当前位置:文档之家› 合成氨原料气脱碳及再生工艺设计

合成氨原料气脱碳及再生工艺设计

合成氨原料气脱碳及再生工艺设计
合成氨原料气脱碳及再生工艺设计

毕业设计

题目:12万吨/年合成氨脱碳及

再生工序工艺设计

系别:化学化工系

专业:煤炭深加工与利用

姓名:李会军

学号:111308128

指导教师:李晓燕

河南城建学院

2011年5月14日

河南城建学院

毕业设计

任务书

题目12万吨/年合成氨原料气脱碳及再生工艺设计

系别化学化工系专业煤炭深加工与利用班级1113081 学号28

学生姓名李会军指导教师李晓燕

发放日期2011年3月6日

河南城建学院专科毕业设计任务书

一、主要任务与目标:

设计题目:12万吨/年合成氨原料气脱碳及再生工艺设计

原料气组成:

组成CO2CO H2N2CH4含量/%0.20.2620.3320.191 0.015工艺条件:

气液两相的入塔温度均为25℃;

吸收塔操作压力1.4MPa,解吸塔操作压力常压;

吸收剂的入塔浓度根据操作情况选取;

设计目标:

经脱碳后二氧化碳含量≤1.0%;

再生段二氧化碳回收率 93%。

二、主要内容与基本要求:

主要内容

1 明确设计任务,查阅文献资料;

2 确定设计方案:通过技术及经济筛选、对比,选定技术先进、经济效益好的设计方案;

3 明确已知条件、工艺参数及计算基准;

4 工艺计算部分

5 稳定性及机械强度计算

6 工艺流程图绘制

7 主要设备结构图的绘制

基本要求

工艺设计要做到:符合国家的经济政策和技术政策,合理运用国家的财富和资源;工艺上可靠,经济上合理;尽可能吸收最新科技成果,力求技术先进,经济效益更大;不造成环境污染;同时符合了国家工业安全与卫生要求。

三、计划进度:

1.接受设计任务:1.0天

2.收集资料:5.0天

3.制定设计方案提交设计开题报告:5.0天

4.设计计算:15.0天

5.设计图纸绘制:15.0天

6.编制说明书:7.0天

7.答辩:2.0天

合计:50.0天

四、主要参考文献:

1 《小合成氨厂工艺技术与设计手册》化学工业出版社

2 《塔设备设计》上海科学技术出版社

3 《化工设备设计基础》化学工业出版社

4 《化工容器及设备简明设计手册》化学工业出版社

5 《化工工艺设计手册》化学工业出版社

6 《化工过程设计》化学工业出版社

7 《化工设备设计》化学工业出版社

8 《化工设备手册》化学工业出版社

指导教师(签名):

年月日

教研室审核意见:

(建议就任务书的规范性;任务书的主要内容和基本要求的明确具体性;任务书计

划进度的合理性;提供的参考文献数量;是否同意下达任务书等方面进行审核。)

教研室主任签名:

年月日

注:任务书必须由指导教师和学生互相交流后,由指导老师下达并交教研室主任审核后发给学生,最后同学生毕业论文等其它材料一起存档。

成绩评定说明

一、答辩前每个学生都要将自己的毕业设计在指定的时间内交给指导,

教师,由指导教师审阅,写出评语并预评分。

二、答辩工作结束后,答辩小组应举行专门会议按学校统一的评分标准和评分办

法,在参考指导教师预评结果的基础上,评定每个学生的成绩。系对专业答辩小组提出的优秀和不及格的毕业设计,要组织系级答辩,最终确定

成绩,并向学生公布。

三、各专业学生的最后成绩应符合正态分布规律。

四、具体评分标准和办法见《河南城建学院毕业设计工作条例》。

五、答辩小组评分包括两部分:(1)学生答辩情况的得分和评阅教师评分;(2)指

毕业设计成绩评定

班级姓名学号

综合成绩:分(折合等级)

答辩小组组长签字年月日

答辩小组评定意见

一、评语(根据学生答辩情况及其论文质量综合评定)。

二、评分(按下表要求评定)

评分项目 答 辩 小 组 评 分

评 阅 教 师 评 分 合计

(40分) 完成任务 情 况 (5分) 毕业设计 (论文)质量 (5分) 表达情况 (5分) 回答问题 情 况

(5分) 质 量 (正确性、条理性、创造性、实用性) (10分) 成果的技术水平(科学

性、系统性)

(10分) 评分

答辩小组成员签字

年 月 日

毕业答辩说明

1、答辩前,答辩小组成员应详细审阅每个答辩学生的毕业设计,为答辩做好准备,并根据毕业设计质量标准给出实际得分。

2、严肃认真组织答辩,公平、公正地给出答辩成绩。

3、指导教师应参加所指导学生的答辩,但在评定其成绩时宜回避。

4、答辩中要有专人作好答辩记录。

指导教师评定意见

一、对毕业设计的学术评语(应具体、准确、实事求是):

签字:

年月日二、对毕业设计评分[按下表要求综合评定]。

(1)理工科评分表

评分项目(分值)

工作态度

与纪律

(10分)

毕业设计(论文)完

成任务情况与水平

(工作量与质量)

(20分)

独立

工作能力

(10分)

基础理论和

基本技能

(10分)

创新

能力

(10分)

合计

(60分)

得分

(2)文科评分表

评分项目(分值)文献阅读与

文献综述

(10分)

外文翻译

(10分)

论文撰写质量

(10分)

学习态度

(10分)

论证能力

与创新

(20分)

合计

(60分)

得分

指导教师签字:年月日

摘要

二氧化碳的吸收再生过程主要是由吸收、闪蒸和气提三部分组成。本次设计选用的脱碳剂是聚乙二醇二甲醚(NHD),属于物理吸收法。主要的设备是吸收塔和气提塔。在计算的过程中,首先根据所给的物料组成和工艺条件进行物料恒算和热量恒算,再进行塔设备的计算、校核及辅助设备的计算或选型。

吸收段的计算结果如下:

二氧化碳的脱除量2909.43

m/h,NHD的用量184.23

m/h;塔底流出的富液带出的热量14269139.99kJ/h,溶液温度升高了5℃;塔径为1.6m,填料层高度为13.47m,塔压降为3002.7Pa。

解吸段的计算结果如下:

闪蒸出的二氧化碳的量2735.73

m/h,二氧化碳的回收率为94%,溶液带出的热量10142141.09kJ/h,闪蒸的容积为0.263

m。

气提出的二氧化碳的量157.153

m/h;塔底流出

m/h,氮气的用量1105.23

的贫液带出的热量6022054.3kJ/h,溶液温度为26℃;上段塔径1.4m,下段塔径1.5m,填料层高度为5.7m,塔压降为2021.4Pa。

[关键词] 吸收、闪蒸、气提

ABSTRACT

The decarbon and regeneration of carbon dioxide process is primarily composed by three parts: absorption, flash vaporization and gas stripping. This design uses polyethylene glycol dimethl ether (NHD) to decarbon, which is the physical absorption method. The main device is absorption column and stripper. In the process of calculation, firstly make material constant calculation and heat constant calculation, and then is the calculation of tower equipment, checking and ancillary equipment’s calculation or selection.

Absorption segment’s results are as follows:

The amount of carbon dioxide removel is 2909.4m3/h and the amount of NHD is 1 84.2m3/h; the heat of liquid-rich flow from tower bottom is 14269139.99kJ/h and the temperature of solution rises 5℃; the tower diameter is 1.6m, the height of packing layer is 13.47m and the column pressure dropping is 3002.7Pa.

The desorption segment’s results are as follows:

The amount of carbon dioxide flashes is 2735.7m3/h, the recovery rate of carbon dioxide is 94%, the heat brought out from solution is 10142141.09kJ/h and the volume of flash trough is 0.26m3.

The amount of carbon dioxide stripped out is 157.15m3/h and the amount of nitwgen is 1105.2m3/h; the heat of barren liquor from tower bottom is 6022054.3kJ/h and the temperature of solution is 26℃; the upper column diameter is1.4m, the lower column diameter is 1.5m and the column pressure dropping is 2 021.4Pa.

Key Words: absorption,flash,stripping

1总论 (13)

1.1概述 (13)

1.2文献综述 (14)

1.3设计任务的依据 (15)

1.4主要原材料及公用工程情况 (16)

2 生产方案的确定 (17)

2.1脱碳及再生的方法 (17)

2.2 NHD的脱碳原理 (18)

2.2.1 NHD溶剂的物理性质 (18)

2.2.2 计算的热力学基础 (18)

2.2.3计算的动力学基础 (19)

2.3 脱碳及再生工艺参数的选定 (20)

2.3.1 脱碳流程的选择 (20)

2.3.2气提剂的选择 (20)

2.3.5 脱碳再生操作压力的选定 (21)

2.3.6脱碳塔气液比的确定 (22)

2.3.7 冷凝器的位置及选定 (23)

2.3.8腐蚀及材料选择 (23)

3 脱碳再生生产流程说明 (24)

4 吸收过程的工艺计算 (26)

4.1物料恒算 (27)

4.2热量恒算 (29)

4.2.1原料气带入的热量 (30)

4.2.2单位时间内气体的溶解热 (30)

4.2.3进塔溶液带入的热量 (30)

4.2.4净化气带出的热量 (31)

4.2.5塔底富液带出的热量 (31)

4.3吸收塔的工艺设计 (32)

4.3.1 塔径及气速的计算 (32)

4.3.2填料层高度的计算 (33)

4.3.3塔厚度的计算 (34)

4.3.4塔压降的计算 (35)

4.3.5辅助设备的计算和选型 (35)

4.3.6塔体的强度校核 (38)

5 解吸过程的工艺计算 (41)

5.1物料恒算 (41)

5.1.1闪蒸过程的物料恒算 (41)

5.1.2气提过程的物料恒算 (42)

5.2热量恒算 (42)

5.2.1闪蒸过程的热量恒算 (42)

5.2.2气提过程的热量恒算 (43)

5.3气提塔的工艺设计 (44)

5.3.1塔径及气速的计算 (44)

5.3.2 填料层高度的计算 (45)

5.3.3塔厚度的计算 (47)

5.3.4塔压降的计算 (47)

5.3.5辅助设备的计算和选型 (47)

5.3.6塔体的强度校核 (49)

主要符号说明 (53)

致谢 (55)

参考文献 (56)

1总论

1.1概述

氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫、脱碳过程以及气体精制过程。

CO2不是合成氨合成的原料气,故需要在净化阶段除去;但CO2在常温常压下是无色无臭气体,在常温下加压即可液化或固化,安全无毒,使用方便,加上其含量非常丰富,因此随着地球能源的日益紧张,现代工业的迅速发展,CO2的利用越来越受到人们的重视。许多国家都在研究把CO2作为“潜在碳资源”加以综合利用。

它的应用可分为物理应用和化学应用。

1)物理应用:CO2作为人工降雨剂,可解决干旱地区的农田灌溉问题;在食品工业中作为冷冻剂,可保证鱼类、肉类、奶类的长期保鲜和低温运输,同时用作清凉饮料的添加剂。CO2在焊接工艺中作为绝缘剂和净化剂,用来提高焊接质量;作为萃取剂可以从香料和水果中提取香精,从咖啡里提取碱。另外,CO2还可用于医用局部麻醉、大型铸钢防泡剂和灭火剂。超临界液态CO2因其特殊的性质,还可用于贵重机械零件的清洗剂和超临界萃取剂。

2)化学应用:二氧化碳用于制造纯碱、轻质碳酸盐、化肥(碳酸氢铵、尿素)以及脂肪酸和水杨酸及其衍生物已有成熟的工艺,作为一种重要的有机合成原料,其应用也在不断研究开发。在催化剂存在下,它可以被氢还原成甲烷、甲醇、甲醛、甲酸;它与H2一起代替甲醇参与芳烃的烷基化,得到包括加氢和甲基转移的产物;它与不饱和烃反应生成内酯、酸或酯类。另外,它还能与不饱和烃、胺类、环氧化合物及其它化合物发生二元、三元共聚反应,生成交联、接枝、嵌段等高分子聚合物,如聚氨基甲酸酯、聚碳酸酯、聚脲等。

脱碳工艺分大的说,有湿法和干法两种。

干法目前主要就是变压吸附,湿法目前就比较多,现比较常用的有MDEA、苯菲尔热钾碱、低温甲醇洗、碳丙、DEA、NHD等。在实际应用中,根据原料路线、生产工艺的不同进行选择。一般以煤为原料的选低温甲醇洗、碳丙、NHD 较多,这两年选变压吸附的也不少(因为其CO

2

相对于氨较富余,比较节能);一

般以天然气为原料的选择MDEA、苯菲尔热钾碱,选变压吸附的较少(因为其CO

2相对于氨较少,氨多碳少)。

1.2文献综述

用于CO

2

脱除的物理吸收方法很多,目前在工业上应用广泛,技术先进,投资省,能耗低的方法如下:

·低温甲醇洗(Rectisol)法

·常温甲醇洗(Amisol)法

· MDEA法(物理—化学吸收)

· Selexol法(国外常用)

· NHD法(国内新开发)

·碳酸丙烯酯法

常温甲醇洗对CO

2

不能选择吸收,而且甲醇消耗大,能耗较高,大型厂也没有使用经验,因此不宜采用。碳丙(PC),用于脱硫尚缺少大厂实践经验,用于

脱CO

2

始于六十年代美国弗络系(Fcour)公司,但在国内不少氨厂中使用经验表明,其净化度差,溶剂挥发损失较大,国内不少氨厂已转向其他净化方法,新建厂已很少采用。

MDEA和Selexol,均属国外技术,如使用须付给国外技术使用费和软件费。与低温甲醇法方法相比,均为国外引进技术,NHD为国内自行开发的技术,其吸收能力为碳丙的1.15倍,在工程设计中应优先考虑自有技术。

这里用低温甲醇法和NHD两种方法相比较进行选定。

(1) 低温甲醇洗又称冷法净化工艺,是利用甲醇溶液在-60℃低温下洗涤

变换气,溶解分离混合气中的CO

2

。低温下甲醇对CO2溶解度较大,因此循环溶

液量小,耗电较少。其最主要的优点是净化度高,脱CO

2

能力强,一般的净化度

CO

2 10ppm。同时分离出足够尿素生产使用的CO

2

(纯度达98.5%),它与液氮洗

(-190℃深冷操作)配套,均在低温下操作,减少低温复热的过程,使流程简化、设备减少。

该法的不足之处是低温操作(-60℃),因此需要补充-40℃以下的低温冷量较大,此部分冷量折能耗较大,且甲醇溶剂蒸汽压高,挥发损失较大,因此,尤其是在甲醇再生蒸馏过程中蒸汽消耗较大。所以此法的冷、热能量消耗较高。低温甲醇洗法是在低温条件下操作,设备及配管、仪表、阀门材质要求高,不但造价高,而且国内不易解决,需要引进的范围大。该法工艺技术属国外工程公司专利技术,尽管国内已引进投产四套低温甲醇洗装置,有的国内工程公司也从事了一些配套工作,但真正设计这样大型装置还是要引进技术,因此技术费、引进设备费要高于国内的技术和设备。另外甲醇本身有毒,挥发损失大,对人和环境均有污染。

(2) NHD净化工艺是国内八十年代以后开发成功的新技术,具有九十年代的水平,该工艺在常温(-5~10℃)条件下操作,设备材质大部分为碳钢,国内可以

选择吸收能解决,价格也便宜。NHD工展出1,在P=3.5MPa压力下,溶液对CO

2

力强,溶液循环量不大,能耗较低。NHD溶剂物化性能稳定,蒸气压低,挥发损失小,无气味、无毒、不腐蚀、不分解。该工艺能耗低、消耗低、成本低。

NHD工艺技术是国内南京化工研究院开发,化工部第一设计院已在鲁南化肥厂Ⅱ期工程净化系统成功的设计了一套年产8~10万吨氨装置,现已投产三年多,运行十分稳定。在此基础上还可以进一步优化设计,降低能耗,节省投资。从后面的技术比较可以清楚看出本技术的优越性。

(3) 低温甲醇洗与NHD都是先脱硫后脱碳,脱硫后的溶剂采用热再生,脱

后的溶剂均采用汽提,因此二者流程是相似的。低温甲醇洗脱硫与脱碳是用CO

2

同一个高的吸收塔分为两段,上段脱二氧化碳,下段脱硫,上塔吸收CO2的溶剂一部分去下塔脱S;NHD目前的流程是脱S和脱CO

溶剂分开各自成立系统循

2

环,但低温甲醇洗额外增加一个甲醇—水蒸馏塔。低温甲醇洗吸收温度是-60℃,吸收温度10℃,因此流程中换热部分低渐甲醇洗比NHD要复杂得多,NHD脱CO

2

总的来说NHD流程比低温甲醇洗流程简单,同时,值得注意的是工厂内如果没有空分装置,则低温甲醇洗的气提用氮气将无法解决,而相反NHD可以用空气作气提剂。

1.3设计任务的依据

我的设计是参照以下两方面制定的:

1根据国家计委、国家科委及国产化办公室颁发的“七五”重点科技专题,引进技术消化吸收一条龙计划,采用NHD净化工艺,解决德士古煤浆气化技术

的酸性气脱除,NHD净化技术合同编号75—7—6。

2 NHD脱硫脱碳基础设计是根据一九九○年八月,由南化公司研究院与化工部第一设计院签定的国产化一条龙子项合同《引进技术消化吸收一条龙子项7—6,30万吨/年氨厂,NHD脱硫脱碳基础设计》及九○年十月南化研究院第029号便函。

1.4主要原材料及公用工程情况

NHD是南京化学工业公司研究院近年来开发的一种优良的物理吸收溶剂。它的主要组分为聚乙二醇二甲醚(国外称Selexol), 是一种有机溶剂。它具有沸点高,冰点低,蒸汽压低,对CO

气体有很强的选择吸收性,能适合于以煤(油)

2

为原料,酸气分压较高的合成气等的气体净化,脱碳时需消耗少量冷量,属低能耗的净化方法。其化学稳定性、热稳定性好,挥发损失小,对碳钢设备亦无腐蚀性。洒落地下时可被生物降解,对人及生物环境无毒害,因此NHD气体净化技术为清洁生产工艺。

根据化工部“七五”国家重点科技攻关计划合成氨一条龙中“75—7—6NHD 净化技术的研究”合同,即采用NHD物理溶剂法脱除合成原料气中的硫化物和二氧化碳,并选择一个中型厂使用此项技术,然后提供大型厂使用,“七五”为油头和煤头大型厂净化技术作准备,提出气液平衡数据和工业化基础设计。

1988年批准的山东鲁南化肥厂二期扩建工程为年产8万吨合成氨,造气部分引进德士古煤浆气化技术,其它部分由国内配套。由于煤气中硫化物和二氧化碳含量较高,经多方研究认可选用了NHD溶剂脱除合成气中二氧化碳的工艺,于1992年投产。

在气液平衡数据的测定和鲁化厂年产8万吨生产装置的基础上,提供了大型厂设计参数,进行此项年产30万吨合成氨NHD脱硫脱碳基础设计,条件是以

德士古煤浆气化气经中低温耐硫变换后的气体为原料在2MPa压力下将含CO

2

0.1%,每吨氨总能耗99万大卡,溶剂损耗0.5公斤43%,的变换气净化至CO

2

南化集团公司研究院开发的NHD净化技术,目前已在20多家氨厂、甲醇厂、醋酸厂的脱硫、脱碳装置上得到成功应用。作为一种典型的物理吸收过程,NHD 技术适合于硫化物和二氧化碳含量高的煤制气净化,因此在化肥工业、煤化工、碳一化学领域具有广阔的前景,适合我国国情。

2 生产方案的确定

2.1脱碳及再生的方法

一种净化气体的过程,指脱除混合气体中的二氧化碳,主要见于合成氨生产原料气或煤气的处理。脱除原料气中二氧化碳的方法,分为3类。 (1) 物理吸收法 最早采用加压水脱除二氧化碳,经过减压将水再生。此法设备简单,但脱除二氧化碳净化度差,出口二氧化碳一般在2%(体积)以下,动力消耗也高。近20年来开发有甲醇洗涤法、碳酸丙烯酯法、聚乙二醇二甲醚法等,与加压水脱碳法相比,它们具有净化度高、能耗低、回收二氧化碳纯度高等优点,而且还可选择性地脱除硫化氢,是工业上广泛采用的脱碳方法。 (2) 化学吸收法 具有吸收效果好、再生容易,同时还能脱硫化氢等优点。主要方法有乙醇胺法和催化热钾碱法。后者脱碳反应式为:

232232K CO CO H O KHCO ++=

为提高二氧化碳的吸收和再生速度,可在碳酸钾溶液中添加某些无机或有机物作活化剂,并加入缓蚀剂以降低溶液对设备的腐蚀。

此外,还有氨水吸收法。在碳酸化法合成氨流程中,采用氨水脱除变换气中的二氧化碳,同时又将氨水加工成碳酸氢铵。

(3) 物理—化学吸收法 以乙醇胺和二氧化四氢噻吩(又称环丁砜)的混合溶液作吸收剂,称环丁砜法。因乙醇胺是化学吸收剂,二氧化四氢噻吩是物理吸收剂,故此法为物理与化学效果相结合的脱碳方法。

对于二氧化碳的再生,再生方法是NHD 溶液的采用多级减压闪蒸和汽提法(加热汽提,惰性气汽提),一般若净化度要求不高,可采用多级减压闪蒸,若净化度要求高须采用惰性气汽提或加热汽提法。

对于合成氨原料气的脱碳及再生,我想用物理吸收法,这样在吸收二氧化碳后,只需经过闪蒸和气提,就可以实现二氧化碳的再回收,所用的吸收剂是NHD,气提吹扫的惰性气体选用氮气。

2.2 NHD 的脱碳原理

2.2.1 NHD 溶剂的物理性质

NHD 溶剂的主要成分是聚乙二醇二甲醚,分子式为()3243n CH O C H O CH ,式中n=2~8,平均分子量为250~270。其物理性质(25℃)见表1:

表1 NHD 的物理性质

2.2.2 计算的热力学基础

NHD 溶剂在脱碳过程具有典型的物理吸收特征。

二氧化碳气体在工艺气体中分压不太高时,它在NHD 溶剂中的平衡溶解度能较好地服从亨利定律:i i i C H P =?

当气相压力不高时,气相中各组分的分压可按道尔顿分压定律来描述: i i P P y =?

在i y 一定时,提高气相总压P ,可溶气体在NHD 溶液中的浓度i C ,将增大,此时实行气体吸收过程。若气体i 为二氧化碳,即为脱碳过程。反之,对已经溶解了大量二氧化碳的NHD 溶剂,在温度及i H 不变的情况下,降低气相总压,气体i 从溶液中释放出来,形成闪蒸过程。闪蒸后的NHD 溶液中还有少量的气体i ,此时可往溶液中鼓入不含气体i 的空气等惰性气体,继续降低气相中i 的浓度,可进一步降低溶液中i 气体的浓度i C ,达到溶液再生的目的,使之重复用

于吸收。

在二氧化碳气体与NHD 溶剂之间进行传质过程的同时,氢气、氮气、甲烷、一氧化碳等气体与NHD 溶剂吸收和解吸,但与二氧化碳气体的溶解度相比,这些气体在NHD 溶剂中的溶解度要小得多(表2)

表2 各种气体在NHD 溶剂中的溶解度

由于硫化氢和有机硫在前面的脱硫工段已经脱除了大部分,剩下的含量很少,故可以可作NHD 只吸收二氧化碳,其它气体则为惰性气体。

2.2.3计算的动力学基础

通过对NHD 溶剂吸收2CO 的传质研究,测得2CO NHD -系统的扩散系数 26800.0723T

D e

-=?

2CO NHD -系统的液膜传质系数与温度的关系式: 40.0182.2310T L k e -=?? NHD 溶剂吸收2CO 的速率方程式可以写成:

()222

CO G CO CO G K P P *

=?- NHD 溶剂吸收2CO 时的传质阻力主要是在液相,对此物理溶解过程有:

111

G G L

K k Hk =+

在过程速率主要取决于2CO 在NHD 液相中的扩散速率情况下,则上式可简化为

G L K Hk =

提高气相压力对G K 无明显影响,但提高了2CO P ,从而增大了吸收2CO 的

推动力()22

CO CO P P *-,2CO G 也增大。可见,提高吸收压力对提高吸收速率是有利的。 若降低吸收温度,则一方面提高了H 值(即提高了G K 值),另一方面温度

降低会使同样的液相浓度的平衡分压2CO P *

降低,吸收2CO 的推动力()22

CO CO P P *-将增大。因此降低吸收温度,会极大地增加吸收速率。

由于NHD 溶剂吸收CO 2是个液膜控制过程,因此在传质设备的选择和设计上,应采取提高液相湍动、气液逆流接触、减薄液膜厚度及增加相际接触面积等措施,以提高传质速率。

2.3 脱碳及再生工艺参数的选定

2.3.1 脱碳流程的选择

鉴于聚乙二醇二甲醚脱除CO 2是个典型的物理吸收过程,从1965年至今二

十多年来,世界上几十个工业装置都采用吸收—闪蒸—气提的溶液循环过程,其中闪蒸操作可分为几级,逐级减压,高压闪蒸气中含有较多的氢气等有用的气体,一般让它返回系统予以回收,或做燃料用,低压闪蒸气含CO 2可达到93%以上,常用之于尿素生产。

经闪蒸、气提等手段再生的溶液充作半贫液进入脱碳塔中部,用以吸收进口气体中大部分CO 2。进入脱碳塔顶的贫液来自热再生塔,由于这部分溶液的再生更彻底,温度也不高,因此降低了塔顶CO 2 的平衡分压,保证了净化气中CO 2含量小于1.0%的指标。

NHD 溶剂的饱和蒸汽很低,气相中带走的溶剂损耗极少。因此,不设溶剂洗涤回收装置。

2.3.2气提剂的选择

本设计采用氮气作为气提气,因此,解决了溶液中硫化物的氧化析硫问题,改善了整个系统的可操作性,更是脱碳塔以预饱和CO 2的溶液作贫液这种先进工艺的采用的先决条件。

2.3.3塔型的选择

NHD 溶剂吸收二氧化碳的传质速度较慢,而且低温操作下的溶剂粘度大,流动性差。所以需要较大的气液传质界面。因此,我们选用了操作弹性较大的填料塔。在国外已经运转的聚乙二醇二甲醚气体净化工业装置,也多采用填料塔。同样,解吸过程也采用填料塔。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

合成氨脱碳工艺.doc.doc

合成氨脱碳工艺简介 合成氨生产工艺简述 合成氨是一个传统的化学工业,诞生于二十世纪初。就世界范围来说,氨是最基本的化 工产品之一,其主要用于制造硝酸和化学肥料等。合成氨的生产过程一般包括三个主要步骤: (l )造气,即制造含有氢和氮的合成氨原料气,也称合成气; (2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质; (3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下 反应合成为氨。其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收 制冷及输人氨库和氨吸收八个工序[1]。 在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗 的10%左右。因此,脱除 CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较 为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。 1.1.4 脱碳单元在合成氨工业中的作用 在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。以沪天化 1000t/d 合成氨装置脱碳单元为例,其需 要将低变出口的 CO2含量经吸收后降到 0.1% 以下,以避免甲烷化系统超温并产生增加能耗 的的合成惰气,同时将吸收的CO2再生为 99%纯度的产品 CO2。在此过程中吸收塔压降还 应维持在合理范围内以降低合成气压缩机的功耗。系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。 但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中 CO2就越多。用天然气(甲烷 )为原料的烃类蒸汽转化法所得的CO2 量较少,合成气中 CO2浓度在15-20%,每吨氨副产 CO2约 1.0-1.6 吨。这些 CO2如果不在合成工序之前除净,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。此外, CO2还是重要的化工原料,如合成尿素就需以CO2为主要原料。因此合成氨生产中把脱除工艺 气中CO2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净CO2的两个目的。 1.1.5 脱碳方法概述 由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化 碳。出塔气中二氧化碳含量要求小于0.1% 。为了防止气体夹带出脱碳液,脱碳后的液体进 人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。由再生塔顶出来的CO2,经空冷器和水冷器,气体温度降至40℃,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。 再生后的脱碳液(贫液),先进溶液空冷器,冷却至65℃左右,由溶液循环泵加压,再经溶 液水冷器冷却至 40℃后,送入二氧化碳吸收塔循环使用。 1.2 净化工序中脱碳方法 在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置和尿素装置的能力。CO2 是一种酸性气体,对合成氨合成气中CO2的脱除,一般采用溶剂吸收的方法。 根据 CO2与溶剂结合的方式,脱除CO2的方法有化学吸收法、物理吸收法和物理化学 吸收法三大类。 1.2.1 化学吸收法 化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进 行洗涤, CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分

国内外合成氨原料气精制工艺技术发展

国内外合成氨原料气精制工艺技术发展 南京国昌化工科技有限公司 1.引言 在合成氨工业中,经过脱碳工艺处理后的合成氨原料气中仍含有0.5~3% CO和0.5%~1%CO2,必须进一步处理将其降低至10ppm左右,以保护氨合成催剂,这一原料气精制工艺过程俗称“精炼”,目前合成氨厂脱除微量CO、CO2的方法大体分为热法和冷法两类。冷法工艺即液氮洗涤法,近年来国内外新建的大型氨厂大多采用此法;而热法工艺门类较多,包括传统的醋酸铜氨液洗涤法(铜洗法)、低压甲烷化法、甲醇甲烷化法和分子筛变压吸附法等。总体上讲冷法工艺技术先进、净化度很高,但投资巨大;而热法工艺技术相对简单成熟、投资低,但在净化度方面不及冷法。热法中的铜洗工艺更因其能耗高、净化度低、污染大等诸多缺点而逐渐被其他先进的工艺方法所替代。 2. 国外合成氨原料气精制工艺发展 2.1 铜洗法 醋酸铜氨液洗涤法(简称铜洗)是最古老的方法。早在1913年就开始应用,迄今有近一百年的历史,操作压力为15Mpa。铜洗法以其工艺成熟、操作弹性大,长期在中小型合成氨厂占据主导地位。随着技术的进步,铜洗法精制原料气与其它方法相比,缺点越来越突出。主要表现在运行、维修、操作费用高,物料消耗大(消耗铜、醋酸、液氨、蒸汽)、根据国内氨厂实际情况测算,吨氨需要增加成本在50~80元,而且精制度低,一般净化后的CO+CO ≥25ppm,然而其最致命 2 的缺陷还在于环境污染严重。由于铜洗再生气经水洗涤产生铜洗稀氨水,其浓度视所采用的洗涤技术不同而不同,一般在1~3%左右。中型氮肥厂每小时约产生 ,所以采用一般的提浓方法都由于10吨废水,这股废水除含有氨外,还含有CO 2 容易生成碳铵引起管道堵塞而无法处理,为此要么采用铜洗再生氨直接放空,要么就是铜洗稀氨水排放。这不但浪费了宝贵的资源,也引起了大气或水环境的严重污染。此外生产过程中经常出现严重的铜液泄漏,这些弊端与现代化高效、洁

产万吨合成氨脱碳工段工艺设计方案

年产30万吨合成氨脱碳 工艺工程 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论3 1.1 概述3 1.1.1工程名称3 1.1.2合成氨工业简况3 1.2 工程背景及建设必要性4 1.2.1工程背景4 1.2.2工程建设的必要性4 1.2.3建设意义错误!未定义书签。 1.2.4建设规模4 第二章市场预测 (6) 2.1国内市场预 测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.... .. (7) 3.1 净化工序中脱碳的方法.. (7) 3.1.1化学吸收 法 (7) 3.1.2物理吸收 法 (8) 3.1.3物理化学吸收法.................. (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯

3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13) 第一章工程总述 2.1 概述 1.1.1工程名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业简况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙<又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O

第讲合成氨原料气的制备方法

第讲合成氨原料气的制备 方法 This manuscript was revised on November 28, 2020

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 原料气的净化 CO变换 合成气的压缩 氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: 碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作为产品。所以,流程的特点是气体净化与氨加工结合起来。 三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的 原料。除焦炭成分用C表示外,其他原料均可用C n H m 来表示。它们呢在高温下与蒸汽作 用生成以H 2 和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: 以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨原料气净化脱硫工段设计

15万吨/年合成氨原料气净化脱硫工段设计 1总论 1.1概述 合成氨原料气中的硫是以不同形式的硫化物存在的,其中大部分是以硫化氢形式存在的无机硫化物,还有少量的有机硫化物。具体来说作为原料气的半水煤气中都含有一定数量的硫化氢和有机硫化物(主要有羰基硫、二硫化碳、硫醇、硫醚等),能导致甲醇、合成氨生产中催化剂中毒,增加液态溶剂的黏度,腐蚀、堵塞设备和管道,影响产品质量。硫化物对合成氨的生产是十分有害的,燃烧物和工业装置排放的气体进入大气,造成环境污染,危害人体健康。硫也是工业生产的一种重要原料。因此为了保持人们优良的生存环境和提高企业最终产品质量,对半水煤气进行脱硫回收是非常必要的。 1.2文献综述 1.2.1合成氨原料气净化的现状 合成氨原料气(半水煤气)的净化就是清除原料气中对合成氨无用或有害的物质的过程,原料气的净化大致可以分为“热法净化”和“冷法净化”两种类型,原料气的净化有脱硫,脱碳,铜洗和甲烷化除杂质等,在此进行的气体净化主要是半水煤气的脱硫的净化。煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。干法脱硫既可以脱除无机硫,又可以脱除有机硫,而且能脱至极精细的程度,但脱硫剂再生较困难,需周期性

合成氨原料气的生产

合成氨原料气的生产 一.煤气化 (1)气化原理 煤在煤气发生炉中由于受热分解放出低分子量的碳氢化合物,而煤本身逐渐焦化,此时可将煤近似看作碳。 ①反应速率 以空气为气化剂 C+O2→CO2 △H=-393.770kJ/mol C+1/2O2→CO △H=-110.595kJ/mol C+CO2→2CO △H=172.284kJ/mol CO+1/2O2→CO2 △H=-283.183kJ/mol 在同时存在多个反应的平衡系统,系统的独立反应数应等于系统中的物质数减去构成这些物质的元素数。 以水蒸气为气化剂 C+H2O→CO+H2 △H=131.39kJ/mol C+2H2O→CO2+2H2△H=90.20kJ/mol CO+H2O→CO2+H2△H=-41.19kJ/mol C+2H2→CH4△H=-74.90kJ/mol ②反应速率 气化剂和碳在煤气发生炉中的反应属于气固相非催化剂反应。随着反应的进行,碳的粒度逐渐减小,不断生成气体产物。反过程一般由气化剂的外扩散、吸附、与碳的化学反应及产物的吸附,外扩散等组成。反应步骤分为: A. C+O2→CO2 的反应速率研究表明,当温度在775O C以下时,其反应速率大致表示为: R=ky o2 式中 r-碳与氧生成二氧化碳的反应速率 k-反应速率常数 y o2- 氧气的速率 B.C+CO2→2CO的反应速率此反应的反应速率比碳的燃烧反应慢得多, 的一级反应。 在2000O C以下属于化学反应控制,反应速率大致是CO 2

C.CO+H2O→CO2+H2的反应速率碳与水蒸气之间的反应,在400-1000O C 的温度范围内,速度仍较慢,因此为动力学控制,在此范围内,提高温度是提高反应速率的有效措施。 二.制取半水煤气的工业方法 由以上可知,空气与水蒸气同时进行气化反应时,如不提供外部热源,则气+CO)的含量大大低于合成氨原料气的要求。为解决气体成分与热量化产物中(H 2 平衡这一矛循,可采用下列方法: (1)外热法如利用原子能反应堆余热或其他廉价高温热源,用熔融盐、熔融铁等介质为热载体直接加热反应系统,或预热气化剂,以提供气化过程所需的热能。这种方法目前尚处于研究阶段。 50%左右)和水蒸气作为气化剂同 (2)富氧空气气化法用富氧空气(含O 2 时进行气化反应。由于富氧空气中含氮量较少,故在保证系统自热运行的同时,半水煤气的组成也可满足合成氨原料气的要求。此法的关键是要有较廉价的富氧空气来源。 (3)蓄热法空气和水蒸气分别送入燃料层,也称间歇气化法。其过程大致为:先送入空气以提高燃料层温度,生成的气体(吹风气)大部分放空;再送入水蒸气进行气化反应,此时燃料层温度逐渐下降。所得水煤气配入部分吹风气即成半水煤气。如此间歇地送空气和送蒸汽重复进行,是目前用得比较普遍的补充热量的方法,也是我国多数中、小型合成氨厂的重要气化方法。 三.间歇式生产半水煤气 工业上间歇式气化过程,是在固定层煤气发生炉中进行的,如图3-3。块状燃料由顶部间歇加入,气化剂通过燃料层进行气化反应,灰渣落入灰箱后排出炉外。

产万吨合成氨脱碳工段工艺设计方案

年产30 万吨合成氨脱 碳 工艺工程 可行性研究报告 指导教师:姚志湘 学生:魏景棠 目录 第一章总论3 1.1 概述3 1.1.1工程名称3

1.1.2合成氨工业简况3 1.2 工程背景及建设必要性4 1.2.1工程背景4 1.2.2工程建设的必要性4 1.2.3建设意义错误!未定义书签。 1.2.4建设规模4 第二章市场预测????????????????????.? (6) 2.1 国内市场预测????????????????????? (6) 2.2 产品分析??????????????????? (6) 第三章脱碳方法及种类 . ???????????????????? (7) 3.1 净化工序中脱碳的方法.. ????????????.??????? (7) 3.1.1 化学吸收 法????????????.?????????????...?.7 3.1.2 物理吸收 法????????????????????.? (8) 3.1.3 物理化学吸收法 ........ ????????????????.????8 3.1.4 固体吸收法????????????????.?????????.? (10) 3.2碳酸丙烯酯

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2 (水煤气法) CO+H 2 O=CO 2 +H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2 ==COONH 2 NH 4 (放热),COONH 2 NH 4 ==CO(NH 2 ) 2 +H 2 O(吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2) 2 ==C 3 N 3 (NH 2 ) 3 (三聚氰胺)+3CO 2 +6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12% 到40%。合成氨需要的两种组分是H 2和N 2 ,因此需要除去合成气中的CO。变换 反是: CO+H 2O→H 2 +CO 2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制 变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO 2和H 2 ;第 二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

合成氨原料气醇烃化净化精制新工艺技术

合成氨原料气醇烃化净化精制新工艺 作者/来源:定中,卢健(安淳高新技术, 410015)日期: 2006-01-10 点击率:877 1 醇烃化工艺开发简况 合成氨原料气醇烃化净化精制工艺是双甲工艺的升级技术。双甲工艺是安淳高新技术开发成功的原创型技术,该技术于1990年提出,1991年进行工业化,1992年9月第一套工业化装置在市氮肥厂投产成功,在国际上最早提出,最先进行工业化生产。1993年4 月获国家发明专利,相继又申请了可调节氨醇比的醇烃化专利技术,美、英等权威化学文摘均作了报道。1994年元月通过化工部科技鉴定,1994年6月国家科委将该项目列入《国家重大科技成果推广计划》项目。第一套装置至今已正常运行15年,目前这个示厂的净化精制能力上升到了总氨80kt/a,副产10kt/a甲醇,工艺投用以来,取得了很好的经济和社会效益。目前,推广的工艺最大合成氨能力达400kt/a,在全国中、小合成氨厂推广达35家之多。桥口氮肥厂的双甲工艺被评为国家优秀创新工程,双甲工艺评为1995年度原化学工业部十二大重大科技成果之一,2000年被授予省科技进步一等奖,给予重点推广。2003年醇烃化工艺获得国家科技进步二等奖。 此工艺开发和发展可分为三个阶段,历时近十五年的开发创新和竭力推广,有着超乎寻常的辛劳,可谓“十年磨一剑”。

技术发展的第一阶段——确认了国产甲烷化催化剂在高压条 件下的运行条件。技术发展之初,当有双甲净化工艺这个创意时,国的很多厂家已经有了联醇工段,一般为联醇后再串铜洗进行净化精制,由于联醇出口CO和CO2的指标与传统的甲烷化进口气体成分指标不 一样,且压力等级也不一样,要将铜洗去掉用甲烷化来替代,必须首先解决进甲烷化炉的进口气体的气体成份问题——一定要使醇后气 中CO+CO2总量不超过0.7%,且越低越有利于提高气体的利用率和降 低气体的消耗。 另外要使甲烷化催化剂能在甲醇之后的压力级运行必须有一 套可行的工艺条件及设备等来保证。而当时,国际、国传统镍基甲烷化催化剂的使用压力均在0.3MPa,而当时甲醇催化剂活性压力为 13MPa,按工艺布置,甲烷化只能放置在甲醇后,因此,必须要找出 甲烷化催化剂在高压下的工况条件。我公司通过改变工艺条件、流程及设备结构,进行了大量的实验,模索出了一整套甲烷化催化剂在高压条件下的运行条件,于1991年在氮肥厂的40kt/a装置上投产,达到了预期的效果。 技术发展的第二阶段——确定了可调氨醇比的思维模式及工 艺条件。当流程打通后,气体的成分控制、新鲜气的消耗、副产甲醇的量及工艺长久稳定运行的条件等均需要摸索,要求有切实可行的工艺方法及操作工艺指标。特别是当甲醇市场波动时,氨和副产甲醇的产量配合要自如,且经济性能要好、工艺指标也要先进。为此我们摸索出了一种可调氨醇比的工艺条件和设备配置方法,达到了醇氨比可

合成氨工艺脱碳方法评述

龙源期刊网 https://www.doczj.com/doc/1819095494.html, 合成氨工艺脱碳方法评述 作者:杜发亮 来源:《中国化工贸易·上旬刊》2017年第05期 摘要:合成氨是一种无机化工流程,其主要是指氮、氢在高温环境下合成的产物。在化 工生产过程中,合成氨工艺是一种比较常见的化工工艺,在合成氨过程中,受气反应温度的影响,空气的二氧化碳容易与氢气发生反应生成二氧化碳。为了保证合成氨的工艺质量,企业在生产过程中就需要对其进行除碳,以此来保证氨的纯度。基于此,文章主要对合成氨工艺脱碳方法进行了探讨。 关键词:合成氨;脱碳;方法 在合成氨工艺过程中,二氧化碳气体脱除流程、后续回收步骤,都紧密关系着设定好的合成工艺,关系着反应系统的平衡。含有二氧化碳的氨进行清除,对于能耗节省、缩减产出金额,都有着不可替换的凸显价值。因此,在合成氨脱碳过程中,合理选择工艺脱碳方法,提高除碳水平是非常有必要的,需要企业在合成氨工艺过程中,对其脱碳方法进行分析与研究,从而保证合成氨工艺的正常进行。 1 合成氨除碳工艺问题 1.1 活化MDEA法 由于该工艺具有吸收能力大、反应速度快、适应范围广、再生能耗低、净化度高、溶液基本无腐蚀性、大部分设备及填料可用碳钢制作、操作简化等优点,因此,在较短的时间里它被国内20多家中小型合成氨厂广泛采用。然而,该法也存在以下主要问题:MDEA溶液在脱碳过程中有一定的腐蚀和降解;是由于溶液中化学污染物使表面张力降低,导致溶液起泡;污染物通常有:溶解的轻烃、压缩机和阀门的润滑油、溶液降解产物、消蚀剂、微粒悬浮物和氧。 1.2 NHD法 该除碳方法具有以下优势:净化度高,是一种优良的物理吸收剂;具有良好的化学稳定性和热稳定性;溶剂蒸气压低,挥发损失少;NHD溶剂使用时不起泡、操作稳定、不用消泡剂等;NHD溶剂对金属材料不腐蚀,设备材料可用碳钢,投资少,维护成本低。;无臭、无毒,可被生物降解,对环境无污染;流程短,操作稳定、方便。但是,该方法也存在一些不足,在合成氨过程中,气氨的显热并没有得到充分地利用;气氨温度过低,冰机无法正常运行;闪蒸面积小,液体流动阻力大,从而导致液体压差减小,造成N2、H2等气体闪蒸不充分而影响低闪气中CO2的纯度。 1.3 低温甲醇洗

《化工工艺学》课程教案

2014 学年第 2 学期 函授 13化学工程(专升本)专业《化工工艺学》课程教案 4课时/次共10次 40课时 教师: 教研室:

§1 第一章合成氨原料气的制备 教学目的:掌握优质固体燃料气化、气态烃蒸汽转化、重油部分氧化等不同原料制气过程的基本原理;原料和工艺路线;主要设备和工艺条件的选择;消耗定额的计算和催化剂的使用条件。 教学重点:优质固体燃料气化、气态烃蒸汽转化、重油部分氧化等不同原料制气过程。教学难点:消耗定额的计算和催化剂的使用条件。 新课内容: 第一节固体燃料气化法 一、概述 固体燃料(煤、焦炭或水煤浆)气化:用氧或含氧气化剂对其进行热加工,使碳转变为可燃性气体的过程。气化所得的可燃气体称为煤气,进行气化的设备称为煤气发生炉。 二、基本概念 1、煤的固定碳;固体燃料煤除去灰分、挥发分、硫分和水分以外,其余的可燃物质称为固定碳。 2、煤的发热值:指1公斤煤在完全燃烧时所放出的热量。 3、标煤:低位发热值为7000kcal/kg的燃料4.空气煤气:以空气作为气化而生成的煤气其中含有大量的氮(50%以上)及一定量的一氧化碳和少量的二氧化碳和氢气。 5.混合煤气(发生炉煤气):以空气和适量的蒸汽的混合物为气化剂生成的煤气,其发热量比空气煤气为高。在工业上这种煤气一般作燃料用。 6.水煤气:以蒸汽作为气化剂而生成的煤气,其中氢及—氧化碳的含量高在85%以上,而氮含量较低。 7.半水煤气:以蒸汽加适量的空气或富氧空气同时作为气化剂所创得的煤气或适当加有发生炉煤气的水煤气,其含氮量为21—22%。 三、气化对煤质的基本要求 (1)保持高温和南气化剂流速 (2)使燃料层各处间一截而的气流速度和温度分布均匀。这两个条件的获得,除了与炉子结构(如加料、排渣等装置)的完善程度有关外,采用的燃料性质也具有重大影响。 1水分:<5% 2挥发份:<6% 煤中所含挥发分量和煤的碳化程度有关,含量少的可至I一2%,多的可达40%以上。它的含量依下列次序递减: 泥煤褐煤烟煤无烟煤焦炭 3灰份:15-20% 灰分中主要组分为二氧化硅、氧化铁、氧化铝、氧化钙和氧化镁等无机物质。这些物质的含量对灰熔点有决定性影响。 4硫分:<1.5g/m3 煤中的硫分在气化过程中,转化为含硫的气体,不仅对金属有腐蚀作用,而且会使催化剂中毒。在合成氨生产系统中,根据流程的特点,对含硫量有一定的要求,并应在气体净化过程中将其脱除。 5灰熔点:>1250℃ 6机械强度和热稳定性

相关主题
文本预览
相关文档 最新文档