当前位置:文档之家› 粒子物理与核物理实验中的数据分析-粒子物理与核物理实验

粒子物理与核物理实验中的数据分析-粒子物理与核物理实验

粒子物理与核物理实验中的数据分析-粒子物理与核物理实验
粒子物理与核物理实验中的数据分析-粒子物理与核物理实验

《核物理实验方法》作业汇总(期末复习)

《核物理实验方法》作业汇总(期末复习) 2016.5.6汇总谢伟 第一次作业: 1、简述高压倍增器的优缺点及主要用途。 2、画出静电加速器的示意图并简述其工作原理。 第二次作业: 1、画出直线加速器的示意图并说明其工作原理(需查阅相关课外资料) 2、画出回旋加速器的示意图并证明旋转频率与速度无关。 第三次作业 1、带电粒子主要通过哪两种方式在物质中损失能量? 2、什么是切伦科夫辐射和穿越辐射? 3、光子通过哪三种方式在物质中损失能量? 第四次作业 1.什么是气体探测器?气体探测器有哪几个工作模式?请说明每个工作模式的特点。 2.请画出电离室的电荷感应过程示意图。并结合示意图简要说明电离室的工作原理。

3.电离室的优缺点是什么,有哪些应用? 第五次作业 1.正比计数器的工作原理是什么?正比计数器有哪些性能参数? 2.正比计数器有哪些应用?请举例说明。 3.以有机管为例,说明G-M计数器的工作原理和猝灭机制。 第六次作业 1、请简述多丝正比室的测量原理 2、漂移室在高能物理上有什么应用? 第七次作业 1、流光-放电模式是怎么形成的,请简单定性说明。 2、请简述电阻板室的结构和性能。 第八次作业 1、利用能带论解释绝缘体、导体、半导体的区别。 2、什么是P型半导体?什么是N型半导体?什么是PN结? 3、简述半导体探测器的工作原理。 4、常见的径迹测量半导体有哪几种?

第九次作业 1、画出闪烁探测器的组成示意图并说明其工作原理。从粒子进入闪烁体内损失能量到转变为电信号,可以分成哪几个阶段? 2、结合教材P235的表6.2.1回答,哪种无机晶体具有最大的光输出?哪种无机晶体具有最短的发光衰减时间?BGO 晶体的发射光谱主峰是多少? 3、有机闪烁体可以分为哪三大类?每类各有什么优缺点? 4、光电倍增管由哪几部分构成?并简单说明光电倍增管的工作原理。 第十次作业 1、解释什么是伽马射线的全能峰、康普顿连续谱、逃逸峰? 2、结合教材P285图6.5.13回答: (1)图中的两个三角形表示什么电路? (2)图中“符合1”和“符合2”的作用分别是什么?对应什么样的逻辑电路? (3)简述该图是如何测量多丝正比室的探测效率的? 3、请写出切伦科夫辐射角公式,并解释如何利用切伦科夫探测器分辨速度不同的粒子?

原子核物理实验方法课后习题(答案)

第一章习题 1. 设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。 解: 05 1525 (,)!5(0;5)0.0067 0!5 (0;5)0.0337 1!5(0;5)0.0842 2! N N r r r r N P N N e N P e P e P e ----=?=?==?==?= 在1秒内小于或等于2的概率为: (0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++= 2. 若某时间内的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104范围内的概率。 解:高斯分布公式2 222)(2 2)(2121 )(σπσ πm n m m n e e m n P -- -- = = 1002==σm == =-- --2 2 22)104(2 2)(2121 )104(σπσ πm m m n e e m P 将数据化为标准正态分布变量 110 100 90)90(-=-= x 4.010100 104)104(=-=x 查表x=1,3413.0)(=Φx ,x=,1554.0)(=Φx 计数值落在90-104范围内的概率为

3. 本底计数率是500±20min -1,样品计数率是750±20min -1,求净计数率及误差。 解:t n = σ 本底测量的时间为:min 2520500 2 === b b b n t σ 样品测量时间为:min 35207002 === s s s n t σ 样品净计数率为:1min 200500700-=-=-= b b s s t n t n n 净计数率误差为:1min 640-== +=+= b s b b s s t n t n σσσ 此测量的净计数率为:1min 6200-± 4. 测样品8min 得平均计数率25min -1,测本底4min 得平均计数率18min -1,求样品净计数率及误差。 解:1min 71825-=-=-= b b s s t n t n n

粒子物理与原子核物理专业硕士研究生培养方案

粒子物理与原子核物理专业硕士研究生培养方案

粒子物理与原子核物理专业硕士研究生培养方案 (学科专业代码:070202授予理学硕士学位) 一、学科专业简介 粒子物理与原子核物理专业包含如下研究方向:粒子物理、相对论重离子碰撞物理、夸克物质物理、相对论重离子碰撞实验、高能碰撞唯象学,以及高能核天体物理。本专业方向是以国内及国际大型加速器及宇宙线实验为依托,在粒子物理方向,从理论和实验两方面研究物质的最基本构成、性质、相互作用及其规律;在原子核物理方向,研究内容包括GeV至TeV能区的重离子碰撞,在理论上涉及高能重离子碰撞动力学及形成夸克物质的机理,粒子碰撞与粒子产生物理模型,夸克物质信号的预言;实验研究包括高能核-核碰撞的实验数据处理;高能核-核碰撞实验计算机模拟与物理分析;粒子探测新技术与数据获取技术研发,核电子学以及新型探测器的研发和研制,探测器软件研发及网格计算技术在实验模拟及数据分析中的应用等;目标是探寻夸克物质信号,检验格点量子色动力学(QCD)的预言,研究TeV能区的新物理。该专业方向

有长期的理论和实验研究基础,师资力量雄厚,有良好的国际国内合作环境,“粒子物理研究所”、“湖北省高能物理重点实验室”及批准建设的“夸克与轻子物理教育部重点实验室”提供了科学研究环境的有效保障。 二、培养目标 掌握坚实的粒子物理与原子核物理基础和系统的专门知识,熟悉粒子物理与原子核物理专业有关方向的国内外研究历史、现状和发展方向,掌握一门外语,具有从事科学研究、高等学校教学工作或独立担负有关专门技术工作能力,成为德智体全面发展,适应社会主义现代化需要的高层次人才。 三、研究方向简介 序号研究方向名 称 简介 1 粒子物理从理论和实验上研究物质的最基本构成、性质、相互作用及其规律 2 夸克物质物夸克物质的硬探针信号、夸克

大学物理实验课后题答案

近代物理 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 实验2 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。 实验三,随即误差的统计规律 1. 什么是统计直方图? 什么是正态分布曲线?两者有何关系与区别? 答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。 如果测量次数愈多,区间愈分愈小,则统计直方图将逐渐接近一条光滑的曲线,当n趋向于无穷大时的分布称为正态分布,分布曲线为正态分布曲线。 2. 如果所测得的一组数据,其离散程度比表中数据大,也就是即S(x)比较大,则所得到的周期平均值是否也会差异很大? 答:(不会有很大差距,根据随机误差的统计规律的特点规律,我们知道当测量次数比较大时,对测量数据取和求平均,正负误差几乎相互抵消,各误差的代数和趋于零。 实验四电热法测量热功当量 1. 该实验所必须的实验条件与采用的实验基本方法各是什么?系统误差的来源可能有哪些? 答:实验条件是系统与外界没有较大的热交换,并且系统(即水)应尽可能处于准静态变化过程。实验方法是电热法。系统误差的最主要来源是系统的热量散失,而终温修正往往不能完全弥补热量散失对测量的影响。其他来源可能有①水的温度不均匀,用局部温度代替整体

实验误差及数据处理习题

误差理论与数据处理 学号: ____________ 姓名: __________ 专业: _____________ 评分: _______ 上课时间: 第____周星期____上午[ ]下午[ ]晚上[ ] 请将1-24小题的答案对应地填在下表中 一、单选题(每小题3分,共36分)。 1.采用“四舍六入五单双”法,将下列各数据取为2位有效数字(修约间隔为0.1),其 结果正确的是: A. 2.750→2.7 B. 2.650→2.6 C. 2.65001→2.6 D. 2.6499→2.7 2.自然数6的有效数字位数为: A. 1位 B. 2位 C. 3位 D. 无穷位 3.L=0.1010m的有效数字位数为: A. 2位 B. 3位 C. 4位 D. 5位 4.V=2.90×103m/s的有效数字位数为: A. 3位 B. 5位 C. 6位 D. 7位 5.下列单位换算正确的是: A. 0.06m=60mm B. 1.38m=1380mm C. 4cm=40mm D. 5.0mm=0.50cm 6.用有效数字运算法则计算123.98-40.456+ 7.8,其结果正确的是: A. 91.324 B. 91.3 C. 91.32 D. 91 7.用有效数字运算法则计算271.3÷0.1和3.6×4.1,其结果正确的是: A. 3×103和14.8 B. 3×103和15 C. 2712和14.76 D. 2712和15 8.用有效数字运算法则计算 4.0345 +38.1 9.0121-9.011 ,其结果正确的是: A. 3705.827 B. 370.8273 C. 3705.8 D. 4×103

核物理实验讲义

实验1 核衰变的统计规律 实验目的 1. 了解并验证原子核衰变及放射性计数的统计性。 2. 了解统计误差的意义,掌握计算统计误差的方法。 3. 学习检验测量数据的分布类型的方法。 内容 1. 在相同条件下,对某放射源进行重复测量,画出放射性计数的频率直方图,并与理论分布曲线作比较。 2. 在相同条件下,对本底进行重复测量,画出本底计数的频率分布图,并与理论分布图作比较。 3. 用2χ检验法检验放射性计数的统计分布类型。 原理 在重复的放射性测量中,即使保持完全相同的实验条件(例如放射源的半衰期足够长,在实验时间内可以认为其活度基本上没有变化,源与计数管的相对位置始终保持不变;每次测量时间不变,测量仪器足够精确,不会产生其它的附加误差等等),每次的测量结果并不完全相同,而是围绕着其平均值上下涨落,有时甚至有很大的差别。这种现象就叫做放射性计数的统计性。放射性计数的这种统计性反映了放射性原子核衰变本身固有的特性,与使用的测量仪器及技术无关。 1. 核衰变的统计规律 放射性原子核衰变的统计分布可以根据数理统计分布的理论来推导。放射性原子核衰变的过程是一个相互独立彼此无关的过程,即每一个原子核的衰变是完全独立的,和别的原子核是否衰变没有关系,而且哪一个原子核先衰变,哪一个原子核后衰变也纯属偶然的,并无一定的次序,因此放射性原子核的衰变可以看成是一种伯努里试验问题。设在t=0时,放射性原子核的总数是0N ,在t 时间内将有一部分核发生了衰变。已知任何一个核在t 时间内衰变的概率为)1(t e p λ--=,不衰变的概率为q=1-p=e t λ-, λ是该放射性原子核的衰变常数。 利用二项式分布可以得到在t 时间内有n 个核发生衰变的概率P(n)为 n N t n t e e n n N N n p -----= 0)()1(! )!(!)(00λλ (1) 在t 时间内,衰变掉的粒子平均数为 )1(00t e N p N m λ--== (2) 其相应的均方根差为 2 10)()1(t me p m pq N λσ-=-== (3)

核物理与粒子物理导论教学大纲

《核物理和粒子物理导论》课程教学大纲 一、课程基本信息 1、课程代码:PH337 2、课程名称(中文):核物理与粒子物理导论 课程名称(英文):An Introduction to Nuclear and Particle Physics 3、学时/学分:48/3 4、先修课程:基础力学、电磁学、高等数学、数学物理方法、原子物理学 5、面向对象:物理系三年级或同等基础各专业学生 6、开课院(系)、教研室:物理与天文系粒子与核物理研究所 7、教材、教学参考书: 教材: 低能及中高能原子核物理学,程檀生钟毓澍编著,北京大学出版社,1997。参考书: a.Das and T. Ferbel, Introduction to Nuclear and Particle Physics (2nd Edition), (World Scientific, New Jersey, 2003) b.Particle Physics, by Nai-Sen Zhang (Science Press, 1986) (《粒子物理学》,章 乃森著,科学出版社,1986) 二、课程性质和任务 本课程教学目的是使学生掌握核物理与粒子物理的基本概念,了解核物理与粒子物理的一些最新发展动向。本课程属专业选修课程,适用物理系三年级或以上各专业学生。在整个课程讲解之中,强调基本的物理概念,并将随时插入目前国际上相关领域的研究进展和前沿问题,以使学生通过本课程的学习,对核物理与粒子物理相关的研究领域现状有一个了解。 三、教学内容和基本要求 第一章:概述 1)物质的结构层次 2)核物理与粒子物理的发展简史 3)自然单位 第二章:原子核的基本性质 1)综述

粒子物理和核物理实验方法课程教学大纲

粒子物理与核物理实验方法课程教学大纲 课程基本信息(Course Information) 课程代码 (Course Code) PH067 *学时 (Credit Hours) 3 *学分 (Credits) 48 *课程名称 (Course Name) 粒子物理与核物理实验方法 Methods of Experimental Nuclear and Particle Physics 课程性质 (Course Type) 专业选修课 授课对象 (Audience) 物理学专业、物理学专业(国际班)大学三年级本科生 授课语言 (Language of Instruction) 英文 *开课院系 (School) 物理与天文学院 先修课程 (Prerequisite) 物理学引论,电动力学,量子力学1 授课教师 (Instructor) 课程网址 (Course Webpage) *课程简介(Description) 这是一个粒子与核物理实验的入门级课程,对原子核和粒子物理学中的各种实验方法做了概述。课程的目标是使物理方向的高年级本科生或低年级研究生,从没有专业基础开始进阶到可以开始从事粒子实验方向的研究工作。课程涵盖了原子核与粒子中的基本相互作用过程、粒子束和加速器原理、基本粒子和物质的相互作用、各类常用粒子探测器原理、粒子物理常用的统计方法和数据分析技术。课程的最后将有一系列诺奖级的粒子物理实验的实例,每一个都是标准模型建立过程中的关键实验。本课程将重点培养学生设计实验和估算实验观测量的能力,鼓励学生组成团队,选定一个前沿的研究课题,完成一项实验的概念设计,每一个小组在学期结束时进行答辩。 *课程简介(Description) This is an introductory course which gives an overview of various experimental methods in modern nuclear and particle physics. The goal is to equip senior undergraduate or starting graduate students who have no relevant background with basic knowledge to jump start on the experimental research projects. The course covers basic nuclear and particle interaction processes, particle accelerator, passage of particle in matter and detector technologies, basics of statistics and analysis, as well as example experiments which established the foundation of the standard model. The students are expected to work in groups and develop an experimental proposal at the conceptual stage on selected topics, perform estimates on basic observables, and make a 15‐minutes PPT defense at the end of the semester. 课程教学大纲(Course Syllabus)

高考物理实验题数据的处理方法

从高考试题探究实验数据的处理方法 吴强(山东省泰山外国语学校271000 taianwu007@https://www.doczj.com/doc/21985938.html,) 高考是在考查知识及运用的同时,注重考查能力,并且把能力放在首位,而《考试说明》中对能力考查要求中指出:要考查“实验与探究能力:……能理解实验原理和方法;……会记录、处理实验数据,并得出结论”。那么,在近几年高考中考查过哪些实验数据的处理方法呢?笔者就此谈一谈实验数据的处理方法。 一、数据处理方法的考查 下面表1呈现了新考纲中的16个学生实验,在处理实验数据时所使用的主要方法。表2呈现了2008 年全国各省市高考试题对实验数据处理方法。

从以上两表和近几年的高考试题可以看出,高考多是考查学生用图象法处理数据的能力。学生可根据图线找函数关系,确定图线方程,根据图象纵横截距、斜率的物理意义确定待求量,平滑曲线还具有多次测量取平均值的效果,有时可根据图线发现测量错误。这一考点在06、08年的高考卷中较为突显。06年有7套高考卷要求用作图法处理数据,其中3套涉及测绘小灯泡伏安特性曲线,3套是测电池电动势和内电阻。07年四川卷要求从给出的图线中,求电源电动势E和电阻R2 。08年有6套高考卷要求用作图法处理数据。由此可见,高考对学生科学研究方法论的能力要求较高。 二、数据处理方法的示例 1.图象法:利用实验数据,将实验中物理量之间的函数关系用函数图象表示出来,这种方法叫图象法。用图象法处理实验数据是物理实验中最常用的方法之一。用图象法处理数据的优点是直观、简便,有取平均的效果,由图线的斜率、截距、所包围面积和图线的交点等可以研究物理量之间的变化及其关系,找出规律。作图的规则是:①作图一定要用坐标纸.坐标纸的大小要根据测量数据有效数字的多少和结果的需要来定;②要标明坐标轴名、单位,在轴上每隔一定相等的间距按有效数字位数标明数值;③图上连线要是光滑曲线(或直线),连线时不一定要通过所有的数据点,而是要使数据点在线的两侧合理的分布;④在图上求直线的斜率时,要选内插法取线上相距较远的两点,不一定要取原来的数据点;⑤作图时常设法使图线线性化,即“化曲为直”。 例1(2008广东15).某实验小组探究一种热敏电阻的温度特性。现有器材:直流恒流电源(在正常工作状态下输出的电流恒定 ....)。电压表、待测热敏电阻、保温容器、 温度计、开关和导线等。

大学物理实验习题和答案(整理版)

第一部分:基本实验基础 1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系? 答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。 7.光学元件 光学表面有灰尘,可否用手帕擦试? 答:不可以 8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测?

大学物理实验数据处理基本方法

实验数据处理基本方法 实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结 论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出 测量对象的内在规律,正确地给出实验结果。因此,数据处理是实验工作 不可缺少的一部分。数据处理涉及的内容很多,这里只介绍常用的四种方 法。 1列表法 对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往 借助于列表法把实验数据列成表格。其优点是,使大量数据表达清晰醒目, 条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量 之间的对应关系。所以,设计一个简明醒目、合理美观的数据表格,是每 一个同学都要掌握的基本技能。 列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位; 2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时, 应将原来数据画条杠以备随时查验; 4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判 断和处理。 2图解法 图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个 量之间的数学关系,因此图解法是实验数据处理的重要方法之一。图解法 处理数据,首先要画出合乎规范的图线,其要点如下: 1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和 极坐标纸等,根据 作图需要选择。在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。 2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。所以对于两个变量之间的函数关系是非线性的情形,在用图解法时 应尽可能通过变量代换 将非线性的函数曲线转变为线性函数的直线。下面为几种常用的变换方法。 ( 1) xy c ( c 为常数 ) 。 令 z 1,则 y cz,即 y 与 z 为线性关系。 x ( 2) x c y ( c 为常x2,y 1 z ,即 y 与为线性关系。

核物理实验报告

闪烁γ能谱测量实验报告 张传奇2012012784 一、实验目的 1. 加深对γ射线和物质相互作用的理解。 2. 掌握NaI(Tl)γ谱仪的原理及使用方法。 3. 学会测量分析γ能谱。 4. 学会测定γ谱仪的刻度曲线。 二、实验仪器 FH1901NaI(Tl)闪烁谱仪、SR-28 双踪示波器、137Cs放射源、60Co放射源 三、实验原理 1、γ射线与物质相互作用 γ射线与物质相互作用主要有光电效应、康普顿散射及电子对效应。 在光电效应中,原子吸收光子的全部能量,其中一部分消耗与光电子脱离原子束缚所需的能量,另一部分就作为光电子的能量,所以,释放出来的光电子能量就是入射光子的能量和该束缚电子所处的电子的壳层的结合能B γ之差,因此 E光电子=Eγ-Bi= Eγ 即光电子的动能近似等于γ射线的能量。值得注意的是,由于必须满足动量守恒定律,自耦电子不能吸收光子能量二成为光电子。光电效应的发生除入射光子和光电子之外,还需一个第三者参加,这个第三者就是发射光电子之后剩余下来的整个原子,它带走一些反冲能量,由于他的参加,动量和能量守恒才能满足。 康普顿散射是γ光子与原子外层电子相互作用的结果。这是γ光子与物质中“自由”电子(包括束缚甚弱的电子)非弹性散射的过程,根据散射过程中的动量守恒和能量守恒定律可求得散射电子(又称康普顿电子)的动能为: 式中m0c2为电子静止能量,?为γ光子的散射角,v为散射光子频率。 发生康普顿效应时,散射光子可以向各个方向散射。对于不同方向的散射光子,其对应的反冲电子的能量也不同。因而,即使入射γ光子的能量是单一的,反冲电子的能量的确实随散射角连续变化的。 电子对效应时γ光子从原子核旁经过时,在原子核的库仑力的作用下,γ光子转化为一个正电子和一个富电子的过程。根据能量守恒定律,只有当入射光子的能量hv大于m0c2,即大于1.02Mev时,才能发生电子对效应,与光电子效应相似,电子对效应除涉及入射光子和电子对意外,必须要有原子核参加。 2、能谱分析 γ射线与闪烁体发生光电效应时,γ射线产生的光电子动能为:

第十七章--原子核物理和粒子物理简介

习题十七 17-1 按照原子核的质子一中子模型,组成原子核X A Z 的质子数和中子数各是多少?核内共有多少个核子?这种原子核的质量数和电荷数各是多少? 答:组成原子核X A Z 的质子数是Z ,中子数是Z A -.核内共有A 个核子.原子核的质量数是A ,核电荷数是Z . 17-2 原子核的体积与质量数之间有何关系?这关系说明什么? 答:实验表明,把原子核看成球体,其半径R 与质量数A 的关系为3 10A R R =,说明原子核的体积与质量数A 成正比关系.这一关系说明一切原子核中核物质的密度是一个常数.即单位体积内核子数近似相等,并由此推知核的平均结合能相等.结合能正比于核子数,就表明核力是短程力.如果核力象库仑力那样,按照静电能的公式,结合能与核子数A 的平方成正比,而不是与A 成正比. 17-3 什么叫原子核的质量亏损?如果原子核X A Z 的质量亏损是m ?,其平均结合能是多少? 解:原子核的质量小于组成原子核的核子的质量之和,它们的差额称为原子核的质量亏损.设 原子核的质量为x M ,原子核X A Z 的质量亏损为:x n p M m Z A Zm m --+=?])([ 平均结合能为 A mc A E E 2 0ΔΔ== 17-4 已知 Th 232 90 的原子质量为u 232.03821,计算其原子核的平均结合能. 解:结合能为MeV 5.931])([ΔH ?--+=M m Z A Zm E n Th 23290 原子u M 03821.232=,90=Z ,232=A ,氢原子质量u m 007825.1H =, u m n 008665.1= MeV 1.766.56MeV 5.931]03821.232008665.1)90232(007825.190[Δ=?-?-+?=∴E ∴平均结合能为 MeV 614.7232 56 .1766Δ0=== A E E 17-5什么叫核磁矩?什么叫核磁子(N μ)?核磁子N μ和玻尔磁子 B μ有何相似之处?有何区别?质子的磁矩等于多少核磁子?平常用来衡量核磁矩大小的核磁矩I μ'的物理意义是什么?它和核的g 因子、核自旋量子数的关系是什么? 解:原子核自旋运动的磁矩叫核磁矩,核磁子是原子核磁矩的单位,定义为: 227m A 10.05.51 .18361 π4??=== -B p N m eh μμ

MCNP程序在实验核物理中的应用

MCNP程序在实验核物理中的应用 2008年3月14日星期五 一、蒙特卡罗方法简述 1. 蒙特卡罗方法又称为随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和计算机的出现与发展,这种发展作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。 2.蒙特卡罗方法在实验核物理中的应用是该方法最重要的应用领域之一。由于受物理条件地限制,为了得到所求结果,必须借助于理论计算。蒙特卡罗方法具有逼真地描述真实的物理过程的特点,在一定意义上讲,它可以部分代替物理实验,因而成为解决实验核物理中实际问题的非常有效的工具。 3.蒙特卡罗方法所特有的优点,使得它的应用范围越来越大。它的主要应用范围包括:粒子输运问题、统计物理、典型数学问题、真空技术、激光技术以及医学、生物、探矿等方面。蒙特卡罗方法在粒子输运问题中的应用范围主要包括:实验核物理、反应堆物理、高能物理等方面。 二、蒙特卡罗方法应用软件简介 建立完善的通用蒙特卡罗程序可以避免大量的重复性工作,并且可以在程序的基础上,开展对于蒙特卡罗方法技巧的研究以及对于计算结果的改进和修正的研究,而这些研究成果反过来又可以进一步完善蒙特卡罗程序。 1.通用蒙特卡罗程序通常具有以下特点: 具有灵活的几何处理能力 参数通用化,使用方便 元素和介质材料数据齐全 能量范围广,功能强,输出量灵活全面 含有简单可靠又能普遍适用的抽样技巧 具有较强的绘图功能 2.常用的通用蒙特卡罗程序简介 MORSE程序 较早开发的通用蒙特卡罗程序,可以解决中子、光子、中子-光子的联合输运问题。采用组合几何结构,使用群截面数据,程序中包括了几种重要抽样技巧,如俄国轮盘赌和分裂技巧,指数变换技巧,统计估计技巧和能量偏移抽样等。程序提供用户程序,用户可根据需要编写源分布以及记录程序。一般中子能量可从10-6甚至10-9Mev到20Mev。光子能量可在Kev到Gev数量级范围。电子能量也可在Kev到Gev数量级范围。 是美国橡树岭国家实验室从60年代开始研制的大型、多功能、多群中子-光子偶合输运程序。其全名是:Multigroup Oak Ridge Stochastic Experiment Code. EGS程序 EGS是Electron-Gamma Shower 的缩写,它是一个用蒙特卡罗方法模拟在任意几何中,能量从几个KeV到几个TeV的电子-光子簇射过程的通用程序包。由美国Stanford Linear Accelerator Center提供。EGS于1979年第一次公开发表,提供使用。EGS4是1986年发表的EGS程序的最新版本。

声速测量习题及数据处理

声速测量 填空题 1.声速测量实验中,采用驻波共振法测量声速时,要使函数信号发生器的输出频率等于换能器的谐振频率,并且在实验过程中保持不变。 2.声速测量实验使用的声速测量仪,是利用压电晶体的压电效应,在交变电压的作用下使压电体产生机械振动,从而在空气中激发出超声波。 3.声波的传播速度v,声源的振动频率f和声波波长λ之间的关系为v=fλ。声速测量实验测波长常用的方法有共振干涉法和位相比较法。 4.声速测量实验中是通过压电晶体的压电效应来发射和接收声波。 6.声速测量采用位相比较法测波长时,可通过示波器观察李萨如图形判断相位差。李萨如图形一般是稳定的椭圆。当相位差为0或π时,椭圆变为倾斜的直线。 7.声速测量采用共振干涉法测波长时,当接收端面与发射端面之间的距离恰好等于半波长的整数倍时,叠加后的波形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长。 简答题 1.实验中为什么要在超声换能器谐振状态下测量? 答:在谐振状态下超声换能器的纵向伸缩幅度大,发射的声波强;接收换能器接收的声压大,输出的电信号强。这样,可以提高测量的灵敏度,较为准确的确定驻波的波节,有利于准确地测量声波的波长。 2.实验中怎样找到超声换能器的谐振频率? 答:实验中所使用的超声换能器的谐振频率在30~40kHz之间,可以通过以下两种方法找到换能器的谐振频率。 (1)方法一:根据发射换能器的谐振指示灯调节 逆时针调节函数信号发生器的“电源开关幅度调节”(AMPLITUDE POWER)旋钮,调节到约为最大位置的三分之二。在输出频率30~40kHz范围内仔细调节“频率微调”(FINE)旋钮,使声波发射换能器旁边的指示灯点亮。这时,信号发生器的输出频率即为换能器的谐振频率。 (2)方法二:根据接收换能器的输出信号调节 调节两换能器发射面和接收面之间的距离约为1cm左右,用示波器观察接收换能器的输出信号,在输出频率30~40kHz范围内仔细调节函数信号发生器的“频率微调”(FINE)旋钮,使接收换能器的输出电压信号最大。此时,信号发生器的输出频率等于换能器的谐振频率。

长度测量——大学物理实验——例题

数据处理例题 例1.用钢直尺测量千分尺盒的长度了l ,选择不同的起点测量10次,用不确定度表示测量结果。(列表法,直接测量量不确定度计算) 解:(1)计算平均值:10 1 112.535cm 10i i l l ===∑; (2)计算A 类不确定度()0.1cm A u l = =; (3)计算B 类不确定度()B u l ?= = ; (4)计算合成不确定度()0.1cm u l = =; (5)测量结果表示:()(12.50.1)cm l u l =±=±;() ()100%0.8%r u l u l l = ?=

例2.用螺旋测微器测量小钢球直径d ,选择不同的位置测量10次,再根据测量结果计算小钢球体积V ,用不确定度表示测量结果。(列表法,间接测量量不确定度计算) 螺旋测微器零点读数:d 初= +0.025 mm 解:(1)计算d 的平均值并修正:初初 修 d d d d d i i -=-=∑=10 1 101 = 12.4948mm (2)计算V 的平均值:3 16 V d π= 修 = 1020.8603mm 3; (3)计算直径d 的A 类不确定度()0.0032mm A u d = = ; (4)计算直径d 的B 类不确定度()0.0023mm B u d ?= = =; (5)计算直径d 的合成不确定度()0.004mm u d ==; (6)计算体积V 的合成不确定度231()()1mm 2 u V d u d π= =修 ; (7)测量结果表示:3 ()(10211)mm V V u V =±=±; () ()100%0.1%r u V u V V = ?=

核物理实验讲义

实验名称: Si(Li) X射线谱仪 一、目的: 1.了解Si(Li)谱仪的工作原理和基本技能,初步掌握它的使用方法。 2.对谱仪进行能量刻度,计算谱仪的能量分辨率。 3.学会一种元素的分析方法—荧光分析法。 二、设备: 4.Si(Li)探测器 5.前放,主放,高压电源 6.238Pu激发源 7.Mn,Fe,Co,Cu,Zn等纯金属或氧化物片 8.待分析药品 三、步骤: 用238Pu作激发源 1.分别测(Fe,Co,Zn,Mn,Ni,Cu)特征谱,记下每种元素的Kα峰中心道的道数 和半宽度。要求峰中心道记数误差不大于4% 2.测待分析样品特征谱。记下Kα峰位的道址。 四、报告: 1. 由Mn,Fe,Co,Ni,Cu和Zn的k∞峰位道址与能量(由手册中查出)作能量刻度曲 线。 2. 计算各种元素的Kα峰的半宽度(以能量为单位)和能量分辨率,作出能量 E与能量分 辨率的曲线。 3. 根据待分析样品的Kα峰位和能量刻度曲线,确定该元素为何种元素。 实验名称: NaI(Tl) γ单晶闪烁谱仪 一、目的: 1. 了解NaI(Tl)γ单谱的基本结构和单能谱的形状。 2. 用一套标准源对谱仪进行能量刻度,验证分辨率和能量关系。 3. 用相对比较法测未知源的活度。 二、设备: 1.NIM插件箱供电装置。 2.FH~1034A高压,FH1001A线性放大器各一台。 3.FH1001A定标器一台。 4.FJ375 Na(Tl)γ探头一个 5.多道分析器一台 6.标准源一套,待测源一个。

三、步骤: 1选择好工作高压和放大器放大倍数,使137Cs的全能峰位于100道附近(多道分析器的道数选择为256道)。测137Cs的全谱,定时五分钟,并记录下来(参考数:工作高压:4*150伏,放大*4) 2 用137Cs,60Co源对谱仪进行能量刻度:分别记下它们的全能峰道道址和半宽度FWHM 所对应的道数。 3 测未知源的强度:测其能谱和它的一个全能峰的面积:选出与它相应的标准源,测出同 一全能峰的面积:去掉源测本底(注意:测量时要保持能量不变,测量时间,道宽,放大倍数一相同) 注:全能峰下总计数误差<1%。 四、报告: 1. 在半对数坐标纸上画出137Cs的能谱,求出FWHM和能量分辨率。 2. 用标准源做能量刻度曲线。并用最小二乘直线拟合,求出它的直线表达式,并求出 各峰的FWHM的能量值。 3. 鉴别未知源为何种源(说明原因),标出源活度(注意标准源的生产日期,活度,半衰 期)。 实验名称:金硅面垒α谱仪 一、目的: 1.对谱仪进行能量刻度;计算能量分辨率; 2.确定未知源的α能量; 3.测量239Pu的α能量: 二、设备: 1. FH—445A α探头架 2 .FH—42 3 电荷灵敏前置放大器,主放大器 3. S—30 多道分析器 4. 真空机械泵 5. 241Am和239Pu α源 三、步骤: 1.将241Am α源放入真空室内,抽真空。 2.连好线路,调整谱仪参数。确定探测器的工作电压参考数,前置放大*5主放 大100*0.6

大学物理实验数据处理要求

《大学物理实验》绪论 3、课后进行数据处理 (1) 在报告中整理并再现原始数据表格 (2) 所求物理量的公式计算,和不确定度的分析)(x U (要有公式,代入具体数据,有计算过程,有单位) (3) 结果的表达: )(x U x x ±= (单位) (4) 讨论分析所得结果。 可以根据教师的要求来做。 4、下次实验,交本次的实验报告: 晚交实验报告者本次实验成绩降5-30分。 注意:①抄袭他人报告者,一经发现,抄者与被抄者成绩一律计为 零分。任何理由都不成立!!! ②仿造教师签字者,一经发现,本学期实验总评成绩不及格。 任何理由都不成立!!! 三、数据处理中所涉及的问题 1、真值和误差 真值: 每个物理量在一定条件下不依人的意志为转移的客观大小, 用A 表示。 测量值:用N 表示。 误差:N N A N N -=-=? 相对误差:%100%100??=??=N A N E r 2、扩展不确定度的计算 不确定度:表示一定置信概率误差限值的绝对值。反映了对被测量 值不能肯定的程度。包括统计分量(A 类不确定度U a )和非统计分量(B 类不确定度U b )。 扩展不确定度:在95%置信概率下评定得到的不确定度。 例如:一袋大米的重量:50.0±0.4 kg 。在95%置信概率下,表示其 真值A 落在区间[49.6kg ,50.4kg]的可能性是95%,或者说对于任何一

次测量,其测量值在区间[49.6kg ,50.4kg]内的置信概率为95%(对正态分布而言)。 1)()()()(2--===∑n x x n T x s n T x Ts x U i a 其中)(x s 为实验标准差,)(x s 为算术平均值的标准差,T 为置信因子,n 为测量次数。应用计算工具计算)(x s 的操作方法请参阅教材§2.5.4节。 I Δ=)(x U b I Δ:仪器误差限,指测量仪器的示值与真值之差的最大值。在一般实验中,对于刻度仪器仪表,如未特殊说明,I Δ通常取最小分度值的一半。 )()()(2 2x U x U x U b a += 结果表达:)(x U x x ±=(单位) 举例说明: (1) 直接单次测量量x 单次测量不存在统计,即不存在a U ,只考虑b U ,则 I Δ==)()(x U x U b 结果表达:)(x U x x ±=(单位) 教材P14:以钢卷尺为例:L =97.32 cm ,等级:II 级。 对于II 级钢卷尺仪器误差限:(mm) Δ5.02.03.0=+=L L 。其中L 表示以“米”为单位的长度,当长度不是米的整数倍时,取最接近的较大正整数。 U a :对同一物理量多次测量采用统计方法处理得到的不确定度分量。 U b :由于仪器误差的存在而对测量引起的不确定度分量。 U

原子核物理实验方法

第一章放射性测量中的统计学 放射性事件与核事件,例如核衰变、带电粒子在介质中损耗能量 产生电子—离子对、 射线或中子与物质相互作用产生带电粒子等,在一定时间间隔内事件发生的数目和某一事件发生的时刻都是随机的,即具有统计涨落性。因此在实验测量中,一定时间内测到的核事件数目或某种核事件发生的时刻也总是随机的。了解放射性事件随机性方面的知识,一方面可以检验探测器的工作状态是否正常,分析测量值出现的不确定性是出于统计性原因还是仪器本身有其他误差因素,另一方面可对所测得的计数值进行一些合理校正,给定正确的误差范围,这对以后分析掌握辐射探测器的性能,安排实验测量是很有必要的,本章着重讨论在放射性测量中常遇到的一些统计涨落问题。 第一节核衰变数和计数的统计分布 在放射性测量中,即使所有实验条件都是稳定的,如源的放射性活度、源的位置、源与探测器间的距离、探测器的工作电压等都保持不变,在相同时间内对同一对象进行多次测量,每次测到的计数并不完全相同而是围绕某个平均值上下涨落,这种现象称为放射性计数的统计涨落。这种涨落不是由观测者的主观因素(如观测不准确)造成的,也不是由测量条件变化引起的,而是微观粒子运动过程中的一种规律性现象,是放射性原子核衰变的随机性引起的。在放射性核衰变 中, N个原子核在某个时间间隔内衰变的数目n是不确定的,这就引0 起了放射性测量中计数的涨落,它服从统计分布规律。另一方面,原子核衰变发出的粒子能否被探测器所接收并引起计数,也有统计涨落

问题,即探测效率的随机性问题。下面我们根据数理统计的理论分别讨论其规律性。 一、核衰变的统计分布 假定在0t =时刻有0N 个不稳定的原子核,在某一时间t 内将有一部分核发生衰变。先考虑一个原子核的情形。假如在某一短时间间隔 t ?内放射性原子核衰变的概率t P ?与此原子核过去的历史和现在的环 境无关,则t P ?正比于t ?,因此 t P t λ?=? 比例常数λ是该种放射性核素的特征值,因为衰变与不衰变是两种互相排斥的事件,两者概率之和为1,所以该原子核经过t ?未发生衰变的概率是 11t t q P t λ??=-=-? 若将时间t 分为许多很短的时间间隔t ?,则/t t i ?=,那末该原子核经过2t ?未发生衰变的概率为: 2(1)(1)(1)t t t λλλ-?-?=-? 经过t 时间后未发生衰变的概率为: (1)(1)i i t t i λλ-?=- 令i →∞,则0t ?→,我们有: lim[1()]i t i t e i λλ-→∞+-= 所以一个放射性原子核经过t 时间后未发生衰变的概率为t e λ-,那末对于0t =时刻的0N 个原子核,在经过t 时间后未发生衰变的原子核数目为:

相关主题
文本预览
相关文档 最新文档