克次氏体 真核生物:植物、动物、真菌(蘑菇、酵母菌、霉菌、大型真菌) 病毒非真非原 [蓝藻:发菜、颤藻、念珠藻、蓝球藻。蓝藻没有成型的细胞核,有拟核——环状DNA分子 蓝藻细胞质:含蓝藻素和叶绿素,就能进行光合作用(自养生物),还含有核糖体]

第八章 脂类代谢习题

第八章脂类代谢 一、名词解释 1.脂肪酸的β—氧化:脂脂肪酸在一系列酶的催化下,在ɑ、β碳原子间断裂,β-碳原子被氧化成羧基,生成乙酰CoA和比原先少两个碳的脂酰CoA的过程; 2.必需脂肪酸:人或动物正常生长发育羧必需的,而自身又不能合成,只有从食物中获得,的脂肪酸,通常指:亚油酸、亚麻酸和花生四烯酸; 3.-氧化及其它代谢产生的乙酰CoA,在一般细胞中可进入三羧酸循环进行氧化分解,但在肝脏细胞中,其氧化则不很完全,出现一些氧化的中 -羟丁酸和丙酮,它们称为酮体。肝脏生成的酮体可在肝外组织被利用; 4.血脂:血浆中所含的之类统称为血脂,包括甘油三酯、磷脂、胆固醇、胆固醇酯、游离脂肪酸等; 5.外源性脂类: 6.内源性脂类: 7. 脂肪酸α-氧化:α-氧化作用在哺乳动物的脑组织和神经细胞的微粒体中进行,由微粒体氧化酶系催化,使游离的长链脂肪酸在α-碳原子上的氢被氧化成羟基,生成α-羟脂酸。长链的α-羟脂酸是脑组织中脑苷脂的重要成分,α-羟脂酸可以进一步氧化脱羧,形成少一个碳原子的脂肪酸; 8. 脂肪酸ω-氧化:动物体内十二碳以下的短链脂肪酸,在肝微粒氧化酶系催化下,通过碳链甲基端碳原子(ω﹣碳原子)上的氢被氧化成羟基,生成ω﹣羟脂酸、ω﹣醛脂酸等中间产物,再进一步氧化为α,ω﹣二羧酸; 9. 柠檬酸-丙酮酸循环:线粒体内乙酰辅酶A与草酰乙酸缩合柠檬酸然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰辅酶A,后者可利用脂肪酸合成,而草酰乙酸经还原后在苹果酸脱氢酶的催化下生成苹果酸,苹果酸又在苹果酸酶的催化下变成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸; 10. 简单脂质:由脂肪酸与醇(甘油醇、一元醇)所形成的脂,分为脂、油、蜡;

水分代谢习题及答案

一、名词解释 自由水束缚水水势溶质势压力势衬质势扩散作用渗透作用半透 膜吸胀作用质壁分离质壁分离复原主动吸水被动吸水伤流吐水根 压共质体质外体蒸腾拉力蒸腾作用气孔蒸腾小孔定律蒸腾速率蒸腾效 率蒸腾系数(需水量)水分临界期 二、填空题 1、水分在植物细胞内以()和()状态存在,细胞中的自由水越多,原生质粘性(),代谢(),抗()。 2、植物细胞吸水的两种方式是()、()。 3、植物细胞内起半透性膜作用的部位有()、()、 4、在标准状况下,纯水的水势为()。加入溶质后其水势(),溶液愈浓,其水势()。 5、把成熟的植物生活细胞放在高水势溶液中,细胞通常表现();放在低水势溶液中,细胞常表现();放在与细胞水势相等的溶液中,细胞表现()。 6、植物组织的水势由(),()和()组成。 7、植物细胞发生初始质壁分离时,其Ψw=();当细胞吸水达到饱和时,其 Ψw=()。 8、有液泡的植物细胞,其水势主要由()和()组成, 而()可以忽略不计。 9、当叶片失水出现萎蔫状态时,这时细胞的膨压呈(),其水 势()。 10、茎叶的水势比根的水势();在同一根部,内侧细胞的水势比外侧细胞的水 势()。 11、分生组织主要依靠()吸水,形成液泡的细胞主要靠()吸水。 12、种子萌发时,原生质胶体变()状态,这时其代谢(),抗逆性()。 13、写出下列情况下,土壤溶液水势(Ψ w 土)与根细胞水势(Ψ w 细)之间的状况(采用 < 、 > 或 = 符号表示)。水分进入根毛细胞Ψ w 细Ψ w 土 ; 水分外渗至土壤溶液,Ψw 细()Ψ w 土 ; 细胞不吸水也不外渗水Ψ w 细()Ψ w 土 ; 施肥不当产生“烧苗” Ψ w 细()Ψ w 土。

生物化学 第8章 脂类代谢

第八章脂类代谢 一、填空题: 1.大部分饱和脂肪酸的生物合成在中进行。 2.自然界中绝大多数脂肪酸含数碳原子。 3.脂肪酸生物合成的原料是,其二碳供体的活化形式是。4.生成丙二酸单酰CoA需要酶系催化,它包含有三种成份、_ 和。 5.饱和脂肪酸从头合成需要的引物是,其产物最长可含有碳原子。6.人体必需脂肪酸是、和。 7.饱和脂肪酸从头合成的还原力是,它是由代谢途径和转换所提供。8.大于十六碳原子的脂肪酸是生物体内相应的各个系统的酶催化合成。 9.在真核生物中,不饱和脂肪酸的脱饱和是通过途径完成的,催化反应的酶叫。10.硬脂酸(C18)经β-氧化分解,循环次,生成分子乙酰CoA,FADH2和NADH。11.脂肪酸β-氧化是在中进行的,氧化时第一次脱氢的受氢体是,第二次脱氢的受氢体是,β-氧化的终产物是。 12.真核生物中,一摩尔甘油彻底氧化成C02和H20生成摩尔A TP。 13.在油料种子萌发的时候,由脂肪酸分解生成的通过生成琥珀酸,再进一步生成后通过途径合成葡萄糖,供幼苗生长之用。 14.乙酰COA主要由、和降解产生。 二、选择题(只有一个最佳答案): 1.在高等动、植物中,脂肪酸以下列哪种形式参与三酰甘油的生物合成( ) ①游离脂肪酸②脂酰ACP ③脂酰CoA④以上三种均不是 2.脂肪酸生物合成中,将乙酰基运出线粒体进入胞液中的物质是( ) ①CoA②肉碱③柠檬酸④以上三种均不是 3.1分子十八碳脂肪酸经β-氧化和三羧酸循环净产生( )A TP ①130 ②129 ③147 ④148 4.饱和脂肪酸从头合成和β-氧化过程中,两者共有( ) ①乙酰CoA②FAD ③NAD+④含生物素的酶 5.长链脂肪酸从胞浆转运到线粒体内进行β-氧化作用,所需载体是( ) ①柠檬酸②肉碱③辅酶A④α-磷酸甘油 6.脂肪酸从头合成所用的还原剂是( ) ①NADPH+H+②NADH+H+③FADH2④FMNH2 7.脂肪酸氧化作用的连续进行与下列哪种酶无关( ) ①脂酰CoA脱氢酶②烯脂酰CoA水合酶③β-酮脂酰CoA硫解酶④缩合酶 8.β-氧化中,脂酰CoA脱氢酶催化反应时所需的辅因子是( ) ①FAD ②NAD+③A TP ④NADP+ 9.植物体内由软脂酸(C16)生成硬脂酸(C18)其原料是( ) ①乙酰CoA②乙酰ACP ③丙二酸单酰CoA④丙二酸单酰ACP 10.在脂肪酸的合成中,每次碳链的延长都需要什么直接参加?()

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化与脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA; ③二碳片段的加入与裂解方式:合成就是以丙二酰ACP加入二碳片段,氧化的裂解方式就是乙酰CoA;④电子供体或受体:合成的供体就是NADPH,氧化的受体就是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成就是柠檬酸转运系统,氧化就是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2与H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+与1molFADH2 分别生成2、5mol、1、5mol的ATP,

因此,1mol甘油彻底氧化成CO2与H2O生成ATP摩尔数为6×2、5+1×1、5+3-1=18、5。 4、1mol硬脂酸(即18碳饱与脂肪酸)彻底氧化成CO2与H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料与关键酶各就是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃肠腔肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收吸收途径:

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化 CO 2 NADH+FADH 2 H 2 O [O] TAC 循环 ATP ADP 变 五、糖的有氧氧化 1、反应过程 -1 NAD + 乳 酸 NADH+H + 调节方式 ① 别构调节 ② 共价修饰调 第一阶段:糖酵解途径 G (Gn ) 丙酮酸乙酰CoA 胞液 线粒体

○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: ③乙酰CoA 进入柠檬酸循环及氧化磷酸化生成ATP 概述:三羧酸循环(Tricarboxylic acid Cycle, TAC )也称为柠檬酸循环或 Krebs 循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。它由一连串反应组成。 反应部位:所有的反应均在线粒体(mitochondria)中进行。 涉及反应和物质:经过一轮循环,乙酰CoA 的2个碳原子被氧化成CO 2;在循 环中有1次底物水平磷酸化,可生成1分子ATP ;有4次脱氢反应,氢的接受体分别为NAD +或FAD ,生成3分子NADH+H+和1分子FADH2。 总反应式:1乙酰CoA + 3NAD + + FAD + GDP + Pi + 2H 2O2CO 2 + 3(NADH+H + ) + FADH 2 + CoA + GTP 特点:整个循环反应为不可逆反应 生理意义:1. 柠檬酸循环是三大营养物质分解产能的共同通路 。 2. 柠檬酸循环是糖、脂肪、氨基酸代谢联系的枢纽。 丙酮酸乙酰CoA + + 丙酮酸脱氢酶复合体

糖类代谢和脂肪代谢

第四章生命的物质变化和能量转换 第4节生物体内营养物质的转变 一、教学目标: 知识与技能:1、知道糖类、脂肪在生物体内的代谢过程。 2、知道糖类、脂肪之间的转变关系。 3、初步学会用所学知识解释日常生活中的营养物质转变实例。 过程与方法:通过分析日常生活中糖类、脂肪代谢及相互转变的实例,感受这两大类营养成分在体内的代谢过程。 情感态度与价值观:通过学习营养物质的相互转变,逐步养成科学合理的饮食习惯。 二、重点: 1、糖类的代谢 2、脂肪的代谢 三、难点: 糖类、脂肪之间的转变过程及途径 四、教学准备: 多媒体课件、学案 五、教学过程

附:生物体内营养物质的转变(学案) 学习目标: 1.知道糖类、脂肪在生物体内的代谢过程 2.知道糖类、脂肪之间的转变关系 3.通过学习营养物质转变,结合生活实际,养成健康的饮食与生活习惯 学习重点: 糖类、脂肪代谢过程 学习难点: 糖类、脂肪的相互转变 学习过程: 一.自主学习 1.知识回顾:人体消化系统组成、食物消化过程与消化酶;物质进出细胞的方式;生物体中能源物质的种类;细胞有氧呼吸的过程(三羧酸循环) (1)人体所需营养物质主要有_______________________________ _ ; 可以通过_____________途径获得。当我们吃了食物,实际上食物__________(是,不是)已经进入了人体,而是需要先经过___________________然后才能够被利用。 (2)三大主要营养物质分别是____________、______________、________________; 淀粉的消化过程是:___________________________________________________ _ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 蛋白质的消化过程是:_________________________________________________ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 脂肪的消化过程是:________________________________________ ____________;消化的最终产物是__________和_________,以______________方式被小肠上皮细胞吸收。2.阅读,思考,讨论: 糖类代谢 (1)生物体细胞主要以__________________方式利用葡萄糖获得能量。 (2)动物体内的___ 细胞和细胞可以以形式储存一定量的糖类物质。(3)北京填鸭在肥育期要填饲过量的糖类饲料,减少运动,从而使鸭在短期内变成肥鸭,这说明什么? () 脂类代谢 (1)为什么长期偏食高油、高脂食物的人更容易肥胖? (2)饮食中摄入脂肪就不能控制体重了吗?

第七章脂类代谢习题及答案

第七章脂类代谢 一、知识要点 (一)脂肪得生物功能: 脂类就是指一类在化学组成与结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中得物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类与类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要得生物功能。脂肪就是生物体得能量提供者。 脂肪也就是组成生物体得重要成分,如磷脂就是构成生物膜得重要组分,油脂就是机体代谢所需燃料得贮存与运输形式。脂类物质也可为动物机体提供溶解于其中得必需脂肪酸与脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面得脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞得表面物质,与细胞识别,种特异性与组织免疫等有密切关系。 (二)脂肪得降解 在脂肪酶得作用下,脂肪水解成甘油与脂肪酸。甘油经磷酸化与脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP与CoA在脂酰CoA合成酶得作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统得帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢与硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA与比原先少两个碳原子得脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2与少一个碳原子得脂肪酸;经ω-氧化生成相应得二羧酸。 萌发得油料种子与某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成得乙酰CoA合成苹果酸,为糖异生与其它生物合成提供碳源。乙醛酸循环得两个关键酶就是异柠檬酸裂解酶与苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸与乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪得生物合成 脂肪得生物合成包括三个方面:饱与脂肪酸得从头合成,脂肪酸碳链得延长与不饱与脂肪酸得生成。脂肪酸从头合成得场所就是细胞液,需要CO2与柠檬酸得参与,C2供体就是糖代谢产生得乙酰CoA。反应有二个酶系参与,分别就是乙酰CoA羧化酶系与脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系得催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子得丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20与少量碳链更长得脂肪酸。在真核细胞内,饱与脂肪酸在O2得参与与专一得去饱与酶系统催化下,进一步生成各种不饱与脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂得生成 磷脂酸就是最简单得磷脂,也就是其她甘油磷脂得前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应得磷脂。磷脂

第一章 水分生理习题及答案.

第一章水分生理习题 一、名词解释 1.自由水 2.束缚水 3.水势 4.压力势 5.渗透势 6.衬质势 7.渗透作用 8.水通道蛋白 9.根压 10.吐水现象 二、填空题 1. 植物散失水分的方式有种,即和。 2. 植物细胞吸水的三种方式是、和。 3. 植物根系吸水的两种方式是和。前者的动力是,后者的动力是。 4. 设甲乙两个相邻细胞,甲细胞的渗透势为- 16 × 10 5 Pa ,压力势为9 × 10 5 Pa ,乙细胞的渗透势为- 13 × 10 5 Pa ,压力势为9 × 10 5 Pa ,水应从细胞流向细胞,因为甲细胞的水势是,乙细胞的水势是。 5. 某种植物每制造10 克干物质需消耗水分5000 克,其蒸腾系数为,蒸腾效率为。 6. 把成熟的植物生活细胞放在高水势溶液中细胞表现,放在低水势溶液中细胞表现,放在等水势溶液中细胞表现。 7. 写出下列吸水过程中水势的组分 吸胀吸水,Ψ w = ;渗透吸水,Ψ w = ; 干燥种子吸水,Ψ w = ;分生组织细胞吸水,Ψ w =; 一个典型细胞水势组分,Ψ w = ;成长植株吸水,Ψ w = 。 8. 当细胞处于初始质壁分离时,Ψ P = ,Ψ w = ;当细胞充分吸水完全膨胀时,Ψ p = ,Ψ w =;在初始质壁分离与细胞充分吸水膨胀之间,随着细胞吸水,Ψ S ,Ψ P ,Ψ w 。 9. 蒸腾作用的途径有、和。 10. 细胞内水分存在状态有和。 三、选择题 1. 有一充分饱和细胞,将其放入比细胞浓度低10 倍的溶液中,则细胞体积 A.不变 B.变小 C.变大 D.不一定 2. 将一个生活细胞放入与其渗透势相等的糖溶液中,则会发生 A.细胞吸水 B.细胞失水 C.细胞既不吸水也不失水 D.既可能失水也可能保持动态平衡 3. 已形成液泡的成熟细胞,其衬质势通常忽略不计,原因是 A.衬质势不存在 B.衬质势等于压力势 C.衬质势绝对值很大 D.衬质势绝对值很小 4. 在萌发条件下、苍耳的不休眠种子开始4 小时的吸水是属于 A.吸胀吸水 B.代谢性吸水 C.渗透性吸水 D.上述三种吸水都存在 5. 水分在根及叶的活细胞间传导的方向决定于 A.细胞液的浓度 B.相邻活细胞的渗透势大小 C.相邻活细胞的水势梯度 D.活细胞压力势的高低 7. 一般说来,越冬作物细胞中自由水与束缚水的比值

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

第5章 脂类代谢

第5章脂类代谢 学习要求 1.掌握必需脂酸的概念,脂肪动员、脂解激素、抗脂解激素因子的概念;甘油三酯的分解代谢,脂酸的β-氧化;酮体的生成和利用;游离脂酸的运输、甘油的氧化;甘油三脂合成代谢的细胞定位及原料;胆固醇的代谢及调节;血浆脂蛋白的代谢。 2.熟悉脂类的概念、组成、分类、消化吸收及生理功能、甘油磷酸的代谢。 3.了解脂酸的分类、鞘磷脂的代谢、多不饱和脂酸及其衍生物;高脂蛋白血症、脂肪肝、酮症。 基本知识点 脂类是脂肪和类脂的总称。脂肪即甘油三酯(TG),主要生理功能是储能及供能.类脂包括胆固醇(Ch)、胆固醇酯(CE)、磷脂(PL)和糖脂(GL)等。是生物膜的重要成分,并参与细胞识别及信息传递,还是多种生理活性物质的前体。 脂类的消化在小肠上段,在胆汁酸盐和辅脂酶的共同参与下,甘油三酯被胰脂酶水解成甘油一酯和脂酸,胆固醇酯被胆固醇酯酶水解成胆固醇和脂酸,磷脂被磷脂酶水解成溶血磷脂和脂酸,这些消化产物主要在空肠被吸收。吸收的甘油及中、短链脂酸经门静脉入血;长链脂酸在小肠粘膜细胞内再合成脂肪,与apoB48、磷脂、胆固醇等形成CM后经淋巴管进入血循环。 甘油三酯是机体能量储存的主要形式。甘油三酯水解产生甘油和脂酸。甘油活化、脱氢、转变为磷酸二羟丙酮后,循糖代谢途径代谢。脂酸则在肝、骨骼肌、心肌等组织中分解氧化,释出大量能量,以ATP形式供机体利用。脂酸的分解需经活化,进入线粒体,β氧化(脱氢、加水、再脱氢及硫解)等步骤。脂酸在肝内β氧化生成乙酰CoA,后者在肝线粒体生成酮体,但肝不能利用酮体,需运至肝外组织氧化。长期饥饿时脑及肌组织主要靠酮体氧化供能。 脂酸合成是在胞液中脂酸合成酶系的催化下,以乙酰CoA为原料,在NADPH、ATP、HCO3-及Mn2+的参与下,逐步缩合而成的。乙酰CoA需先羧化成丙二酰CoA后才参与还原性合成反应,所需的氢全部由NADPH提供,最终合成16碳软脂酸。更长链的

相关主题
文本预览
相关文档 最新文档