当前位置:文档之家› 基于Pspice的IGBT缓冲电路分析

基于Pspice的IGBT缓冲电路分析

基于Pspice的IGBT缓冲电路分析
基于Pspice的IGBT缓冲电路分析

基金项目:十五国家高科技发展计划(863)资助收稿日期:2002-10-26

第20卷 第7期

计 算 机 仿 真

2003年7月

文章编号:1006-9348(2003)07-0107-04

基于Pspice 的IGBT 缓冲电路分析

张承宁,王志福,孙逢春

(北京理工大学机械与车辆工程学院电动汽车研究中心,北京100081)

摘要:对IGBT 缓冲电路设计进行了分析。阐述了缓冲电路的功能与关键元件参数值的选择,建立了Pspice 仿真软件下的缓冲电路模型并对其进行仿真试验。所有的主要元件的参数仿真试验结果与实际试验结果非常一致。试验证明IGBT 模块在缓冲电路的保护下可以很好的工作,同时Pspice 仿真软件对于电路设计有着很好的指导作用,能够缩短开发周期。关键词:绝缘栅双极晶体管;缓冲电路;仿真软件中图分类号:TP319 文献标识码:B

1 引言

绝缘栅双极晶体管(IGBT)是在80年代发展起来的一种新型复合电力电子器件,它综合了功率场效应晶体管(MOS -FET)和大功率晶体管(GTR)的优点,近年来在高频开关电源的功率转换电路中得到了广泛的应用[1]。本设计使用三菱公司的H 系列400A 一单元的IGBT 实现脉宽调制(PWM )方式的充电器设计,并在设计过程中使用了Pspice 电路仿真软件对IGBT 缓冲电路进行了仿真试验,结果证明Pspice 对于电路参数的选择有着比较好的效果。

2 半桥式功率转换电路工作原理[2]

半桥式功率转换电路如图1所示,IGB T 元件Z1、Z2采用栅极驱动,以PWM 方式交替通断,从而将输入的直流电压变换成高频方波电压。在开关的暂态过程中,由于高频变压器副边整流二极管反向恢复时间内所造成的短路以及为了抑制集电极电压尖峰而设置的RC 吸收网络的作用,当高压开关开通时,将会有尖峰冲击电流;在关断瞬间,由于高频变压器漏感储能的作用,在源漏极之间就会产生电压尖峰。图2表示了元件Z1的D 、S 极之间的没有缓冲电路的情况下,即在图1所示的电路中得到的电压V DS 的波形。尖峰电源的大小随着集电极电路的配置,高频电感的漏感以及电路的关断条件的不同而不同,在特定的情况下,该尖峰电压有可能使IGB T 承受两倍以上的输入电压,这就对元件的耐压等级选择带来了比较大的困难。

3

缓冲电路类型的选择

缓冲电路用以控制IGB T

的尖峰电压,而由于缓冲电路的类型和所需元件值极大地取决于功率电路的布局结构,所以必须针对特定的电路设计专用的缓冲电路。

在进行IGB T 缓冲电路设计时,应该注意它与传统的双

图1 半桥式功率转换原理图

图2 IGBT 工作尖峰电压图像

极晶体管缓冲电路在两个方面有区别[3]:

1)H 系列的IGBT 具有强大的开关安全工作区,缓冲电路不需要保护抑制那种伴生达林顿晶体管的二次击穿超限,而只要控制瞬态电压即可;

2)IGB T 正常工作于比达林顿晶体管高得多的频率范围,在每次开关循环中缓冲电路都要通过IGB T 器件放电,这样损耗的功率就比较多。

图3所示的是三种IGB T 的缓冲电路。图3(a)只有一个低电感的电容组成,在小功率设计时,这种缓冲电路用作对瞬间电压有效而低成本的控制。随着功率级别的增大,该缓冲电路也许会同母线寄生电感作减幅振荡。图3(b)缓冲电

)

107)

路使用快速恢复二极管D1解决了这个问题,该二极管可以箝住瞬变电压,从而抑制谐振的产生。同时该缓冲电路的RC 时间常数,应该设为该开关周期的1/3(即S =T /3=1/3f)。但是对于大功率级别的IGBT 工作,这个缓冲电路的回路寄生电感将变得太大,以至于不能有效控制瞬变电压,这时宜采用图3(c)所示的缓冲电路,该电路由无感电容C 3、C 4,快恢二极管D 2、D 3以及电阻R2、R3构成缓冲电路则常被应用于这种大电流电路中。这种缓冲电路的功能类似于图3(b)的缓冲电路,只不过具有较小的回路电感,因为它直接联到每个IGB T 的集电极和发射极。在极大功率的IGBT 电路中,同时联合使用图3(a)和(c)效果更佳,能够减小缓冲电路

二极管的应力。

图3 三种通用的IGB T 缓冲电路

但是如何针对具体的功率电路来选择合适的电阻和电容却是非常重要而又比较困难的事情,两者参数直接将会影响整个缓冲电路的工作情况,选择不当,甚至会造成试验事故。虽然IGB T 厂商提供了标准的缓冲电路类型,但是其中的参数数值根据不同的功率电路也应该有相应的变化。

4 工作电路分析

本充电器的电路原理图的示意图如图4所示。该充电器的功率为4kW,充电电流最大为10A ,变压器变比为1:3,原边电感L 1为15m H,副边电感L 2=L 3为135m H

图4 充电器电路原理图

C1(2)在此的主要作用以C1来进行说明。C1作用在此有两个作用,其一是在Z1关闭的时间里起到隔断直流的作用,防止电流直接从D1形成大电流回路;其二是在Z1由开通到关断的瞬间,电源电压将会通过C1以及D1而形成回路,以防止产生过高的电压。由于此电能主要将在D1上消耗,因此会使D1温度升高。

R 1(2)的作用以R 1来进行说明。R 1在电路中的功能主要使吸收电路的多余电能)))即图中所示的第一个尖峰后的振荡部分能量,使之电路振荡能够快速的下降。可见R 1将会消耗大部分的能量,在缓冲电路中起动主要消耗的作用,因此在选择时应该注意R 1的功率选择,以防止产生电阻的热损坏。

C3(4)作用主要是为了保护二极管D1(2),防止二极管两端产生过大的突升电压而使之过压击穿。同时,如果C3(4)太大则将会使二极管失去通路和消耗能量的作用,C3(4)的值应该选择小些,在此选择C3(4)=1nf 。

5 R 、C 对吸收电路影响

在图3所示的吸收电路中,C1(2)与R1(2)是影响V DS 尖峰电压的主要作用元件,它们两者的值直接影响到V DS 的尖峰电压的大小。

5.1 电容C 1(2)与电阻R1(2)的确定

C1(2)具体值的是根据所选用的IGBT 单元类型进行选择,对于此电路所采用的IGB T 组,根据IGB T 使用手册[3],选择推荐的C=1L f 。R 的值则是由下式决定:

S =RC=T/3=1/3f

(2)

其中:f )IGB T 开关频率

所以R=1/3fC=16.78

图5是在C=1L F 和R =17.68时通过Pspice 仿真而得到的IGB T 的V D S 波形。

由图可见,在增加了缓冲电路之后,尖峰电压的最大值基本上与IGB T 正常工作电压的大小相等,表明在缓冲电路的保护下的IGB T 可以非常安全的进行工作。在仿真电路中可以知道R1(2)上的瞬间最大功率是4W,平均功率为2W,所以在电路中应该选择功率电阻10W,而二极管中最大电流为150mA,保证在其工作范围内,IGB T 消耗功率为2.49@10-3W

图5 C=1L f,R=17.68时V D S 曲线

5.2 电容C1(2)与电阻R1(2)变化对电路的影响

在研制过程中,当增大C1(2)的值或者减小R1(2)的值时,VDS 的冲击电压更加趋于平缓,并且振荡过程也迅速缩短,但是二极管D1(2)和R1(2)的却会损坏,其主要原因是因为两者吸收了比较多的振荡能量而导致温度过高。通过Pspice 仿真软件的仿真能够很好的证实这一点。为了保证二

)

108)

极管和电阻的功率在正常的工作范围内,必须适当降低C1(2)或者增大R1(2)的值,但是这又会使V DS 波形变得恶劣,所以RC 的值的确定是比较重要和困难的。下面图6、图7、图8和图9是利用Pspice

仿真软件进行仿真得到的结果。

图6 R=17608,C=0.01L 时,V D S

图线

图7 R=1.76@1048,C=0.01L 时,V D S

图线

图8 R=1.76@1048,C=1n 时,V DS

图线

图9 R=1.76@1058,C=1n 时,V DS 的曲线

图6是在R1(2)=17608和C1(2)=0.01L f 时得到的仿真图形,即电阻放大100倍,而电容缩小100倍。由图可以看

出此时V DS 已经出现了比较明显的冲击电压和振荡过程,此时二极管的电流为50mA,电阻的功率为400mW;图7为R1(2)=176008时C1(2)等于0.01L F 时得到的仿真图线。与图6中的对应曲线相比较,此时V DS 的冲击电压并没有显著的变化,只是稍微有点变高(比R=17608时多4V)。但是通过二极管的电流却减小到20mA,电阻消耗功率降低到300mW 。

图8是在R=1.76@1048和C=1nF 时的V DS 图线,图9是在R1(2)=1.76@1058和C1(2)=1n F 情况下得到的仿真图线,后者V D S 比前者升高了3V,已经达到了319V ,并且相应的振荡过程也增加,此时通过二极管的电流几乎趋于零,而电阻的功耗也非常小,也就是说缓冲电路几乎不起作用,而

IGB T 的工作环境相当恶劣,这些在实际应用中得到了很好的验证。同时由四个图线可以知道当电阻和电容变化相同的数量级时,电容对VDS 的影响要比电阻的影响大。所以在电路设计中要注意电容的选择。表1为在不同的电阻值和电容值下,通过仿真得到的缓冲电路中变化。

6 试验结果

首先,在IGB T 安全工作的前提下,对缓冲电路的类型进行楼选择,在选用图3b)的缓冲电路时,无论怎么调整电阻和电容的参数值,二极管的发热量都非常大,甚至发生了二极管热损坏的事故,所以,电路选用了图3C)的电路类型。

同时IGB T 的输出电压也不能满足变压器原级输入的要求。IGB T 最大电压通过示波器测量为293V,这是在它的安全工作范围中的。二极管最大温升是5e ,电阻温升为10e ,也是允许的。

表1 RC 变化时V DS 、二极管电流和电阻功耗

参数R=58

R=1.76@1068C=0.1n C=1n C=0.1u C=10u C=0.1n C=1n C=0.1u C=10u V DS

279271.8271.5271.0353323310300二极管平均功耗30mW 50mW 100mW 1W 48mW 26mW 00电阻平均功耗

20W

1W

100mW

1mW

20mW

5mW

100uW

)

109)

表2数据也是在这种情况下根据不同的参数值测定的。

表2不同参数下的V

DS

,二极管和电阻功率

及温升(环境温度是27e)

参数值

R=58R=1@1048

C=1n C=10u C=1n C=0.1u C=10u VDS258262316331357二极管平均功率67mW0.6W26mW00二极管温升10e60e5e00

电阻平均功率 1.4W5mW 4.5mW00电阻温升22e9.6e 4.2e00

试验表明仿真的结果与实际试验是相符合的。

7结论

通过以上分析可知

1)Pspice软件对于电路有着很好的仿真功能,能够很好的实现参数扫描工作,从而可以分析具体电路的各种工作情况,从而减少实际试验强度,避免资源浪费。

2)对于IGBT吸收电路中元件的选择不仅要考虑其数值应该满足尖峰电压的具体要求,同时要注意其自身在电路中的功率消耗对它们的影响。

3)在吸收电路中,C1(2)对V D S的影响比R1(2)对V DS的影响要大,所以应该更加注意选择C1(2),尤其对于C1(2)的电感应该仔细考虑。

4)C1(2)的数值将会影响二极管的功率消耗,所以在选择C1(2)时应该考虑二极管功率问题。

5)在安装缓冲电路时,应该注意二极管和电阻的散热环境的处理,尽可能让它们产生的热量散发出去。

参考文献:

[1]张立.现代电力电子技术基础[M].高等教育出版社,1999.

[2]张延鹏,吴铁军,徐明,张生舟.通信用高频开关电源[M].人

民邮电出版社,1997.

[3]三菱电机第三代IGBT和智能功率模块应用手册[M].三菱电

机,1996.

作者简介

张承宁(1963-),男(汉族),安徽人,工学博士,北

京理工大学教授;北京理工大学电动汽车技术开发

中心主任,主要研究方向:主要从事电动汽车动力驱

动系统、能量管理系统、动力电池组充电系统和军车

电传动等方面的研究工作。

王志福(1977-),男(汉族),山东青岛人,硕士生,主要研究电动汽车充电器和能源管理系统。

孙逢春(1958-),男(汉族),湖南人,工学博士,北京理工大学教授、博士生导师,北京理工大学副校长,主要研究方向:电动汽车;车辆工程;车辆电传动。

An S tudy of the Buffer Circuit for the IGBT Based on Pspice

ZHANG Cheng-ning,W ANG Zhi-fu,SUN Feng-chun

(College of Vehicle and Transportation Engineeri ng,Beijing Insti tute of Technology,Beijing100081,China)

ABSTRACT:The design of the buffer circuit of the IGBT is studied.The function of the buffer circuit and choice of the main parts are all in-troduced.A schematic drawing of the circuit is built in the Pspice format and simulated.All the main parts of the circui t are simulated and the result of the simulation is coincident with the factor.This paper shows that the IGB T could work well with the buffer circuit and the simulation wi th the software of Pspice is significative for the design of the circuit.

KEY WORDS:IGB T;Buffer circuit;Simulati on software

(上接第106页)

Study on Simu lation of Extended-circular Flights of Rotary Dryers

HUANG Zhi-gang

(College of Mechanical Engineeri ng and Automation,Beijing Technology and Busi ness University,Beijing100037,China) ABSTRACT:In the paper,extended-circular flights characteristics of rotary dryers is researched.On the basis of the mathematical model,a set of equations has been derived to calculate the solids holdup on extend-circular flights in such dryers.Rati o of the solids holdup to max-i mum solids holdup is explored.A kind of practical rotary dryer is si mulated by VB program language.The result of the simulation is obtained in four kind of different conditions.Si mulated results is satisfactory.The program ming is a useful reference for research of the similar p roblem. KEY WORDS:Rotary d ryer;Model;Cascade characteristics;Lifting flights;Si mulation

)

110

)

基于pspice的电路仿真实验设计

目录 第一章pspice简介 (4) 1.1 PSPICE的起源与发展 (4) 1.2 PSPICE仿真软件的优越性 (6) 1.3 PSPICE的组成 (7) 第二章pspice中的电路元器件介绍 (9) 2.1. 电阻、电容和电感 (11) 2.2 有源器件 (11) 2.3 信号源及电源 (11) 第三章pspice的仿真 (12) 3.1 pspice的仿真功能 (12) 3.2 pspice软件的仿真步骤 (15) 3.3 pspice仿真使用中应主义的问题 (15) 第四章实验设计 (16) 4.1 实验一:二极管整流电路仿真 (16) 4.2 实验二:555定时器组成的单稳态触发器 (18) 第五章结束语及感想 (21) 参考文献 (22)

摘要: 在众多的仿真软件中,PSpice软件以其强大的仿真设计应用功能,在电子电路的仿真和设计中得到了较广泛的使用。PSpice及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。本论文首先简要介绍了PSpice软件的基本功能和特点以及软件的基本操作方法,然后从电路分析的具体实验给出了的PSpice具体操作步骤,接着进行了电子电路应用系统的设计与仿真,并通过精确的仿真结果进一步体现了仿真PSpice软件的优越性,同时也反映了仿真实验在当今电路设计中的重要意义。 第一章 Pspice简介 1.1 Pspice简介 Pspice是由Spice发展而来的用于微机系列的通用电路分析软件。 Spice(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校开发的电路仿真程序。随后,版本不断更新,功能不断完善。目前广泛使用的Pspice(P:Popular)软件是美国Microsim公司于1996年开发的基于Windows环境的仿真程序。它主要用于电子电路的仿真,以图形方式输入,自动进行电路检查,生成网表,模拟和计算电路的功能,不仅可以对模拟电子线路进行不同输入状态的时间响应、频率响应、噪声和其他性能的分析优化,以使设计电路达到最优的性能指标,还可以分析数字电子线路和模数混合电路,被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。 1.2 PSPICE的起源与发展 用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTR AN语言开发而成,主要用于大规模集成电路的计算机辅助设计。SPICE的正式版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。1985年,加州大学伯克利分校用C语言对SPICE 软件进行了改写,并由MICROSIM公司推出。1988年SPICE被定为美国国家工业标准。与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。

RC缓冲电路snubber设计原理

RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。 如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加 Cs ,或则使用如下的优化设计方法。 优化的 RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是博士在一篇文章提出的经典的 Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

PSpice 92电子电路设计与仿真

电子线路实验报告

Pspice 9.2 电子电路设计与仿真 实验报告 学号:080105011128 专业:光信 班级:081班 姓名:李萍

一、启动PSpice 9.2—Capture CLS Lite Edition 在主页下创建一个工程项目lp 二、画电路图 1.打开库浏览器选择菜单Place/Part—Add Liabray, 提取:三极管Q2N2222、电阻R、电容C、电源VDC、模拟地0/Source、信号源VSIN。 2.移动元件、器件。鼠标选中该元、器件并单击,然后压住鼠标左键拖到合适位置,放开鼠标即可。 3.翻转某一元、器件符号。 4.画电路线 选择菜单中Place/wire,此时将鼠标箭头变成一支笔。 5.为了突出输出端,需要键入标注V o字符,选择菜单Place/Net Alias—Vo OK! 6.将建立的文件(wfh.sch)存盘。 三、修改元件、器件的标号和参数

1、用鼠标箭头双击该元件符号(R或C),此时出现修改框,即可进入标号和参数的设置 2、VSIN信号电源的设置:①鼠标选中VSIN信号电源的FREQ用鼠标箭头单击(符号变为红色),然后双击,键入FREQ=1KHz、同样方法即键入VoEF=0V、VAMPL=30mv。②鼠标选中VSIN 信号电源并单击(符号变为红色)然后用鼠标箭头双击该元件符号,此时出现修改框,即可进入参数的设置,AC=30mv,鼠标选中Apply并单击,退出 3、三极管参数设置:鼠标选中三极管并单击(符号变为红色)然后,选择菜单中的Edit/Pspice Model。打开模型编辑框Edit/Pspice Model 修改Bf为50,保存,即设置Q2N2222-X的放大系数为50。 4、说明:输入信号源和输出信号源的习惯标法。 Vs、Vi、Vo(鼠标选中Place/Net Alias) 单级共射放大电路 四、设置分析功能 1、静态

PSPICE仿真

目录 介绍: (2) 新建PSpice仿真 (3) 新建项目 (3) 放置元器件并连接 (3) 生成网表 (5) 指定分析和仿真类型 (5) Simulation Profile设置: (6) 开始仿真 (7) 参量扫描 (9) Pspice模型相关 (11) PSpice模型选择 (11) 查看PSpice模型 (11) PSpice模型的建立 (12)

介绍: PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。 PSpice可以进行各种类型的电路分析。最重要的有: ●非线性直流分析:计算直流传递曲线。 ●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分 析给出频谱。 ●线性交流分析:计算作为频率函数的输出,并产生波特图。 ●噪声分析 ●参量分析 ●蒙特卡洛分析 PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件) 分析都可以在不同温度下进行。默认温度为300K 电路可以包含下面的元件: ●Independent and dependent voltage and current sources 独立和非独立的电压、电流 源 ●Resistors 电阻 ●Capacitors 电容 ●Inductors 电感 ●Mutual inductors 互感器 ●Transmission lines 传输线 ●Operational amplifiers 运算放大器 ●Switches 开关 ●Diodes 二极管 ●Bipolar transistors 双极型晶体管 ●MOS transistors 金属氧化物场效应晶体管 ●JFET 结型场效应晶体管 ●MESFET 金属半导体场效应晶体管 ●Digital gates 数字门 ●其他元件(见用户手册)。

PSpice电路仿真报告

PSpice 电路仿真报告 ——11351003 陈纪凯 一、 实验目的 1. 学会Pspice 电路仿真软件的基本使用 2. 掌握直流电路分析、瞬态电路分析等仿真分析方法 二、 实验准备 1. 阅读PSpice 软件的使用说明 2. 掌握节点法和网孔法来分析直流电路中各元件的电流和电压 3. 掌握用函数式表示一阶、二队电路中某些元件的电流和电压 三、 实验原理 用PSpice 仿真电路中各元件属性并与计算理论值比较,得出结论。 四、 实验内容 A. P113 3.38 1. 该测试电路如图a-1所示。输入该电路图,设置好元件属性和合适的分析方法,按 Analysis/Simulate 仿真该电路。 图a -1 图a-2 2. 仿真结果如图a-2所示。 3. 比较图a-2中仿真出来的数据与理论计算出来的数据。 计算值为: 1.731i A =,153.076V V =,262.885V V = 仿真值为: 1.731i A =,153.08V V =,262.89V V = 经比较,发现计算值与仿真值只是精确度不一样,精确值相等。 B. P116 3.57 1. 该测试电路图如图b-1如示。设置好元件属性及仿真方法。

图b- 1图b- 2 2.仿真出来的电路中各支路电流值如图b-2所示。 3.比较仿真值与理论计算值。 计算值:用网孔分析法得到线性方程组如下: 用matlab解上述方程得 i=1.5835A, i=1.0938A, i=1.2426A, i=-0.8787A 即 1234 i=1.584A, i=1.094A, i=1.243A, i=-0.87872A 从图b-2可以读出仿真值: 1234把计算值当作真实值,把仿真值当作测量值,计算相对误差如下表

最新非线性电路课程报告-蔡氏电路的Matlab仿真研究资料

西安交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

RC缓冲电路snubber设计原理

RC缓冲电路snubber设计原理 RC 缓冲snubber 设计 Snubber 用在开关之间,图4 显示了RC snubber 的结构图,用RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs ,Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速snubber 设计,为了达到Cs 〉Cp ,一个比较好的选择是Cs 选择两倍大小的Cp ,也就是两倍大小的开关管寄生电容及估算出来的LAYOUT 布板电容,对于Rs ,我们选择的标准是Rs=Eo/Io ,这表示通过电流流向Rs 的所产生的电压不能比输出电压还大。消耗在Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容Cs 充放电的过程中,能量在电阻Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用IRF740 ,额定工作电流时Io=5A ,Eo=160V ,IRF740 的Coss=170pF ,布板寄生电容大概40pF ,两倍Cp 值大概420pF 左右,我们选择一个500V 的mike snubber 电容,标准的容值有390 和470pF ,我们选择比价接近的390pF , Rs=Eo/Io=32W ,开关频率fs 设为100kHz 的话,Pdiss 大概为1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为Rs 。

如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加Cs ,或则使用如下的优化设计方法。 优化的RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是W.McMurray 博士在一篇文章提出的经典的Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

PSpice仿真实验报告

实验七:使用PSpice软件对混频电路仿真 一.实验目的 1. 掌握PSpice软件的基本操作(包括设计绘制电路、仿真调测、时域频域分析)。 2.掌握如何使用PSpice仿真软件研究分析三极管混频器和乘法器混频器工作原理。 3.通过实验中波形和频谱,研究三极管混频与乘法器混频的区别。 二.实验仪器 1.计算机2.PSpice8.0软件 三.实验内容 1.在PSpice原理图编辑环境下分别完成三极管混频和乘法器混频的电路绘制; 2.对以上两种电路分别进行仿真,显示时域波形图(参与混频的两个频率为1kHz和10kHz); 3.对以上两种电路的输出波形分别进行FFT(频域分析),指出二者的频谱差别。四.实验步骤 1.实验准备 在计算机上安装PSpice8.0软件包(安装过程中如有提示,选默认即可)。 2.原理图的绘制方法 安装成功后,选择Windows程序->DesignLab Eval 8->Schematics即可打开原理图编辑界面。然后按如下操作: (1)选择与布放元器件:菜单 -> Draw -> Get New Part…选择所需电路元器件 -> Place&Close (2)连接元器件:把所需元器件布放完毕后,可点击菜单栏下方的快捷图标按钮“”将各元器件按照下图提示连接起来。 图1 三极管混频原理图

图1提示:图中Vcc与VBB选择元件库中的“VDC”元件,分别双击它们,按照图中标记设定好直流电压(DC)参数。V1与V2选择元件库中的“VSIN”元件。双击这些元件可以改变这些电压的参数,将V1和V2的振幅(VAMPL)参数都设置为0.01V,频率(FREQ)参数按上图标记设定好。“地”选择库中的“AGND”元件。 图2 乘法器混频原理图 图2提示:图中的乘法器直接使用库中的“MULT”元件。V1与V2选择元件库中的“VSIN”元件。振幅都设为0.01V,频率分别为1kHz和10kHz。 3.时域仿真及频域分析 ⑴实验步骤 ①在电脑D:\盘上创建pspice目录。将电路图按上面提示画好,并将各参数按上述提示要求设好,点击File -> Save把文件保存在D:\pspice目录下。 ②选择菜单–> analysis -> Setup 将Transient选项左侧选上对钩(其他项均不选),如下图所示

蔡氏电路系统仿真平台的研究

蔡氏电路系统仿真平台的研究 齐春亮,张兴国 (兰州大学信息科学与工程学院 甘肃 兰州 730000) E-mail:jichl03@https://www.doczj.com/doc/24201691.html, 摘要:本文在对蔡氏电路进行了分析的基础上,结合实际试验中的主要现实困难,研究了蔡氏一类非线性混沌电路仿真系统的结构化设计与系统动态演示方法,通过建立结构化仿真实验平台,减轻了蔡氏电路研制者的筛选元器件的负担,同时增强了人机交互功能。 关键词:蔡氏电路,结构化,可视化仿真 1.概述 现代非线性科学是人类科学文化的重要组成部分,而混沌又是现代非线性科学的重要组成部分,混沌理论为非线性系统的研究提供了简单有效的模型。1983年,美国贝克莱(Berkeley)大学的蔡少棠教授(Leon.o.Chua)发明了蔡氏电路(Chua ’s Circuit),蔡氏电路因其简洁性和代表性而成为研究非线性电路中混沌的典范[1][2]。蔡氏电路是由电阻﹑电容和 电感及“蔡氏二极管”组成的三阶自治电路,在满足以下条件时能够产生混沌现象[3]:(a) 非线性元件不少于一个(b)线性有效电阻不少于一个(c)储能元件不少于三个。符合以上标准的最简单电路,就是混沌电路之一—典型蔡氏电路。 一个具体的典型蔡氏电路相空间的动力学方程为 ???? ??????=+==???2212221)11)211Vc L 1i )Vc (Vc C G C 1Vc (Vc C 1Vc (Vc C G Vc dt d i dt d f dt d L L 及 ))((2 1)(1111E V E V G G V G V f I C C b a C b C ??+?+== 蔡氏电路的运动形态因元件参数值的不同而有本质的不同,可以把电路元件参数值看作控制参数而使蔡氏电路工作在不同的状态。现在以其中的线性电阻R (方程中的G=1/R )为 1

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

基于PSpice软件的二极管电路仿真

基于PSpice软件的二极管电路仿真 一、实验目的 1.掌握PSPICE软件中工程的建立方法。 2.掌握PSPICE软件中电路图的输入和编辑方法。 3.简单学习PSPICE软件中DC扫描的设置、仿真和波形查看方法。 二、实验工具 1.PC机 2.OrCAD 16.5软件 三、实验要求 1.熟悉PSPICE软件的安装及操作界面。 2.学会使用PSPICE软件对二极管进行简单的DC扫描仿真。 四、实验步骤 1.打开PSPICE软件,界面如下图1.1所示。 图1.1 软件界面 2.新建一个Diode工程,如下图1.2所示. 图1.2 新建工程

工程名为Diode,在Create a New Project Using中选择Analog or Mixed A/D项,该项表示模拟或数字混合仿真,其余三项不能用于模拟仿真。 然后,点击OK进行下一步。 3.下一步会弹出图1.3的对话框,新建一个为空的工程。 图1.3 空的工程 4.点击OK,即进入电路图编辑的界面,如图1.4所示。 图1.4 电路图编辑界面 在界面中,包含了绘图窗口、信息查看窗口和项目管理视图,项目管理视图如图1.5所示。 图1.5 项目管理视图

在该界面中,我们可以进行各种电路图的编辑。 5.在编辑电路图之前,我们需要添加器件库。在Capture中鼠标点击绘图窗口,点击绘图窗口的图标,即会弹出加载器件库的对话框,如图1.6所示。 图1.6 器件加载 在器件加载对话框中,我们选中所有器件库,即可添加各种元器件。 6.进行简单的电路图绘制及编辑,绘制、编辑后的电路图如下图1.7所示。 图1.7 电路图 电路图中,电源V1电压为0V,电阻R1阻值为10欧姆,D1为一个二极管。器件的使用情况如下表1.1所示。

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

OrCAD-PSpice电路仿真综合实验

课程名称:电路实验实验名称:PSpice 仿真综合实验实验学时:3学时 仪器设备:计算机、模块化电路实验装 置 实验平台:PSpice 仿真软件、硬件实验系统 课程目标:学习运用PSpice 仿真软件求解直流电路。掌握直流工作点及直流扫描分析方法,学习用Capture软件绘制电路图、进行直流工作点及直流扫描分析的设置和观察仿真输出结果。 一、实验任务 1.检测与作业 (1)查看自己家里的总电源是空气开关还是刀闸开关,其规格参数的额定电流是(63A )。(2)视频2中电路实验室的总电源正常供电,如果实验台的直流电压源没电,可能产生故障的原因有 哪些? 直流电压源发生接地短路,直流电压源内部发生故障开路,总电源到实验台之间的线路断路。 (3)绘制仿真电路图时,有关输入电路图名称说明正确的是:A A. 电路图名称可由英文字符串或数字组成,不能存在汉字。 B. 电路图名称可由英文字符串或数字组成,可以存在汉字。 C. 电路图名称可由英文字符串或数字或汉字组成。 (4)绘制仿真电路图时,必须要有一个电位为零的接地符号,否则被认为出错。接地符号为:B A. B. (5)填空题:PSpice在绘制电路图时可以放置波形显示标示符Marker(又称探针),以便在分析之 后直接确定要显示的信号曲线,以下波形显示标示符的功能是: A. : 显示电压/电平波形曲线。 B. : 显示电位差波形曲线。 C. : 显示电流波形曲线。 (6)下图所示受控源的符号中,1、2两接线端为控制端,应按照参考方向 1 2 接入电路,3、4两接线端为输出端,控制系数为 2 。 1 23 4 (7)下图所示电压探针测量的是节点n1和n2之间电压。

蔡氏电路matlab仿真报告

蔡氏电路仿真分析 学院:电气工程学院 班级:硕6036 姓名:张东海 学号:3116312053

目录 1.基本分析 (2) 2.MATLAB仿真 (5)

蔡氏电路 蔡氏电路是著名的非线性混沌电路,结构简单,但却出现双涡卷奇怪吸引子和及其丰富的混沌动力学行为。 1.基本分析 蔡氏电路是一个典型的混沌电路,最早由著名华裔科学家、美国加州大学蔡少堂教授设计。他证明了在满足以下条件时能够产生混沌现象。 (1) 非线性元件不少于1 个; (2) 线性有效电阻不少于1 个; (3) 储能元件不少于3 个。 根据以上条件,在图1.1中给出蔡氏电路方框图。图中R 为线性有效电阻,L 、C 1、C 2为储能元件,R N 为非线性元件。图2.2给出非线性电阻伏安特性曲线。 图1.1 蔡氏电路方框图 图1.2 非线性电阻伏安特性曲线 对于图2.1提出的蔡氏电路,其状态方程推导如下 12112122121()()1()(1)C C C C C C C L L C du C u u g u dt R du C u u i dt R di L u dt ?=--???=-+???=-?? 其中函数1()C g u 是分段线性函数,其形式为:

11111()()()2 C b C a b C C g u G u G G u E u E =+-?+-- 作变量代换: 12 22 221,,,,1 C C L u u i x y z E E EG C C tG C C LG G R ταβ=== ==== 式(1)可以写为如下形式 [] ()(2)dx y x f x d dy x y z d dz y d αττ βτ?=--???=--???=-?? 式(2)即是蔡氏电路的标准方程形式。 其中()f x 可表示为如下形式 10101 01(),1(),1(),1m x m m x f x m x x m x m m x +-≥??=≤??--≤-? 其中 01,a b m G E m G E == 蔡氏电路的三个状态方程式在状态空间的三个子空间为 101={(,,)| 1} ={(,,)| 1}={(,,)| 1} D x y z x D x y z x D x y z x -≥≤≤- 在状态空间的三个子空间内分别具有唯一平衡点如下 1011(,0,), (0,0,0), (,0,).P k k D Q D P k k D +--=-∈=∈=-∈ 其中, 1011 m m k m -=+ 在P +、1P -和Q 处的雅可比矩阵分别为:

Pspice仿真报告(串并联振荡电路分析)

第三次高频电子线路小班课Pspice电路仿真实验报告 此处为校徽 研究题目:串并联振荡电路分析 班级:电子信息工程1402班 组别:第六组 组员: ***:主讲人 ***:仿真运行 ***:PPT制作 ***:文档整理

一、仿真实验题目: 6.将第4题中R1的电阻值改为4KΩ,试观察振荡电路输出波形,此时将电阻R2改为具有负温度系数的热敏电阻,(设此电阻值仍为10K Ω,随温度呈线性变化关系,在电阻模型参数中取Tc1=-0.13),设电路工作在28度,再次分析电路,记录输出波形,并分析原因。 图PSP-1-(1) 热敏电阻值的计算: R2=R ES=R*r*[1+Tc1*(T-T0)+Tc2*(T-T0)*2]=10*1*[1-0.13*(28-27) ]=8.7KΩ 环路增益:T(w0)=(R1+R2) / 3R1 二.仿真电路原理图:

图PSP-2-(1)三.参数 图PSP-3-(1)输入文件 图PSP-3-(2)

图PSP-3-(3) 四代码: **** 11/03/16 23:11:30 ******* PSpice 10.5.0 (Jan 2005) ******* ID# 0 ******** ** Profile: "SCHEMATIC1-DCSweep" [ F:\pspice jinshzuhen-pspicefiles\schematic1\dcsweep.sim ] **** CIRCUIT DESCRIPTION ****************************************************************************** ** Creating circuit file "DCSweep.cir" ** WARNING: THIS AUTOMATICALLY GENERATED FILE MAY BE OVERWRITTEN BY SUBSEQUENT

回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)

南京航空航天大学电路实验报告 回转器电路设计 姓名:李根根 学号:031220720

目录 一、实验目 的………………………………………………………………………………………. 2 二、实验仪 器………………………………………………………………………………………. 2 三、实验原 理………………………………………………………………………………………. 2 四、实验要 求………………………………………………………………………………………. 3 五、用pspice软件进行电路仿真并分析……………………………………………..…. 5 六、实验内 容……………………………………………………………………………………… 9 七、实验心 得………………………………………………………………………….….….….. 11 八、附件(Uc – f 图) (12)

一、实验目的 1.加深对回转器特性的认识,并对其实际应用有所了解。 2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。 二、实验仪器 1.双踪示波器 2.函数信号发生器 3.直流稳压电源 4.数字万用表 5.电阻箱 6.电容箱 7.面包板 8.装有pspice软件的PC一台 三、实验原理 1.回转器是理想回转器的简称。它是一种新型、线性非互易的双端口元件,其电路符号如图所示。其特性表现为它能够将一端口上的电压(或者电流)“回转”成另一端口上的电流(或者电压)。端口变量之间的关系为 I1 = gu2 u1 = -ri2 I2 = gu1 u2 = ri1 式子中,r,g称为回转系数,r称为回转电阻,g称为回转电导。

RC缓冲电路snubber设计原理教学内容

R C缓冲电路s n u b b e r 设计原理

RC缓冲电路snubber设计原理 RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得:

因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。

蔡氏电路MATLAB混沌仿真

蔡氏电路MATLAB混沌仿真

————————————————————————————————作者:————————————————————————————————日期: 2

3 蔡氏电路的Matlab 混沌 仿真研究 班级: 姓名: 学号:

4 摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB 仿真 Abstract This paper introduces the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in Chua’s circuit .On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words :chaos phenomenon ;Chua’s circuit ;Simulation

相关主题
文本预览
相关文档 最新文档