当前位置:文档之家› 振幅调制器

振幅调制器

振幅调制器
振幅调制器

实验四 振幅调制器

一、实验目的

1、熟悉集成模拟乘法器 MC1496 实现 AM 和 DSB 调幅的电路结构。

2、掌握用示波器测量调幅指数(或调幅度)的方法,熟悉影响调幅指数的因素。 二、实验仪器 1、示波器

2、高频信号发生器(用于产生载波)

3、实验箱上函数发生器(用作产生调制信号) 3、万用表

4、实验板 3 三、预习要求

1、复习课本中有关调幅的原理。

2、熟悉1496乘法器引脚分布,分析1496乘法器实现调制的工作原理。

3、分析AM 调幅及DSB 调幅信号特点,画出频谱图。 四、实验内容

1、模拟乘法器的输入失调电压调节、直流调制特性测量。

2、用示波器观察AM 波形,测量调幅指数。

3、用示波器观察DSB 波形。 五、基本原理及实验电路 1、振幅调制基本原理

振幅调制就是用低频调制信号去控制高频载波信号的振幅,使载波的振幅随调制信号成正比地变化经过振幅调制的高频载波称为振幅调制波。

振幅调制波有标准振幅调制(Amplitude Modulation ,缩写为AM )、双边带振幅调制(Double Side Band AM ,缩写为DSB AM )和单边带振幅调制(Single Side Band AM 缩写为SSB AM )等。标准振幅调制就是用低频调制信号取控制高频载波信号的振幅,使载波的振幅随调制信号成正比地变化经过振幅调制的高频载波称为振幅调制波(简称AM 波),如图 4-1 所示。

这里,调制信号为单一频率的余弦波()cos m u t U t ΩΩ=Ω,调幅波信号为

()cos c cm c u t U t ω=,则,调幅波信号为

()(cos )cos (1cos )cos m

AM cm a m c cm a

c cm

U u t U k U t t U k t t U ωωΩΩ=+Ω=+Ω (1cos )cos cm a c U m t t ω=+Ω (4-1) 其中,m

a a

cm

U m k U Ω=称为调幅指数或调幅度,表示载波振幅受调制信号控制的程度,ka 为由调制电路决定的比例常数。可见,AM 波也是一个高频振荡信号,而它的振幅变化规律(即包络变化)与调制信号完全一致,因此 AM 波携带着原调制信号的信息。

从图 4-1 可知,可得调幅度a m 的计算公式 100%a A B

m A B

-=

?+ (4-2) 由于调幅指数与调制电压的振幅成正比,即m U Ω越大,a m 越大。若a m 大于 1,调幅波产生失真(如图 4-2 所示) ,这种情况称过调幅,在实际工作中应避免,即调幅时a m ≤

1

单一频率信号调制频谱图如图 4-3 所示。

这可由下式得到。

11

()(1cos )cos cos cos()cos()22

AM cm a c cm c a cm c a cm c u t U m t t U t m U t m U t ωωωω=+Ω=++Ω+-Ω

(4-3)

由于载波不携带信息,为了节省发射功率,可以发射只含有信息的上、下两个边带或其中一个,这种调制方式分别称为抑制载波的双边带调幅(如图4-4所示)和抑制载波的单边带调幅,相应的调制信号称抑制载波的双边带调幅波(简称DSB 波)和抑制载波的单边带调幅波(简称 SSB 波)。

2、F1496 简介

通信电子电路中振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与调解的过程均可视为两个信号相乘或包含相乘的过程,因此普通调幅可用如图4-5所示的框图实现,这里的乘法器通过采用集成模拟乘法器。

F1496是一种常用的四象模拟乘法器,其内部电路图如图 4-6。

电路采用了两组差分对由14V V 组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即5V 与6V ,因而亦称为双差分对模拟乘法器。恒流源的控制电压可正可负,实现了四象限工作。

其典型用法是:引脚8、10之间接一路输入(称上输入1v ,调幅或检波时接载波);引脚1、4之间接另一路输入(称下输入2v ,调幅时接调制信号,检波时接已调信号);两组差分对放大器的集电极(引脚6、12)分别经由集电极电阻 Rc 接到正电源+12V 上;输出

0v 从引脚6、12间取出;引脚2、3间外接 1k Ω的负反馈电阻Rt ,以扩大(调制)信号动

态范围,Rt 增大,线性范围增大,但乘法器的增益随之减少;引脚5与地之间接电阻(典

型值为6.8k Ω),用来控制由D 、V7、V8组成的恒流源电路的恒流值;引脚8 接负电源-8V ;不用引脚7、9、11、13悬空不用。

乘法器输出为012v kv v =(DSB 调幅)或012()D v k v V v =+(AM 调幅),这里,0v 是OUT 端电压,D V 是5V 与6V 间直流电压。调幅时,若1v 为调制信号、2v 为载波信号,则前者可实现DSB 调幅,后者可实现AM 调幅。检波时,若1v 为 AM 或 DSB 信号、2v 为载波信号,则前者可实现检波。

3、F1496 组成的调幅实验电路

本实验采用模拟乘法器构成的调幅电路如图 4-7 所示。

引脚2、3间的8R (1k Ω)对应于t R 。引脚6、12间的3R 、

10R (3.9k Ω)对应于c R 。14V V -的基极偏压由+12V 经1R 、2R (1k Ω)和 RP2(51Ω电位器)分压后接入到引脚8、10端供给,RP2 用来调节引脚8、10间的平衡。5V 、6V 的基极偏压由-8V 通过RP1(47k Ω电位器)分别经4R 、5R (10k Ω)和6R 、7R (51Ω)电阻分压分压后接入到引脚1、4间供给。RP1为调幅指数调节和载波调零电位器,用来调节引脚1、4间的平衡,同时用于在引脚1、4端间产生

附加的直流电压,改变 RP1 可以使乘法器实现 AM 调幅或 DSB 调幅.

调制信号u Ω从2IN 端接入,通过3C (10F μ)电容耦合输入到引脚1。载波信号从1

IN 端接入,通过2C (0.01F μ)电容耦合输入到引脚10,8间。引脚8通过1C 、4C (0.01F μ)电容交流接地。

三极管 V 为射极跟随器,以提高调幅器带负载的能力。

差分回路的工作特性取决于载波输入电压振幅的 Vcm 大小。当 Vcm>260mV 时,电路工作于开关状态,差分回路的工作特性与 Vcm 大小关;Vcm<260mV 时,工作于线性时变状态。

同时加入v Ω、c v 时,输出回路电压为 AM 波或 DSB 波。

六、实验步骤

实验电路见图 4-7,接入+12V 、-8V 直流电源。

调制信号源采用实验箱左上角的函数发生器,其参数设置如下(用示波器监测):频率范围为1kHz ,

(幅度衰减为-20dB )波形选择为正弦波,输出幅度峰峰值为100mV 。即

3()100sin 210()v t t mV πΩ=?

载波源采用高频信号发生器,其参数设置如下:工作方式为正弦波,工作频率为100kHz ,输出幅度峰峰值为 10mV 。即,5

()10sin 210()c v t t mV π=?. 1、静态测量

(1)载波输入端(1IN )调平衡

1IN 端不加载波,2IN 端加调制信号,示波器2CH 接输出OUT 端。调2p R 电位器使输出

端信号(称调制输入端馈通误差)最小。此时载波端平衡。 (2)调制输入端(2IN )调平衡

1IN 端加载波信号, 2IN 端不加调制信号,示波器2CH 接输出OUT 端,改变电位器1p R ,

观察并记录输出波形的变化。

调1p R 使输出端信号(称载波输入端馈通误差)最小。用万用表测量A 、B 之间的电压AB V ,可发现

AB V =0V 。此时调制端平衡。

(3)直流调制特性的测量。

1IN 端加载波信号,2IN 端不加调制信号,示波器1CH 接1IN 端,2CH 接OUT 端。

用万用表测AB V 。以AB V =0.1V 为步长,观察1p R 由一端调至另一端的输出波形,记录输出电压峰峰值

OP P V -,同时观察输入载波与输出波形间相位关系。由公式O AB Cp p V kV V -=计算相乘系数k

值,填表 4-1。

表4-1

AB V (V )

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

OP P V -(V ) 0.328 0.268 0.168 0.082 0 0.082 0.168 0.248 0.320 k

82

89.3

84

82

-82

-84

-82.7

80

AB V =0 时,调制端平衡,用于实现DSB 调幅;AB V ≠0 时,调制端有直流电压,用于实现

AM 调幅

2、AM 波观察

(1)载波输入端调平衡(实验内容 1(1)),在此基础上可进行 AM 波测量。 (2) 1IN 加载波信号5

()10sin 210()c v t t mV π=?,调节1p R 使AB V =0.1V

(3) 2IN 加调制信号3()sin 210()v t t mV πΩ=?,示波器1CH 接调制信号,2CH 接OUT 端。观察并记录m V Ω=30mV 和100mV 时的AM 波形(标明峰-峰值OP P V -与谷-谷值OB B V -),由公式(4-2)计算调制指数a m ,填表 4-2。

表4-2

m V Ω(mA )

OP P V -

OB B V -

a m

30 91.2mV 76.0mV 9.09% 100

104.0mV

60.0mV

26.83%

(4)逐步增大调制信号幅度,观测并记录a m =100%(100%调制)和a m >100%(过调制)两种 AM 波的

输出波形。增大示波器X 轴扫描速率,仔细观察包络零点附近时的波形(建议用2CH 触发,X 轴扫描用 100s μ档) 。

a m =100% a m >100% (5)载波信号不变,调制信号3

()100sin 210()v t t mV πΩ=?,调节1P R 观察输出AM 波形的变化情况,记录a m =30%(左右)和a m =100%的AM 波所对应的AB V 值。

a m =30%时,AB V =-0.078V . a m =100%时,AB V =-0.025V

(6)载波信号不变,调制信号改为峰峰值为100mV 的方波,观察记录AB V =0V 、0.1V 、0.15V 时的输出

波形。最后仍把AB V 调节到 0.1V 。

0V 0.1V

0.15V

3、DSB 波形观察

(1) 1IN 、2IN 调平衡(实验步骤1(1)、(2)),在此基础上可进行 DSB 波测量。 (2) 1IN 端加载波信号,2IN 端加调制信号,观察并记录波形,标明电压峰-峰值。

(3)加大示波器X 轴扫描速率,观察并记录DSB 波在零点附近波形,能否观察到反相点?比较它与

ma=100%的 AM 波的区别。

用示波器比较调制器的输入载波波形与输出DSB 波形的相位,可发现:在调制信号正半周间两者同相;在调制信号负半周间,两者反相(建议用2CH 触发,X 轴扫描用10s 档)。 (4)所加载波信号和调制信号均不变,微调2P R ,观察并记录输出波形的变化。

(5)在(4)的条件下,去掉载波信号,观察并记录输出波形,并与调制信号比较。

七.实验总结

通过本次实验,我熟悉了集成模拟乘法器MC1496实现AM和DSB调制的电路结构,掌握用示波器测量调幅指数的方法。通过实验中波形的变换,学会了分析。并了解了已调波

与调制信号,载波之间的关系。清晰的理解了调制的原理过程。

振幅调制器的设计MC

通信电子课程设计实验报告 课程名称振幅调制器的设计 专业通信工程 班级 学号 姓名 指导教师 2015年7月12日

目录 一、项目概述 1.1引言-------------------------------------------------------3 1.1 项目简介---------------------------------------------------3 1.2 任务及要求-------------------------------------------------4 二、项目实施过程 2.1 MC1496部结构及原理---------------------------------------4 2.2原理设计容------------------------------------------------6 2.2.1普通调幅电路设计---------------------------------------6 2.2.2抑制载波的双边带调幅 ----------------------------------7 2.2.3普通调幅与载波被抑制双边带调幅波的区别-----------------8 2.3元件参数设计-------------------------------------------------8 三、结果分析 3.1调幅电路工作过程--------------------------------------------10 3.2调幅电路实验结果--------------------------------------------12 3.2.1 AM普通调幅调制波形输出-------------------------------12 3.2.2 DSB载波被抑制双边带调幅波形输出----------------------13 3.2.3 信号源的输出------------------------------------------13 四、项目总结-------------------------------------------------------14 五、相关介绍-------------------------------------------------------15 六、参考文献-------------------------------------------------------16 七、附录-----------------------------------------------------------16

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

基于液晶空间光调制器相位调制的波面转换

?激光元件与器件? 基于液晶空间光调制器相位调制的波面转换 范君柳1,冯秀舟2,方建兴2,朱爱敏1 1.苏州科技学院数理学院物理实验中心,苏州 215009; 2.苏州大学物理科学与技术学院,苏州 215006 提要:本文介绍了一种基于液晶空间光调制器(LCS LM )相位调制特性的波面转换方法,可将入射光变换成任意波面。测量了液晶空间光 调制器相位调制特性,得到相位和灰度的对应关系;分别以几何理论和G-S 算法为基础计算出衍射光学元件(DOE )的表面相位分布;将DOE 表面的相位分布转换为灰度分布显示在LCS LM 上,使得LCS LM 具有波面实时转换功能;并以高斯激光为入射光对其进行波面转换实验,实验结果证明了设计方法的准确性及可行性。 关键词:液晶空间光调制器;相位调制;波面转换中图分类号:O439,O436.1,O438 文献标识码:A 文章编号:0253-2743(2009)06-0007-02 Conversion of w ave front based on phase modulation of liquid crystal spatial light modulator FAN Jun -liu 1,FE NG X iu -zhou 2,FANGJian -xing 2,ZHU Ai -m in 1 1.Center of Physics Laboratory ,School of M athematical and Physical Sciences ,University of Science and T echnology of Suzhou ,Suzhou 215009,China ; 2.School of Physical Science and T echnology ,S oochow University ,Suzhou 215006,China Abstract :A method of wave -front conversion based on phase m odulation of liquid crystal spatial light m odulator (LCS LM )is proposed.W e obtain the rela 2tion between phase and scale through measuring the phase -m odulation characteristics of LCS LM.Phase distribution of diffractive optical element ’s (DOE )are calculated using geometrical theory and G-S alg orithm ,the LCS LM is capable of wave -front conversion by changing phase distribution into gray distribution which is displayed on LCS LM.Experiments of G auss beam ’s wave -front conversion prove the accuracy and feasibility of the design method. K ey w ords :liquid crystal spatial light m odulator ;phase m odulation ;wave -front conversion 收稿日期:2009-08-13 基金项目:苏州科技学院教学质量工程建设项目(2008YK A -03)资助。 作者简介:范君柳(1983-),男,助理实验师,主要从事信息光学和衍射光学的研究。 在激光技术的许多应用领域中,光束质量至关重要。例 如在激光加工、光学信息处理、存储与记录以及惯性约束核聚变(ICF )中往往需要使用形状各异甚至大小可变的激光光斑,而经常使用的单模激光光束的横截面上光强呈高斯分布,因此在实际应用中,根据不同的要求,人们常常需要将激光束波面进行转换,以达到改变激光束强度分布的目的。 目前主要有这样几种典型的光束波面变换方法:光楔列 阵(SW A )聚焦光学系统〔1〕、双折射透镜组〔2〕 、随机相位板及 二元光学元件(BOE )〔3〕 等方法。其中二元光学元件对入射光进行波面变换具有衍射效率高,光斑轮廓可调等优点,但是其质量水平受微精细加工技术发展水平的制约,且它的激光损伤阈值较低,在强激光系统的应用上还有困难。在本文中我们提出利用液晶空间光调制器(LCS LM )的相位调制特性〔4-8〕结合几何理论〔9,10〕和G-S 算法〔11,12〕实现对入射激光的波面变换,得到了预期的实验结果,该方法不仅成本、功耗低,尺寸小,重量轻,而且具有更大的设计自由度,通过算法的改变可以将入射光变换成任意波面。 1 理论分析 1.1 波面转换理论 波面转换通常需要衍射光学器件(Diffraction Optical E le 2ment -DOE )来实现,为了达到目标光强分布,需要设计器件表面的相位分布。而该设计过程是一个逆向过程,即已知输入光强分布和输出光强分布,来求解DOE 的相位分布,在这里我们主要利用几何理论和G-S (G erchberg -Saxton )算法来计算DOE 表面的相位分布。 我们首先运用这两种算法分别计算出DOE 的表面相位分布,然后在计算机上模拟入射高斯光经过具有如此表面相位分布的DOE 后的衍射结果(见图1)。其中图1(b )为运用几何理论将入射高斯光的波面转换成正方框形光束,图1(c )为运用G-S 算法将入射高斯光转换成椭圆光。模拟过程中,主要参数选取为:波长λ=532nm ,DOE 所在处光腰半径ω(z )=3.0mm ,DOE 衍射焦距选取为f =250mm ,物面与像面抽样点数均为800×800。1.2 LCS LM 的相位调制特性 对于由扭曲向列型液晶构成的液晶空间光调制器(Liq 2uid Crystal S patial Light M odulator -LCS LM )(结构如图2),运用 琼斯矩阵方法〔13〕 可得 T =cos γ〔cos (Ψ1-Ψ2+α)〕+αγ sin γ×sin (Ψ1-Ψ2+α)2 + β γsin γcos (Ψ1+Ψ2- α)(1)图1 计算模拟结果 图2 液晶空间光调制器结构图 7 范君柳等:基于液晶空间光调制器相位调制的波面转换 《激光杂志》2009年第30卷第6期 LASER JOURNA L (V ol.30.N o.6.2009)

_振幅调制器_实验报告

深圳大学实验报告 课程名称:高频电路 实验项目名称:振幅调制器 学院:信息工程 专业:通信工程 指导教师:罗雪晖 报告人:王志鹏学号:2012130200 班级:通信2班实验时间:2014.6.7 实验报告提交时间:2014.6.19 教务处制

一、实验目的 1.掌握在示波器上测量调幅系数的方法。 2.通过实验中波形的变换,学会分析实验现象。 3.掌握用MC1496 来实现AM 和DSB-SC的方法,并研究已调波与调制信号、载波之间的关系。 二、实验设备与仪器 万用表 双踪示波器 AS1637函数信号发生器 低频函数信号发生器(用作调制信号源) 实验板3(幅度调制电路单元) 三、实验基本原理 1. MC1496 简介 MC1496是一种四象限模拟相乘器,其内部电路以及用作振幅调制器时的外部连接如图5-1所示。 由图可见,电路中采用了以反极性方式连接的两组差分对(T1~T4),且这两组差分对的恒流源管(T5、T6)又组成了一个差分对,因而亦称为双差分对模拟相乘器。其典型用法是: ⑻、⑽脚间接一路输入(称为上输入v1), ⑴、⑷脚间接另一路输入(称为下输入v2),⑹、⑿脚分别经由集电极电阻Rc接到正电源+12V上,并从⑹、⑿脚间取输出vo。⑵、⑶脚间接负反馈电阻Rt。⑸脚到地之间接电阻RB,它决定了恒流源电流I7、I8的数值,典型值为 6.8kO。⒁脚接负电源-8V。⑺、⑼、⑾、⒀脚悬空不用。由于两路输入v1、v2的极性皆可取正或负,因而称之为四象限模拟相乘器。可以证明: 因而,仅当上输入满足v1≤VT (26mV)时,方有: 才是真正的模拟相乘器。本实验即为此例。 图5-1 MC1496内部电路及外部连接

深圳大学-高频电路_振幅调制器_实验报告

深圳大学实验报告课程名称:通信电子线路 实验项目名称:振幅调制器 学院:信息工程 专业:通信工程 指导教师:张金凤 报告人:高源学号:2011130315 班级: 3 实验时间:2013.5.29 实验报告提交时间:2013.6.12 教务部制

实验板3(幅度调制电路单元) 三、实验基本原理 1. MC1496 简介 MC1496是一种四象限模拟相乘器,其内部电路以及用作振幅调制器时的外部连接如图5-1所示。 由图可见,电路中采用了以反极性方式连接的两组差分对(T1~T4),且这两组差分对的恒流源管(T5、T6)又组成了一个差分对,因而亦称为双差分对模拟相乘器。其典型用法是: ⑻、⑽脚间接一路输入(称为上输入v1), ⑴、⑷脚间接另一路输入(称为下输入v2),⑹、⑿脚分别经由集电极电阻Rc接到正电源+12V上,并从⑹、⑿脚间取输出vo。⑵、⑶脚间接负反馈电阻Rt。⑸脚到地之间接电阻RB,它决定了恒流源电流I7、I8的数值,典型值为6.8kO。⒁脚接负电源-8V。⑺、⑼、⑾、⒀脚悬空不用。由于两路输入v1、v2的极性皆可取正或负,因而称之为四象限模拟相乘器。可以证明: 因而,仅当上输入满足v1≤VT (26mV)时,方有: 才是真正的模拟相乘器。本实验即为此例。 图5-1 MC1496内部电路及外部连接

2.1496组成的调幅器 用MC1496模拟乘法器组成的振幅调幅器实验电路如图4-2 所示。 图中,与图5-1 相对应之处是:R8对应于Rt,R9对应于RB,R3、R10对应于RC。此外,W1用来调节⑴、⑷端之间的平衡,W2用来调节⑻、⑽端之间的平衡。此外,本实验亦利用W1在⑴、⑷端之间产生附加的直流电压,因而当IN2 端加入调制信号时即可产生AM 波。晶体管BG1为射极跟随器,以提高调制器的带负载能力。 图4-2 1496组成的调幅器实验电路

纯相位空间光调制器动态控制光束偏转

文章编号:025827025(2006)0720899204 纯相位空间光调制器动态控制光束偏转 刘伯晗,张 健 (哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150001) 摘要 提出并设计了一个采用液晶空间光调制器(L CSL M )作为光束动态偏转器件的无机械光束扫描系统,实现了光束的方向和强度的可编程控制,解决了远场任意图形的激光光束动态逼近问题。逼近方法采用纯相位调制技术和傅里叶迭代优化算法结合的衍射图形相位优化设计方法。介绍了点阵图形发生原理并给出实验装置图。实验结果显示,用该方法产生的二维阵列式光束,其光斑强度偏差度小于8%,图形发生响应时间小于100ms ,该实验结果能够满足多光束准确动态偏转的要求。该系统具有精确、响应快、无机械惰性等特点,在激光寻的、制导以及多目标威胁预警和反击中有着重要的研究价值。 关键词 激光应用;空间光调制器;光束偏转;优化算法;相位调制中图分类号 TN 249 文献标识码 A Dynamical Laser Beams Steering with Phase 2Only Spatial Light Modulator L IU Bo 2han ,ZHAN G Jian (I nstitute of Ult ra 2Precision O ptoelect ronic I nst rument Engineering ,H arbin I nstitute of Technology ,H arbin ,Heilong j iang 150001,China ) Abstract A non 2mechanical beam steering system is proposed and designed to resolve the problem of approaching the far 2field diff ractive pattern with laser beams.A beam steering method based on the phase only modulation with a liquid crystal spatial light modulator (L CSL M )is studied and described to control the light beams programmably.The Fourier iterative optimal algorithm is adopted to design the optimal phases approaching the expected far 2field diffractive pattern.The schematic diagram and the experimental set 2up are given.Results show that the method can generate 22D spots arrays with the intensity error rate less than 8%.The response time of generating the dynamical diffractive pattern is less than 100ms.With the merits of lightness ,precision and quick response ,this scanning system is of value in the fields of multi 2object tracing ,laser guiding and multi 2object defense.K ey w ords laser application ;spatial light modulator ;beam steering ;optimal algorithm ;phase modulation 收稿日期:2005210231;收到修改稿日期:2006202224 作者简介:刘伯晗(1977—),男,吉林人,哈尔滨工业大学博士研究生,主要从事光电测试、空间光信息处理方面的研究。E 2mail :hit_bohanliu @https://www.doczj.com/doc/25744138.html, 导师简介:张 健(1944— ),男,江苏无锡人,哈尔滨工业大学教授,博士生导师,主要从事光电精密测量及信息处理方面的研究。E 2mail :zjlab @https://www.doczj.com/doc/25744138.html, 1 引 言 目前,传统的激光雷达因采用万向节等具有机械惯性的扫描装置而使其性能受到限制,迫切需要一种精确、快速响应的无机械惯性的扫描元件来代替[1]。基于光学相位阵列技术的液晶空间光调制器,作为具有克服以上诸多缺点潜力的新型可编程衍射光学元器件正在得到广泛应用[1,2]。由于纯相位液晶空间光调制器可以实现相位的连续调制,这一点使其非常适用于空间光束偏转,因而其在激光 相控阵雷达和自由空间光互连等领域有广阔的应用前景[3,4]。据现有资料,国内对液晶空间光调制器 的研究尚处于起步阶段[5~8]。本文设计了一个能够发射任意衍射点阵图形的系统装置。设计中的一个核心部件是液晶空间光调制器(L CSL M ),是美国BNS (Boulder Nonlinear Systems )公司的专利产品,是近年发展起来的微电子机械(M EMS )领域的最新研究成果[9]。该系统采用液晶空间光调制器,通过对一组激光束的相位进行控制和波束合成,成   第33卷 第7期2006年7月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.7 J uly ,2006

课程设计振幅调制解调器的设计

AM振幅调制解调器的设计与仿真 目录 1.课程设计的目的 (2)

2.课程设计的内容 (2) 3.课程设计的原理 (2) 4.课程设计的步骤或计算 (4) 5.课程设计的结果与结论 (8) 6.参考文献 (9) 一.课程设计的目的 目的:通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。

二. 课程设计的内容 1、 AM振幅调制解调器的设计 (1)AM振幅调制解调器的设计 设计要求:用模拟乘法器MC1496设计一振幅调制器,使其能实现AM信号调制主要指标:载波频率:15MHz 正弦波调制信号:1KHz 正弦波 输出信号幅度:大于等于5V(峰峰值)无明显失真 (2)AM信号同步检波器 设计要求:用模拟乘法器MC1496设计一AM信号同步检波器 主要指标:输入AM信号:载波频率15MHz 正弦波,调制信号:1KHz 正弦波,幅度大于1V,调制度为60%。输出信号:无明显失真,幅度大于5V。 三. 课程设计原理

1. MC1496模拟乘法器 MC1496是双平衡四象限模拟乘法器。其内部电路和引脚如下图(a)(b)所示。其中VT1,VT2与VT3,VT4组成双差分放大器,VT5,VT6组成的单差分放大器用以激励VT1~VT4。VT7、VT8及其偏置电路组成差分放大器、的恒流源。引脚8与10接输入电压UX,1与4接另一输入电压Uy,输出电压U0从引脚6与12输出。引脚2与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。引脚14为负电源端(双电源供电时)或接地端(单电源供电使),引脚5外接电阻R5。用来调节偏置电流I5及镜像电流I0的值。 MC1496的内部电路图及引脚电路 2. 振幅调制 振幅调制是使载波信号的峰值正比于调制信号的瞬时值的变换过程。通常载

振幅调制电路实验报告

西南科技大学 课程设计报告 课程名称:高频电路课程设计 设计名称:振幅调制电路 姓名:李光伟 学号: 20105315 班级:电子1001 指导教师:魏冬梅 起止日期:2012.12.24-2013.1.6 西南科技大学信息工程学院制

课程设计任务书 学生班级:电子1001 学生姓名:李光伟学号:20105315 设计名称:振幅调制电路 起止日期:2012.12.24-2013.1.6指导教师:魏冬梅 设计要求:波信号为1MHz,低频调制信号为1kHz,两个信号均为正弦波信号。这两个输入信号可以采用实验室的信号源产生,也可以自行设计产生,采用乘法器1496设计调幅电路。 产生DSB信号,输出信号幅度>200mV。

课程设计学生日志时间设计内容

课程设计考勤表 周星期一星期二星期三星期四星期五 课程设计评语表指导教师评语: 成绩:指导教师: 年月日

振幅调制电路 一、 设计目的和意义 目的:实现抑制载波的双边带调幅。产生DSB 信号,输出信号幅度>200mV 。 意义:实现抑制载波的双边带调幅。 二、 设计原理 由集成模拟乘法器MC1496构成的振幅调制电路,可以实现普通调幅、抑制载波的双边带调幅以及单边带调幅。本次实验采用MC1496模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件。主要功能是实现两个互不相关信号相乘.即输出信号与两输入信号相乘输出,总电路图如图1所示。 [1] 振幅调制就是使载波信号的振幅随调制信号的变化规律而变化的技术。通常载波信号为高频信号,调制信号为低频信号。设载波信号的表达式为: ()t U u c cm c ωcos =, 调制信号的表达式为t V t u cm Ω=Ωcos )(则调制信号的表达式 为:t t m V u c cm ωcos )cos 1(0Ω+= =t mV t t mV t V c cm c cm c cm )cos(2 1)cos(21cos Ω-+Ω++ωωω错误!未找到 引用源。

推荐-基极振幅调制器的设计与实现 精品

高频电子线路课程设计 题目基极振幅调制器的设计与实现 系 (部) 班级 姓名 学号 指导教师 20XX 年 7 月 8 日至 7 月 12 日共 1 周

高频电子线路课程设计任务书

课程设计成绩评定表

目录

前言 目前,随着电子信息技术的快速发展,为了将低频信号有效地辐射出去为了使发射与接收效率碌在发射机与接收机方面部必须采用天线和谐振回路。但语言、音乐图像信号等的频率变化范围如果直接发射音频信号财发射机将工作于同一频率范围。这样接收机将同时收到许多不同电台的节目无法加以选择。克服以上的困难必须利用高频振荡将低频信号“附加”在高频振荡人这样就使天线的辐射效率提高尺寸缩小同时每个电台都工作于不同的载波颠串接收机可以调谐选择不同脉电台这就解除了上述的种种困难。 调幅是使高频载波信号的振幅随调制信号的瞬时变化而变化。也就是说,通过用调制信号来改变高频信号的幅度大小,使得调制信号的信息包含于高频信号之中,通过天线把高频信号发射出去,然后就把调制信号也传播出去了。这时候在接收端可以把调制信号解调出来,也就是把高频信号的幅度解读出来就可以得到调制信号了 调幅波的形成早期VHF 频段的移动通信电台大都采用调幅方式,由于信道衰落会使模拟调幅产生附加调幅而造成失真,目前已很少采用。调频调制在抗干扰和抗衰落性能方面优于调幅调制,对移动信道有较好的适应性。高频信号的幅度随着调制信号作相应的变化,这就是调幅波。由于高频信号的幅度很容易被周围的环境所影响。所以调幅信号的传输并不十分可靠。在传输的过程中也很容易被窃听,不安全。所以现在这种技术已经比较少被采用,但在简单设备的通信中还有采用。比如收音机中的AM波段就是调幅波,大家可以和FM波段的调频波相比较,可以看到它的音质和FM波段的调频波相比会比较差,原因就是它更容易被干扰。 所谓基极调幅,就是用调制信号电压来改变高频功率放大器的基极偏压,以实现条幅。其基本原理是,低频调制信号电压与直流偏压相串联。放大器的有效偏压等于这两个电压之和,它随着调制信号波形而变化。使三极管工作在欠压状态下,集电极电流的基波分量随着基极电压成正比变化。因此,集电极的回路输出高频电压振幅将随着调制信号的波形而变化,于是得到调幅波输出。

斜入射液晶空间光调制器的特性

第33卷 第5期2006年5月 中 国 激 光 CHIN ESE JOU RNA L OF LASE RS Vo l.33,N o.5 M ay ,2006   文章编号: 0258-7025(2006)05-0587-04斜入射液晶空间光调制器的特性 叶必卿1,陈 军1 ,福智 央2,伊ヶ崎泰则2,井上卓2,原 勉 2 (1 浙江大学现代光学仪器国家重点实验室,浙江杭州310027;2 浜松光子株式会社,日本) 摘要 用读出光斜入射到液晶空间光调制器(LC -SL M )的读出面,是一种有效的提高空间光调制器(S LM )读出效率的方法。测量了读出光以不同角度入射到液晶空间光调制器的读出面上时,相位调制深度与写入光强的关系、衍射效率与二值光栅对比度的关系。得到随着入射角度的增加,最大相位调制深度减小,而衍射效率变化并不明显。在45°时有最大相位调制深度2.0936π和35.4%的正一级衍射效率。关键词 信息光学;液晶空间光调制器;斜入射中图分类号 T H 744 文献标识码 A Oblique -Incidence Characteristic of Parallel -Aligned Nematic -Liquid -Crystal Spatial Light Modulator YE Bi -qing 1,CHEN Jun 1,Norihiro Fukuchi 2, Yasuno ri Igasaki 2,Takashi Inoue 2,Tsutomu Hara 2 1 State K ey L aboratory o f Modem Optical Instrumentation , Z hejiang University ,Hangzhou ,Z hej iang 310027,China 2 Hamamatsu Photonics K .K.,J apan A bstract I t is a valid way to impr ove the read -out lig ht efficiency of spatial ligh t modulator that the incident read -out light o bliquely enters the read -out plane o f the liquid cry stal spatial light modulato r.With differ ent incident ang les ,the r elatio ns o f the phase modulatio n depth and the w rite -in light intensity and of the diff ractio n efficiency and the co ntrast of the bina ry g ra ting are mea sured.I t is found that ,with increasing incident angle ,the max imum depth of the phase modulatio n decreases ,but obvio us change o f the diffraction efficiency does no t occur.With 45°incident angle ,the maximum de pth of the phase modulatio n reaches 2.0936π,and the po sitive first order diffrac tion efficiency is 35.4%. Key words info rmatio n o ptics ;liquid crystal spatial ligh t mo dula tor ;oblique incidence 收稿日期:2005-05-26;收到修改稿日期:2005-11-13 作者简介:叶必卿(1978—),女,浙江杭州人,浙江大学博士研究生,主要从事激光与非线性光学的研究。E -mail :canoo @https://www.doczj.com/doc/25744138.html, 1 引 言 空间光调制器(S LM )在二维空间内可以对光信息包括振幅、相位、偏振态三方面进行调制。液晶空间光调制器就是利用液晶的电光效应来达到对光波的调制,它已经在相关光学、自适应光学、光互连、光束变换、光运算、光存储和神经网络[1~3] 中得到广 泛的应用,并有希望在未来的光计算机中作为接口 器件[4] 。因此它的光调制特性越来越为人们所关 注。 当空间光调制器工作在正入射情况时,必须利 用分光镜使得入射光和反射光分离,以使得到的反射光光强被极大衰减,在一定程度上限制了它的应用。为了得到更强的反射光强,采用读出光斜入射 模式是一种有效的方法。虽然对于正入射工作模式的特性研究已经有大量报道[5,6],但空间光调制器的斜入射调制特性研究尚少报道。本文测量了光寻址液晶空间光调制器的斜入射光学调制特性,在45°入射时得到最大2.0936π的相位调制深度和35.4%的正一级衍射效率。

11空间光调制器

4. 声光扫描 声光扫描器的结构与布拉格声光调制器基本相同,所不同之处在于调制器是改变衍射光的强度,而扫描器则是利用改变声波频率来改变衍射光的方向。 ⑴声光扫描原理 从前面的声光布拉格衍射理论分析可知,光束以θi 角入射产生衍射极值应满足布喇格条件:s B n λλθ2sin =,B d i θθθ==。布喇格角一般很小,可写为 s s s B f v n 22λλλθ=≈ (3.6-5) 故衍射光与入射光间的夹角(偏转角)等于布拉格角θB 的2倍,即 s s B d i f nv λ θθθθ==+=2 (3.6-6) 可以看出:改变超声波的频率f s ,就可以改变其偏转角θ,从而达到控制光束传播方向的目的。超声频率改变?f s 引起光束偏转角的变化为 s s f nv ?=?λ θ (3.6-7) 这可用图1及声光波矢关系予以说明。 ⑵声光扫描器的主要性能参量 声光扫描器的主要性能参量有三个: 可分辨点数,它决定描器的容量。 偏转时间τ,其倒数决定扫描器的速度。 衍射效率ηs ,它决定偏转器的效率。 衍射效率前面已经讨论过。下面主要讨论可分辨点数、扫描速度和工作带宽的衍射光 声频为f s 的衍射光 k s s 图1 声光描器原理图

问题。 可分辨点数N 定义为偏转角?θ和入射光束本身发散角?φ之比,即 )(w R N λφ?φ?θ ?== (3.6-8) 式中w 为入射光束的宽度;R 为常数,其值决定于所用光束的性质(均匀光束或高斯光束)和可分辨判据(瑞利判据或可分辨判据)。 上式可以写成 s f R N ?=11τ (3.6-10) τ 1N 称为声光扫描器的容量-速度积,它表征单位时间内光束可以指向的可分辨位置的数目。 声光扫描器带宽受两种因素的限制,即受换能器带宽和布喇格带宽的限制。因为声频改变时,相应的布喇格角也要改变,其变化量为 s s B f nv ?=?2λ θ (3.6-11) 因此要求声束和光束具有匹配的发散角。声光扫描器一般采用准直的平行光束,其发散角很小,所以要求声波的发散角B δθδφ≥。 L n f f s s s λλ2 2≤? (3.6-12) 有效波面 图2 列阵换能器 (a) (b)

振幅调制电路实验报告

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 乘法器振幅调制电路 一、实验目的 了解并研究各个模拟乘法器调幅电路特性和波形变化的特点以及频谱分析。 二、实验原理 调制、解调和混频电路是通信设备中重要的组成成分。用代传输的低频信号控制高频载波参数的电路,称为调制电路。振幅调制有基本的普通调幅(AM)和在此基础上演变出来的抑制载波的双边带调幅(DSB)、单边带调幅(SSB)。 三、实验步骤 (1)普通调幅(AM) V2为载波信号 V1为调制信号

傅里叶频谱分析:

由以上数据可以得知: ①仿真检测的调制信号频率与输出调幅波的包络信号频率基本相同;载波信号的振幅按照调制信号的变化规律变化而形成的调幅波,携带着调制信号的信息,调幅波的包络线与相应的调制信号相同; ②调制过程实际上是一种频率搬移的过程,即经过调幅后,调制信号的频谱被对称地搬移到载频的两侧。同时,在调幅波中,载频不含任何有用信息,需传输的信息只包含与边频分量中,边频的振幅反映了调制信号幅度的大小,边频的频率反映调制信号频率的高低。 (2)双边带调幅(DSB)

傅里叶频谱分析: 可知:①为了节省发射功率,可采用抑制载波信号的双边带调幅电路; ②双边带调幅波波形仍随调制信号变化,但其包络线已不再反映原调制信号的形状,当调制信号进入负半周时,载波信号产生180度相位突变; ③双边带调幅波同样是实现频谱搬移,但频谱图上没有出现载波分量,只有两个边带分量。 (3)单边带调幅(SSB)

傅里叶频谱分析: 由以上数据可以知:①单边带调制方式将已调波的频谱宽度基本压缩了一

BNS空间光调制器介绍

面阵相位系列空间光调制器 系列空间光调制器 XY面阵相位 系列空间光调制器 HaoLiang Tech Co.,Ltd

Spatial Light Modulators XY Phase Series Specifications Standard Model P512 – λ (nm) Array Size 7.68 x 7.68 mm Design Wavelength (nominal) 532, 635, 785, 1064, or 1550 nm Specify wavelength, λ in nm when ordering. Other wavelengths available upon special request. Diffraction Efficiency (zero-order) 61.5% (maximum) Duty Cycle Up to 100% External Window1Broadband antireflection coated for Ravg < 1% (over 450 – 865 nm or 850 – 1650 nm). Fill Factor 83.4% Format 512 x 512 (262,144 active pixels) Mode Reflective Modulation Controllable index of refraction Phase Levels (resolvable) 50 linear levels (minimum) for 2π phase stroke Phase Stroke (double-pass) Typically 2π at user-specified laser line Pixel Pitch 15 x 15 μm Reflected Wavefront Distortion (rms)2λ/3 - λ/8 Response Time333 - 100 ms Spatial Resolution 33 lp/mm Switching Frequency310 – 30 Hz Options PhaseFlat Model PF512 – λ (nm) Reflected Wavefront Distortion (rms)2λ/12 – λ/20 High Speed NEW Model HSP512 – λ (nm) Switching Frequency350 – 150 Hz Response Time3 6.7 – 20 ms Dielectric Mirror NEW Model DMP512 – λ (nm) Fill Factor 100.0% Diffraction Efficiency 90 – 95% 1. Custom antireflection coating options are also available, including V-type for optimum optical efficiency at a single laser wavelength. 2. At nominal wavelength 3. Phase stroke, temperature, and wavelength dependent. HaoLiang Tech Co.,Ltd

振幅调制器与振幅解调器实验报告

二、实验电路图 1.1496组成的调幅器 图6-2 1496组成的调幅器实验电路 2、二极管包络检波电路 图 1 二极管包络检波器电路

3、MC1496 组成的解调器实验电路 图 2 MC1496 组成的解调器实验电路

2 .1496组成的调幅器 用1496组成的调幅器实验电路如图2所示。图中,与图1相对应之处是:R 8对应于R t ,R 9对应于R B ,R 3、R 10对应于R C 。此外,W 1用来调节⑴、⑷端之间的平衡,W 2用来调节⑻、⑽端之间的平衡。此外,本实验亦利用W 1在⑴、⑷端之间产生附加的直流电压,因而当IN2端加入调制信号时即可产生AM 波。晶体管BG 1为射极跟随器,以提高调制器的带负载能力。 3.包络检波 二极管包络检波器是包络检波器中最简单、最常用的一种电路。它适合于解调信号电平较大(俗称大信号,通常要求峰-峰值为0.5V 以上)的AM 波。它具有电路简单,检波线性好,易于实现等优点。本实验电路主要包括二极管BG 2和RC 低通滤波器,如图1所示。图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波。因此,选择合适的时间常数RC 就显得很重要。 4.同步检波 同步检波,又称相干检波。它利用与已调幅波的载波同步(同频、同相)的一个恢复载波(又称基准信号)与已调幅波相乘,再用低通滤波器滤除高频分量,从而解调得调制信号。本实验采用MC1496集成电路来组成解调器,如图2所示。图中,恢复载波v c 先加到输入端IN1上,再经过电容C 1加在⑻、⑽脚之间。已调幅波v amp 先加到输入端IN2上,再经过电容C 2加在⑴、⑷脚之间。相乘后的信号由⑿脚输出,再经过由C 4、C 5、R 6组成的 型低通滤波器滤除高频分量后,在解调输出端(OUT )提取出调制信号。 需要指出的是,在图2中对1496采用了单电源(+12V )供电,因而⒁脚需接地,且其他脚亦应偏置相应的正电位,恰如图中所示。 图 6-2 1496组成的调幅器实验电路

基于液晶空间光调制器的相息图扫描三维成像

第 37 卷第 3 期 2010 年 3 月
光电工程
Opto-Electronic Engineering
Vol.37, No.3 March, 2010
文章编号:1003-501X(2010)03-0138-06
基于液晶空间光调制器的相息图扫描三维成像
林培秋,王 辉,庞 辉
( 浙江师范大学 信息光学研究所,浙江 金华 321004 ) 摘要: 本文提出了一种利用纯相位型液晶空间光调制器 (LC-SLM)实现相息图三维显示的方法。 该方法以 LC-SLM 为显示器件,通过相息图的衍射进行三维像的重构。详细研究了相息图的计算及其与 LC-SLM 参数间的关系,并 对再现像像质进行了讨论。为提高显示的空间分辨率,采用分时复用技术,对三维物体进行分组取样,并计算每 一分组的相息图,形成分组相息图序列,再现时依次将相息图输入到 LC-SLM,利用人眼的视觉残留效应以达到 连续扫描三维成像的目的。实验结果表明,该方法实现了三维物体的再现,为三维显示提供了一种有效的方法。 关键词:三维显示;扫描成像;相息图;液晶空间光调制器 中图分类号:O438 文献标志码:A doi:10.3969/j.issn.1003-501X.2010.03.026
Scanning Three-dimensional Image with Kinoform Based on Liquid Crystal Spatial Light Modulation
LIN Pei-qiu,WANG Hui,PANG Hui
( Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, China ) Abstract: An effective method for three-dimensional (3D) imaging with kinoform based on reflective phase-only Liquid Crystal Spatial Light Modulator (LC-SLM) was proposed. 3D image actually was reconstructed by the diffraction of kinoform using LC-SLM as a display unit. The calculation of kinoform, the relationships between parameters of LC-SLM with the kinoform, and some influencing factors in the quality of the reconstructed image were discussed in detail. In order to enhance the displaying resolution, a displayed object was decomposed into several sampling groups, and the corresponding kinoforms were calculated. When the kinoforms were inputted into LC-SLM successively within residual time of human eyes, the diffraction light wave may reconstruct the image of the original object, and then an observer can see a 3D image in free space. Experimental results demonstrate the correctness of the proposed approach, which provides an effective way for 3D display in practical application. Key words: three-dimensional displaying; scanning imaging; kinoform; liquid crystal spatial light modulator
0


相息图[1]是计算全息图的一种类型,它仅编码了物光波的相位信息,具有很高的衍射效率,是光波重 构的理想元件。目前,相息图在微光学元件[2-4]、空间滤波器[5]以及保密存储[6]等方面得到了广泛的应用。 作为一种波前记录和再现技术,相息图应该在三维显示方面有所作为,但是,到目前为止,关于这方面的 工作报道很少。事实上,相息图难以用于三维显示的主要原因在于相息图的制作,尽管有很多方法制作相 息图[7-10],但过程都是很复杂的[11]。1988 年 N.Konforti 提出用扭曲向列相液晶(TNLC)器件实现纯相位调制 的设想[12],接着,有关液晶器件作为相位空间光调制器的研究引起了人们的关注[13-16],并在许多领域得到
收稿日期:2009-09-17;收到修改稿日期:2009-12-01 基金项目:国家自然科学基金资助项目(60877002),浙江省自然科学基金资助项目(Z1080030) 作者简介:林培秋(1985-),女(汉族),浙江温州人。硕士,主要从事三维显示方面的研究。E-mail: lpqwuli033@https://www.doczj.com/doc/25744138.html,。 通信作者:王辉(1958-),男(汉族),江苏宿迁人。博士,教授,主要从事全息立体显示,光电图像处理等方面的研究。E-mail: wh@https://www.doczj.com/doc/25744138.html,。

相关主题
文本预览
相关文档 最新文档