当前位置:文档之家› 高精度宽带程控放大电路

高精度宽带程控放大电路

高精度宽带程控放大电路
高精度宽带程控放大电路

高精度宽带程控放大电路

学校及院系

指导老师

参赛队员

摘要

本系统采用宽带电压增益控制放大芯片VCA822实现增益可调,以液晶显示屏、键盘为人机接口,通过软件补偿增益误差。当输入电压有效值小于10mV 时,电压增益可达到66dB左右,并可实现0~66dB范围内增益连续可调。3dB 的带宽为0~4.5MHZ,在0~3.5MHZ通频带范围内增益起伏≤1dB,此外该放大器的增益可以预置并显示,具有较好的实用性。

关键词:增益可调;VCA822;宽带放大器,预置

Abstract

This system uses wide band voltage gain control enlargement chip VCA822 to realize the gain adjustable, take the liquid crystal display monitor, the keyboard as the man-machine connection, through software compensation gain error. When the input voltage effective value is smaller than 10mV, the voltage gain may achieve about

66dB, and may realize in the 0~66dB scope to increase continuously adjustable. the

3dB band width is 0~4.5MHZ, in 0~3.5MHZ key-in scope left profit fluctuation ≤1dB, in addition this amplifier's gain may initialize demonstrated that has the good usability Key word: Increases adjustable; VCA822; Wide band amplifier, initialization

一.系统方案比较与选择

1.1前级放大电路

方案一、前级放大选用差分放大电路构成,仪表放大器件INA2332是一款低功

耗,CMOS仪表放大器,它的增益精度比较高。利用差分放大电路的对称性可以提高电路的性能,抑制电路的零点漂移,抑制共模信号能力强。

方案二、采用芯片OPA842构成,OPA842是一款低噪声,宽带,单位增益稳定电压反馈型运算放大器件,它的带宽可以达到400MHZ,由它构成的放大电路比较简单。

本系统采用方案二,虽然方案一能够抑制共模信号,但是芯片INA2332的带宽只有2MHZ,不适合本次实验设计,OPA842虽然本身不能抑制共模信号,但是它自身噪声小,考虑到实际需要,选择方案二比较合适。

1.2程控放大电路

方案一、宽带电压增益控制放大器VCA822的控制电压输入端VG的电压范围为-1V~1V,可以用含有电位器的电路来调节,其优点是电压连续可调,缺点是精确调节较难另外也与本设计要求不符。

方案二、VCA822的控制电压由D/A转换电路产生,控制电压与放大器的增益成线性,方便实现精确增益控制,放大器的增益精确度取决于DAC的分辨率。它的优点是精确度高,结构简单,便于实现控制。

比较两种方案,选择方案二比较合适

1.3中间级放大

方案一、采用高宽带高输出驱动器系列单电源运算放大器TLC085,它的带宽为10MHZ,它的供电范围在4.5V到16V之间。

方案二、采用芯片THS4001设计中间级放大电路,THS4001是一款低噪声、固定增益、电压反馈运算放大器件,它的带宽可以达到270MHZ。

方案二与方案一相比具有更宽的带宽,TLC085一片芯片中含有四个运放,在实验中只用到了一个,比较浪费。而且THS4001的噪声小,对电路的影响小,更加适合增益较大的电路。所以选择方案二。

1.4功率放大电路

方案一、TDA2030是功率放大器件,当负载电阻为4Ω,它的输出功率为18W。TDA2030是一款音频信号功率放大器,带宽比较窄,并不适合本次实验的要求。

方案二、THS4001是一款高压,低失真,电压反馈运算放大器,它的带宽可以达到270MHZ,输出电流较大,可以达到250mA。

方案三、用分立元件,此方案元器件成本低,易于购置。但是设计、调试难,尤其是短时间内手工制作难以保证可靠性及指标。

比较三种方案,方案二更加适合该实验,所以选择方案二。

1.方案描述及系统框图

系统主要由前级放大、程控放大、中间放大、功率放大、MSP430单片机、数模转换电路、滤波电路几部分构成,辅助于电流检测电路,检测前级和中间级的输出,将采集到的输出信号送入单片机进行模数转换再进行各项处理,然后通过数模转换,再通过电压转换电路控制程控电路进而控制电路的增益。用按键来设置电路需要达到的增益,还可以用液晶显示将检测到的信号和设置的增益显示出来整个系统框图如图一。

前级放大

程控放大中间放大功率放大

峰值检测Ⅰ

峰值检测Ⅱ

MSP430

显示电路

键盘

低通滤波

电压转换

电路

图一D/A

A/D

A/D

二、理论分析与计算

本系统要求放大电路最大增益达到66dB,即放大倍数为2000左右。3dB通频带0~4.5MHZ,则系统总的带宽增益积为2000*4.5MHZ=0.9GHZ,输入信号经过前级放大,信号放大10倍,程控放大的放大范围在5~10倍。信号再经过中间级放大10倍,最后由功率放大2倍。

三、电路与程序设计

1.电路设计

1.1前级放大电路

放大器前级采用带宽400MHz、低失真高速运放OPA842 做前级缓冲,前级放大倍数为10倍,电路采用同向端输入,为了使电路的放大倍数更精确,反馈电阻用电位器调节。

具体电路原理图见图二

图二

1.2程控放大电路

VCA822是一个直接耦合、宽带、线性增益连续可调,电压控制放大器,最大增益由反馈电阻RF和增益电阻RG决定。VG是控制电压输入端,VG的范围在-1V~1V之间。当VG=1时,电路放大倍数最大。电路的放大倍数A=RF/RG*(VG+1) .

1.3滤波电路

滤波电路采用四阶LC无源低通滤波器,通频带宽达到4.5MHZ。具体电路如图三所示

图三

1.4功率放大电路

功率放大电路是一种以输出较大功率为目的的放大电路。它一般直接驱动负载,带载能力强。功率放大电路主要要求获得一定的不失真(或失真较小)的输出功率,通常是在大信号状态下工作。为了使电路的输出电流增加,采用两块THS3091级联,电压增益A=2。

2.程序设计

本系统的设计主要完成键盘输入、液晶显示、AD 采样控制增益系统。由于电路中放大倍数不可能完全达到设计的要求,所以需要根据实际情况来调节程控电路的放大倍数。程序开始运行后,通过按键来设置电路的增益.本程序的主要功能是:1、A/D 采样。2、计算放大倍数。3、D/A 转换。4、LCD 显示。我们把两路峰值检测电路的输出端,接入A/D 采样口,通过程序计算放大倍数。观察放大倍数是否是我们想要的,若不是,通过按键改变控制电压vg ,直到得到想要的放大倍数,最终达到程序控制放大倍数的目的。系统软件框架如图五

图四

图五

四.实验测试及测试结果分析

1.测试条件

在室温25℃,普通实验室条件下,利用高频信号发生器对电路提供输入信号,采用数字示波器对输入和输出的信号进行测试,测试结果见表二

2.测试器件

表一

名称数量

高频信号发生器 1台 数字示波器 1台 数字万用表 1个

3.测试结果

前三级放大器的性能参数测试数据如表二

理论上,第一级放大3倍,第二级放大4倍,第三级放大2倍 前三级带宽可达13MHZ

表三是整体的电路数据测试结果

次数 fi(MHZ) Vi(mV) V o(V) Av A0 VG(V) r(%) 1 2.43 30 1.9 63 100 0 –37% 2

2.43

40

2.2

55

100

-45%

次数

频率

输入(mv) 第一级输出

V1(mv) A1 误差r (%) 第二级输出V2(mv

)

A2

误差r (%) 第三级输出V3(v)

A3 误差r(%)

1 30KHZ 50 146 2.9

2 -2.6% 468 4.4 10%

1.47 3.14 57% 2 2MHZ 60 190 3.16 2% 752 3.95 -0.25% 1.84

2.44 22% 3 2MHZ 70 210 3 0

896

4.2

5%

2.1 2.34 17% 4 3MHZ 47.6 168

3.5 16.6% 600 3.57 -10.75% 1.64 2.73 36.5% 5 6MHZ

33.6

132 3.92 30.6% 504 3.8 -5% 1.22 2.42 21% 6

10MHZ 21.2

89.6

4.22

40.6% 360

4.0

800

2.2

10%

表三 表二

3 2.43 50 2.5 50 100 0 -50%

4 2.43 30 2.88 96 140 0.

5 -31.4%

5 2.43 40 4 100 140 0.5 -40%

4.测试结果分析

实验测试中,放大倍数设定,系统的前级放大5倍,第二级在VG=0时放大5倍,

在VG=0.5时放大7倍;第三级放大2倍,第四级放大2倍。由表三可知,其他

条件一定,输入越大,测试结果误差越大。其他条件一定,压控电压越大,误差

越小。实验设计前预计的实验倍数没有达到,主要是因为实验过程中干扰因数太

多,尤其是高频信号。还有实验仪器不够精准也是造成误差大的原因之一。实验

由单元模块组成,单元模块数据测试结果良好,但是将单元模块组合起来效果不

好。

五.总结

本实验设计基本完成了实验要求的内容,但是未能达到实验预期的效果。由于时

间仓促加之水平有限,本设计存在一些不足之处。例如,实验结果不够精确,系

统的带宽不够大,滤波电路有待改进;系统在高增益噪声方面有待提高。

宽带放大器

宽带放大器 摘要 本设计全部采用集成电路,具有硬件电路形式简单,调试容易,频带宽,增益高,AGC动态范围宽的特点,且增益可调,步进间隔小。本宽带放大器以可编程增益放大器AD603为核心,由三级放大器组成,前级放大主要是提高输入阻抗,对小信号进行放大;中间级为可变增益放大器,主要作用是实现增益可调及AGC功能,增益控制和AGC功能都由单片机控制,可预置并显示增益值,增益可调范围10dB~58dB,步进1dB,由单片机自动调节放大倍数可实现AGC功能,使输出电压稳定在4.5V~5.5V 之间;后级放大进一步增加放大倍数,扩大输出电流,提升放大器的带负载能力,提高输出电压幅度。后级输出接峰值检波电路,检波电路输出由单片机采样并计算后,用液晶显示屏显示输出正弦波电压的有效值和峰峰值。由于宽带放大器普遍存在容易自激及输出噪声过大的缺点,本系统采用多种形式的屏蔽措施减少干扰,抑制噪声,以改善系统性能。

一、方案论证与比较 1、总体方案 方案一:选用结电容小,f T高的晶体管,采用多种补偿法,多级放大加深度负反馈,以及组合各种组态的放大电路形式,可以组成优质的宽带放大器,而且成本较低。但若要全部采用晶体管实现题目要求,有一定困难,首先高频晶体管配对困难,不易购买;其次,理论计算往往与实际电路有一定差距,工作点不容易调整;而且,晶体管参数易受环境影响,影响系统总体性能。另外,晶体管电路增益调节较为复杂,不易实现题目要求的增益可调。 方案二:使用专用的集成宽带放大器。如TITHS6022、NE592等集成电路。通过外接少数的元件就可以满足本题目要求,甚至远超过题目要求的带宽和增益的指标,但这种放大器难以购买,价格较贵,灵活性不够,不易满足题目扩展功能要求。 方案三:市面上有多种型号、各具特色的宽频带集成运算放大器。这些集成运算放大器有的通频带宽,有足够的增益,有的可以输出较高电压,使用方便,有的甚至可以实现增益可调及AGC的功能。总体上硬件的实现和调试较为简单,所以,我们决定采用多个集成运放级连实现本题目。系统方框图如图1-1-1

射频宽带放大器

射频宽带放大器(D题) 摘要:本系统以可控增益放大器LMH6502为核心,外加宽带放大器OPA695的配合,实现了增益可调的射频宽带放大功能。系统主要由四个模块构成:前置固定放大电路模块、可控增益电路模块、后级固定放大电路模块和单片机控制显示模块。前置放大电路和后级放大电路以OPA695为核心器件,分别可提供约25.3dB 和23.5dB的固定增益;可控增益模块主要由LMH6502构成,可实现-50dB~20dB 的动态增益变化;单片机显示模块用于控制并显示可控增益电路模块的控制电压,使整个网络能够完成0~60dB的增益可调。本系统具有增益可调,频带宽,电路形式简单且调试方便的特点。经测试,系统完成了全部基本功能和部分发挥功能。 关键词:宽带放大器;可控增益;单片机控制;

一、系统方案: 1.1方案比较与选择: 方案一采用分立三极管或双栅场效应管,将每一级构成的可控放大器级联,分别对每一级增益进行控制。该方案灵活度相对较高,但电路稳定度低,不利于调节和控制。 图一方案一总体框图 方案二:用模拟开关构成电阻网络,由单片机控制以改变信号增益。这种方案存在的不足是模拟开关会导致导通电阻较大,信号会互相干扰,容易影响系统性能。而且电阻网络级数多,造成硬件电路复杂,且电阻网络的电阻选择也较为困难,很难做到高精度控制。 方案三:用多级固定增益的运算放大电路和电压增益控制运算放大器构成。集成可控增益放大器的增益与控制电压成严格线性关系,控制电压由单片机控制DAC 产生,精度高,可以满足题目指标要求,而且外围电路简单,便于调试,故采用此方案。 图二电路总体框图 1.2方案描述: 1.2.1总体框图:

基于可调程控的宽带直流放大器设计

基于可调程控的宽带直流放大器设计 本系统采用可控增益放大器VCA810和宽带低噪声运放OPA2846结合的方式,通过主控芯STC12C5A60S2控制D/A输出电压调整VCA810增益,并且能够有效地实现0~60dB可调增益.还加入BUF634并联模块以提高系统的带载能力,之后使用巴特沃兹无源低通滤波电路对放大器的带宽进行限制,同时滤除噪声.末级采用THS3092两路并联功率放大模块对输出功率进行放大,使整个系统输出最大有效值达到6V本系统具有带宽增益可调范围大,能够有效抑制直流零点漂移,放大器稳定性高等特性。 标签:宽带放大器;可控增益;VCA810 本系统设计一个基于可调程控的宽带直流放大器,要求增益可调范围为0~60dB,信号的通频带保持在0~5MHz,最大带宽增益积为5GHz,输出电压有效值可达6V,具有通频带内增益平坦,能够抑制直流零点漂移,并且能够保持放大器的稳定性。文章根据上述要求设计的系统主要包括四个模块:固定增益放大模块、可变增益放大模块、低通滤波器模块及功率放大模块。 1 系统总体框架 如图1所示,本系统以STC12C5A60S2作为控制与运算核心,将输入信号输入到第一级放大电路进行增益放大,再经第二级放大电路滤除杂波和进行功率放大后得到符合要求的输出信号。其中,第一级放大电路主要包含固定增益放大模块和可变增益放大模块,第二级低通滤波器模块和功率放大模块。另外,STC12C5A60S2主要用于可变增益放大模块的程控和输出调制电压的实时显示。为使第一级放大电路和第二级放大电路不互相影响,文章在两级电路之间加入一个缓冲级。 2 实现原理 2.1 带宽增益积。本系统信号通频带为0~5MHz,最大电压增益Av≥60dB,V,故应尽量减少使用VCA810的数量,在增益控制中,本系统采用一片VCA810可变增益放大与OPA2846固定增益放大配合,通过单片机程控输出信号放大通路实现0~60dB可调增益,OPA2846的输入偏置电压仅为0.15mV,THS3092在±5V供电时输入偏置电压仅为0.3mV,均能够很有效地抑制零点漂移。 2.4 放大器稳定性 系统的稳定性取决于系统的相位裕量,相位裕量是指放大器开环增益为0dB 时的相位与180°的差值,放大器一般会有自激的问题,有的情况是由于在放大器的相移为180°时,其增益仍然大于1,这种情况可以在反馈环路中增加零点来做相位补偿.总体来说,自激振荡是由于信号在通过运放及反馈回路的过程中产生了附加相移,用?驻?准?住表示低频段的附加相移,?驻?准F表示高频段

09年C题实验报告(宽带直流放大器)要点

2009年全国大学生电子设计竞赛 【本科组】 宽带直流放大器(C题)

摘要:本宽带直放大器使用一片ad8039两级前置放大然后经过由VCA810组成的程控放大电路经过5M和10M的三阶无源滤波器再通过AD811精密运放和BUF634缓冲电路接负载输出,整个系统由单片机通过键盘控制,可以在手动与步进放大倍数之间调节,也可以通过按键调节5M和10M通道的滤波器,该系统性能指标良好,增益可以在0~66.8dB之间调节,在规定的带宽范围内幅度波动没有超过1dB,完成了题目的要求。 关键词:前置放大无源滤波步进放大 Abstract:The broadband amplifier using a straight ad8039 two levels of preamplifier and then through a programmable amplifier circuit composed of VCA810 through a 5 m and 10 m of third-order passive filter through AD811 precision op-amp and BUF634 load output buffer circuit, the whole system is controlled by a single-chip microcomputer by keyboard, can step between magnification and manual adjustment, can also use buttons adjust the filter of 5 m and 10 m channel, the system performance is good, can be between 0 ~ 66.8 dB gain adjustment, amplitude fluctuations within the bandwidth of the provisions of no more than 1 dB, completed the topic request. Key Word:pre-amplification Passive filter Step amplification

射频宽带放大器的设计方案

射频宽带放大器设计报告 摘要:本系统以AD公司生产的高速可控增益运放AD8330为核心,结合固定增益放大、可变增益放大、末级差分电路等主要部分,能实现放大倍数0~50dB 增益可调。前级放大采用一片AD8330实现可变增益放大,固定增益放大采用OPA847芯片实现10倍的固定增益放大,再经末级1片电流反馈型运放THS3001扩流,构建末级差分驱动负载。 关键词:宽带放大器高速运放 OPA847 AD8330

一、方案论证与选择 1、方案选择与比较 1.1 固定增益放大器比较 方案一:采用OPA820运放芯片作为固定增益放大,该芯片是一种高速运算放大器,在6 Hz~ 20 MHz 的通频带中可实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。但是缺点是通频带不够宽。 方案二:采用OPA695电压反馈型高速运算放大器,在1400MHz频率下能实现两倍放大,符合本题要求,但在高频下,该运放易产生自激。 方案三:采用OPA847, 电压反馈型高速运算放大器,最大频带宽度达 3.9GHz,完全满足本题频带要求,输入电压噪声低,带内波动小,自激现象 少。 综上所述,本设计采用方案三。 1.1.2 可变增益放大器比较 方案一:采用可编程程控放大器AD603。该运放增益在-11~+30dB范围内可调,通过改变管脚间的连接电阻值可调节增益范围,易于控制。但该运放增益可调带宽为90MHz,不满足题目要求。 方案二:采用高增益精度的压控VGA芯片AD8330。该芯片可控增益带宽可达150MHz,增益可调范围0~70dB,符合本题指标要求. 因此,该电路采用方案二。 1.1.3 电压增益可调方案比较 方案一:基于单片机做步进微调。由单片机MSP430G2553及12位DA转换芯片TLV5616对AD8330进行程控,实现增益在可取范围内可调。但是,此设计只能步进调节,不能连续可调,此方案不可取。 方案二:基于精密电位器做连续可调。用一个精密电位器对+5V分压后输入AD8330 5脚VDBS,从而对电压增益实现连续可调。电路简单,节省成本。 经比较,本设计选择方案二。 2、方案描述 总体框图如图1所示。

基于AD603程控宽带放大器的设计

基于AD603程控宽带放大器的设计

摘要 本设计是采用AD603可控增益放大器芯片设计的一款高增益,高宽带直流放大器,采用两级级联放大电路了,提高了放大增益,扩展了通频带宽,而且具有良好的抗噪声系数,采用AT89S52芯片控制数模转换(DAC0832芯片)进行程控放大控制,在0—20MHz频带内,放大倍数在0-40dB之间进行调节,增益起伏为1dB。系统具有键盘输入预置,增益可调和液晶显示,具有很强的实际应用能力。 关键词:AD603,AT89S52,DAC0832,程控放大器,高增益放大器

1、方案论证及比较 1.1 总体方案框图 本系统原理方框图如图1所示。本系统由前置放大器、中间放大器、末级功率放大器、控制器、键盘及稳压电源等组成。其中前置放大器、中间放大器、末级功率放大器构成了信号通道。 图1 系统原理框图 1.2 增益控制部分 方案一原理框图如图2所示,场效应管工作在可变电阻区,输出信号取自电阻与场效应管与对V’的分压。采用场效应管作AGC控制可以达到很高的频率和很低的噪声,但温度、电源等的漂移将会引起分压比的变化,用这种方案很难实现增益的精确控制和长时间稳定。 图 2 场效应管放大器电路图 方案二采用可编程放大器的思想,将输入的交流信号作为高速D/A的基准电压,这前置中间末级 键51单片 U U 稳220 V

时的D/A作为一个程控衰减器。理论上讲,只要D/A的速度够快、精度够高就可以实现很宽范围的精密增益调节。但是控制的数字量和最后的增益(dB)不成线性关系而是成指数关系,造成增益调节不均匀,精度下降。 方案三使用控制电压与增益成线性关系的可编程增益放大器PGA,用控制电压和增益(dB)成线性关系的可变增益放大器来实现增益控制(如图3)。根据题目对放大电路的增益可控的要求,考虑直接选取可调增益的运放实现,如AD603。其内部由R-2R梯形电阻网络和固定增益放大器构成,加在其梯型网络输入端的信号经衰减后,由固定增益放大器输出,衰减量是由加在增益控制接口的参考电压决定;而这个参考电压可通过单片机进行运算并控制D/A芯片输出控制电压得来,从而实现较精确的数控。此外AD603能提供由直流到30MHz以上的工作带宽,单级实际工作时可提供超过20dB的增益,两级级联后即可得到40dB以上的增益,通过后级放大器放大输出,在高频时也可提供超过60dB的增益。这种方法的优点是电路集成度高、条理较清晰、控制方便、易于数字化用单片机处理。 图 3 可变增益的运放放大器电路图综上所述,选用方案三,采用集成可变增益放大器AD603作增益控制。AD603是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压(V)成线性关系,因此可以很方便地使用D/A输出电压控制放大器的增益。 1.3 功率输出部分(末级功率放大器) 两片AD603级联构成放大器,可对不同的大小的输入信号进行前级放大。由于AD603的最大输出电压较小,所以需要前级放大信号需经过后级放大达到较高的输出有效值。

宽带直流放大器开题报告 -

HEFEI UNIVERSITY 毕业设计(论文) 开题报告 题目宽带直流放大器的设计与研究系别电子信息与电气工程系 专业通信工程 班级 09 级通信工程( 2 )班 姓名 指导老师 完成时间 2013 —03 —29

合肥学院电子信息与电气工程系 毕业设计(论文)开题报告 学生:汪皖春班级:09通信工程 2 班论文题 目 宽带直流放大器的设计与研究导师姓名李翠花 可行性方案分析 要求包含以下几个主要部分:(不少于1500字) 研究背景、主要内容、设计方案、技术路线、关键问题、时间安排 见附页 参 考 文 献 [1]黄智伟. 全国大学生电子设计竞赛系统设计[M].北京:北京航空航天大学出版 社,2006. [2]全国大学生电子设计竞赛组委会编.全国大学生电子设计竞赛获奖作品汇编 [M].北京:北京理工大学出版社,2006. [3]沈伟慈. 通信电路(第2版)[M].西安:西安电子科技大学出版社,2007. [4]高吉祥. 全国大学生电子设计竞赛培训系列教程:模拟电子线路设计[M].北京: 电子工业出版社,2007. [5]第六届全国大学生电子设计竞赛获奖作品选编[M].北京:北京理工大学出版社, 2003. 开 题 小 组 及 教 研 室 意 见 开题小组签名: 年月日

研究背景: 随着微电子技术的发展,人们迫切地要求能够远距离随时随地迅速而准确地传送多媒体信息。于是,无线通信技术得到了迅猛的发展,技术也越来越成熟。而宽带放大器是上述通信系统和其它电子系统必不可少的一部分。由此可知,宽带放大器在通信系统中起到非常重要的作用,于是人们也对它的要求也越来越高。宽带直流放大器在科研中具有重要作用,宽带运算放大器广泛应用于A∕D转换器、D∕A转换器、有源滤波器、波形发生器、视频放大器等电路。例如在通讯、广播、雷达、电视、自动控制等各种装置中。因此宽带直流放大器应用十分广泛,有非常好的市场前景。宽带直流能够放大直流信号或变化极其缓慢的交流信号,它广泛应用于自动控制仪表,医疗电子仪器,电子测量仪器等。目前在无线通信、移动电话、卫星通信网、全球定位系统(GPS)、直播卫星接收(DBS)、ITS通信技术及毫米波自动防撞系统等领域有着广阔的应用前景,在光传输系统中,宽带直流放大器也同样占有重要地位。 主要内容: 本系统利用 C8051F120单片机作为主控制器,设计并实现了一宽带直流放大器,通过三级直接耦合放大和一级功率放大,放大倍数为0~40dB,通频带为0~10MHZ可预置。通频带内增益起伏≤3 dB;由外置键盘实现增益可控预置,步距为5dB;由LCD12864同步显示增益预置值和增益步进值;利用单个元器件的零点漂移特性,巧妙采用放大级正向、反向输入端,有效的抑制了零漂。整个系统实现简单,操作界面友好。 设计方案: 方案一:集成运放和分立元件相结合。宽带集成运放级联构成前置放大电路,实现小信号的前置放大及增益要求;运算放大器加分立器件三极管构成功率扩展型电路实现末级功率放大。 方案二:采用分立元件,利用高频三极管或场效应管差分对构成多级放大电路,末级采用大功率器件来保证输出功率,通过负反馈电路来确定增益。该方案可实现的放大器工作频率高、功率大,但其电路比较复杂,且零点漂移严重,难以实现直流信号的放大。此外,由于电路采用了多级放大,其稳定性差,容易产生自激现象。 方案三:采用集成运算放大器芯片级联构成。集成运放芯片使用简单,精度高,但是采用这种方案,放大器可能会出现输出功率不够,因此我们采用两个功率集成运放并联的方式实现增大输出功率。 方案选定:经三种方案比较,考虑到集成运放高增益、低直流漂移的优点和增益容易控制,决定采用方案三。 技术路线: 1、设计框图 以单片机为控制器,输入信号通过前置放大、中间级放大,再经过通频带选择网络完成对通频带带宽的选择,由末级放大器输出。通过键盘控制选择通频带带宽、电压增益等参数,并由显示器同步显示增益预置值和增益步进值。

宽带放大器设计报告

宽带放大器设计报告 ―-武汉大学电子设计基地设计组第1组:许可崔振威谢超 摘要:本系统利用可变增益放大器AD600作为核心,通过模拟开关选通不同的控制电压的方式来达到增益步进6dB,总增益从0dB到30dB的目的,其控制电压均由2.5v电压基准MAX873经过精密电阻分压得到,有效的保证了控制电压的稳定度,获得良好的波形。前置放大采用由AD844构成的正向放大器,可以有效的提高输入电阻,使输入电阻达到兆欧级别。后级放大采用增益固定为10dB的同向放大器,从而使整个电路的增益能从10dB变化到40dB,该放大器由高精度宽带运放MAX477构成,在保证良好输出波形的同时,可以使输出电压有效值大于3V。前置放大和后级放大的输出均采用峰值检测电路检测出正半周最大电压值,用于有效值的计算,采用AD603构成的AGC电路,在输入信号在0.05V~1.00V内变化时,能将输出有效值稳定在2.05~2.6 V。整个系统的通频带为1K~14.6MHz。由12位A/D 转换器MAX197对输出信号的峰值进行测量,分辨率达到1mV 。AT89S52和CycloneFPGA构成的单片机小系统板可以通过键盘,人为预置增益值来获取相应的放大倍数,同时实时显示实际增益值、输出有效值和当前增益误差。整个系统采用中文显示,界面友好美观,控制方便。

一、方案论证与选择 1.增益控制部分: 方案一 采用普通宽带运算放大器组成的放大电路,同时由分立元件构成的AGC控制电路,通过包络检波再反馈回放大器的方法来控制放大倍数,这种方法构成电路简单,但是反馈控制比较困难,难以实现步进,精度也很低。 方案二 采用集成可变增益放大器AD600作为增益控制。AD600是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压成线性关系,因此可以方便的采用控制电压的方式来控制放大器的增益.采用D/A变换装置输出电压控制高速压控放大器AD600来实现增益的步进,采用此种方法可以获得很小的步进。但是由这种方法得到的控制电压有一定的纹波,而芯片AD600对控制电压非常敏感,微小的电压波动就能造成输出波形上下起伏,波形不佳。 方案三 主控芯片采用AD600,利用电压基准源通过精密电阻分压得到各个增益值对应得控制电压,在用模拟开关CD4051来选则不同的控制电压来达到控制增益的目的。电压基准源采用MAXIM公司2.5 V基准MAX873。 经过比较,选用方案三。 2.有效值测量部分 方案一 采用检波二极管构成的峰值检测电路,然后用A/D转换器对其检测结果进行读数。峰值检测的原理是当输入电压正半周通过时,检波管导通,对电容C充电,适当选择电容值,使得电容放电速度大于充电速度,这样,电容两端的电压可以保持在最大电压处,该电压通过一个用运算放大器构成的射极跟随器输出电压峰值。采用这种电路优点是频带响应宽,频率越高检测反而越准确,且电路简单。但是由于检波二极管存在一定的导通压降,且为非线性,测量精度低,小信号时尤其明显。同时电容值的选取也使得电路有一定的局限性,如选取太大,放电时间过长,会改善输出电压发纹波,但是会导致该电路响应速度慢;如果电容选的太小,放电时间过短,能改善电路的响应时间,但也会导致低频时输出电压纹波较大。 方案二 采用集成电路AD637作为有效值运算,它测量有效值的范围为0-7V,精度优于0.5%,且外围元件少,频带宽,对于一个有效值为1V的信号,它的3dB带宽为8MHz,并且可对输入信号的电平以dB形式表示。该方案精度高,直接输出有效值,但电路稍复杂,且不适合高频信号。 经过比较,方案二中AD637对小信号测量具有很大优势,而方案一中在频带方面满足要求,考虑到题目的频带范围和制作成本的因素,采用方案一。 3.自动增益控制部分(AGC) 方案一 AGC电路实际上是一个根据输出电压的动态的调整放大倍数,从而使输出稳定在预定范围的反馈型电路。根据该特点可以引入CPU、A/D和D/A转换器通过程序对放大倍数进行控制,即数字式AGC,此种AGC电路的输出范围完全由人为设定,可以很容易满足题目要求,

射频宽带放大器

电子系统设计 方案设计:增益可调的宽带放大器 团队成员: 指导教师: 提交时间:2015年12月11日

增益可调的宽带放大器 摘要:本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大 器,要求具有0.3~100MHz 通频带,增益0~60dB 范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV 1≤的输入信号实现了增益0~60dB 范围内可调,带宽0.3~100MHz ,并在1~80MHz 频带内增益起伏dB 1≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。

1.系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现,如图2所示。考虑到本系统的通频带为0.3~100MHz,且输入阻抗限定为50Ω,由正相输入电压跟随器的输入阻抗为Rj趋于无穷大,所以图2电 路的输入阻抗为 k k k k R R R R R R R R≈ + * = = j j j n i // 。则可令实际电路取Rk=50Ω以达到输入阻抗要求。 除此之外,此前置放大电路还具有缓冲、避免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz。 图2 前置缓冲级

宽带放大器(B题)

宽带放大器(B题) 本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。 本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,全面提高了增益带宽积和输出电压幅度。应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了题目的所有基本和发挥要求。 方案论证与比较 1.可控增益放大器部分 方案一简单的放大电路可以由三极管搭接的放大电路实现,图1为分立元件放大器电路图。为了满足增益60dB的要求,可以采用多级放大电路实现。对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。此外,由于采用多级放大,电路稳定性差,容易产生自激现象。 方案二为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。又考虑到AD7520是一种廉价型的10位D/A转换芯片,其输出V out=Dn×Vref/210,其中Dn为10位数字量输入的二进制值,可满足210=1024挡增益调节,满足题目的精度要求。它由CMOS 电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。但由于AD7520对输入参考电压Vref有一定幅度要求,为使输入信号在mV~V每一数

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

AD603的直流宽带放大器

基于AD603的直流宽带放大器设计直流宽带放大器可以对宽频带、小信号、交直流信号进行高增益的放大,广泛应用于军事和医用设备等高科技领域上,具有很好的发展前景。在很多信号采集系统中,经放大的信号可能会超过A/D转换的量程,所以必须根据信号的变化相应调整放大倍数,在自动化程度要求较高的场合,需要程控放大器的增益。AD603是由美国ADI公司生产的压控放大器芯片,具有低噪声、宽频带、高增益精度(在通频带内增益起伏小于等于1dB)的特点。压控输入端电阻高达50MΩ,在输入电流很小时,片内控制电路对提供增益控制电压的外电路影响较小,适于实现程控增益调节。故该系统选择AD603为核心实现高增益、低噪声的程控直流宽带放大器。 1系统设计 1.1技术指标 输入电阻Ri≥50Ω;输入电压有效值Ui≤10mV;带宽0~10MHz,0~9MHz范围内,增益起伏小于等于1dB;程控增益40dB和60dB,以5dB步进;在60dB放大,带载50Ω时,最大输出10V,且无明显失真。 1.2总体设计 宽带直流放大器的实现原理框图如图1所示。该系统主要由宽带运放级联组成,输入信号经由AD603及外围电路构成的放大网络输出,输出增益为36.5dB,带宽15.6M,再由AD811放大,两级可实现40dB增益,在0~10MHz范围内无明显失真。经AD811放大电路放大的信号再经过AD829实现60dB增益,输出电压有效值10V,信号经过AD829之后进入扩流电路,实现带载50Ω电阻。单片机mega16通过DAC0832来控制预置增益,编程实现步进增益5dB,实时液晶显示。

图1总体设计框图 1.3单元电路分析与参数计算 1.3.1前置放大电路分析与设计 AD603是一款8引脚的高增益、带宽可调放大器,带宽最大为90MHz.在-1~+41dB 的增益范围内,带宽可达30MHz;在9~51dB的增益范围内,带宽为9MHz.由于带宽增益积的关系,一级AD603无法实现60dB放大,需采取多级级联实现。由于低噪声的特性,选择AD603作为第一级放大。根据芯片技术手册,当VG在-500mV~+500mV范围内以40dB/V(即25mV/dB)进行线性增益控制,增益G(dB)与控制电压VG之间的关系为:G(dB)=40VG+G0i(i=1,2,3)。这里要求增益5dB步进,故VG=5325mV=125mV,其中VG=VGPOS-VGNEG(单位为伏特),G0i分别为三种不同模式下的增益常量: G01=10dB,G02=10~30dB,G03=30dB. Ri=R1‖100=100‖100=50Ω,系统要求带宽为10M,前置放大器的带宽应大于 10M,采用G02模式,通过计算调试选定AD603的5、7脚接2.15kΩ,4、5连接5pF电容,实现频率补偿。第一级放大器的最高频率为: AD603芯片内部有100Ω电阻,在反向输入端与地之间加入100Ω电阻,实现输入电阻为50Ω,第一级实现增益36.5dB. 1.3.2中间级放大设计 AD603的供电电压最大为±7.5V,经AD603放大的信号幅度最大为5V左右,带载能力差。AD811是一款视频驱动放大器,在满足通频带内增益起伏小于等于0.1dB,增益小于等于2时,具有25M带宽,供电电压选用±15V,可实现10V有效值输出。满足系统10M通频带的指标要求,具有较强的带载能力,在满足40dB增益的前提下,还要考虑到与后级放大器一起实现60dB增益,且满足带宽要求,这里选择AD811的增益为1.5倍(3.5dB)。增益由电阻RFB和RG来决定: 为了便于精确调整放大倍数,RFB选用1kΩ滑动电位器,前两级放大后,在10M带宽范围内,实现了40dB增益。

宽带放大器

宽带放大器设计报告 摘要:本系统由四大模块组成,分别为放大模块、电源模块、峰值检波和测量显示模块组成。放大模块采用三级放大,在前级放大电路中,采用指定的高速运算放大器OPA820ID作为第一级放大电路,输出经第二级放大器OPA690放大后,后级放大采用指定的低失真电流反馈放大器THS3091D放大达到最大峰峰值大于10V的输出。电源模块采用DC-DC转换芯片TPS61089得到正负12V电源(利用外部充电泵原理)和MC34063得到的正负5V电源,34063得到的正负5V给前两级放大电路供电,TPS61089DRCT得到的正负12V经稳压得到正负9V给后级放大器THS3091D供电。峰值检波采用数字检波电路。测量模块采用TI公司低功耗单片机MSP430F149,利用单片机内部AD对检波后输出采样,经单片机处理后送至LCD显示。 关键词:宽带放大器,DC-DC转换,充电泵,峰值检波 一.方案论证与比较 1.1 放大器方案选择 前级放大器和后级放大器分别为指定的TI公司的OPA820ID和THS3091D,但仅由这两级放大不能满足题目要求。因此,需加入中间级放大电路。方案论证如下: 方案一:采用LM358放大器组成的放大电路。LM358是一般的运算放大器,对电源的要求较高,功耗较大。它的放大精度不是很高,受环境因素影响变化大,而且对输入的小信号放大,纹波和噪声都比较大。另外,LM358的增益带宽积较小,不能满足要求。 方案二:采用OPA690放大器组成的放大电路。OPA690是TI公司的的一款高性能电压反馈运算放大器。它具有较高的放大精度和较大的带宽,受环境影响较小,符合题目要求。 综上所述:我们选择方案二。 1.2 电源方案选择 题目中提供给我们的电源只有 +5V, 但为了更好的达到题目的要求,我们采用双电源供电,所以,应该将提供的电源做DC-DC变换。前两级采用MC34063变换得到正负5V电源供电。THS3091电源选择方案如下: 方案一:使用TPS61087DRCT和变压器。5V电压经DC-DC升压变换后,输出电压经变压器变压后产生正负电源。该方案对变压器的要求较高,需要准确计算出线圈匝数比,比较复杂,且输出电压不是很稳定,故此方案不予采纳。 方案二:使用TPS61087DRCT外部充电泵生成辅助电压。使用外部充电泵是从升压转换器生成辅助电压轨的一种灵活易用的方法。这些电压轨理论上可以是任何电压,正负均可,并且可以为需要两个或更多电压的任何应用供电。该方案设计电路简单,容易实现,可以满足设计要求。 综上所述:我们选择方案二。

宽带直流放大器设计方案

宽带直流放大器方案设计 一、方案的选择和论证 分析题目要求,设计需要满足以下几个技术指标:在输入电压有效值Vi≤10 mV 情况下放大器电压增益必须大于60dB,且电压增益为60dB时,输出端噪声电压的峰-峰值VONPP≤0.3V。另外,3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB,能为50欧姆的负载输出正弦有效值10V的电压。 基于以上要求,我们把整个放大器分为5个板块来设计。前置缓冲级,中间增益可调放大级,后级功率放大电路,电源部分和滤波器。 系统总体框图: 1.前置缓冲级方案论证 方案一:采用宽带高精度集成运放。 缓冲级对整个放大电路来说尤为重要,高质量的前级是放大电路的基本保障,故本设计中采用宽带高精度低噪声运算放大器OPA620构成电压增益为6dB的缓冲级。该运放增益宽带乘积为200M赫兹,能很好的满足题目要求。 方案二:采用普通运放。 普通运放虽然价格稍低,但是带宽和精度都十分有限,理论上虽然能用反馈的方式扩宽通频带,但是题目要求的10M赫兹频带太宽,故普通低价的运放很难达到实验要求。 比较上述两种方案,方案一能更好的完善题要求的指标,方案二虽然成本较低,但是不容易达到题目要求,且前级配置的高低对后级电路影响很大。故选择方案一。 2.中间增益放大级方案论证 方案一:采用三极管构成多级放大电路

若用分立元件构成60dB放大器,则须采用三极管构成的多级放大器。此方案有选材方便和成本较低的优点,但是选择性能合适的三级管比较费时间,选择合适的三极管配对组合更是不容易,并且题目给出的指标较高,三级管构成的多级放大器容易引起更多的干扰,影响放大质量。此外,晶体管构成的多级放大电路不易实现大范围的增益连续可调,这是相比于集成运算放大器的又一大缺点。所以,我们对下一种方案进行论证。 方案二:使用集成运放OPA620构成2级放大 单个OPA620的增益可调范围为 -20bB — +20dB ,采用两级相连,则可以实现-40dB-+40dB的可调范围。从厂商的数据手册可以看出,OPA620外围电路简单,容易操控,通频带内增益起伏小于0.05dB,且放大效果较好。但是若要求实现提高部分0-60dB全范围的连续可调,两级OPA620放大则不能达到题目要求。 方案三:使用低噪声增益可控放大器AD603 使用两级AD603构成的增益可调放大电路。 AD603是主要用于RF和IF AGC系统的低噪声可调增益放大器,它具有引脚可编程增益功能,可以使用一个外部电阻设置增益范围内的任何增益子范围,控制接口可以输入差分电压,也可以输入单端的正控制或负控制电压,使用十分方便。单级AD603便可以实现0-40dB的电压放大,且该增益范围内有30MHz的频带宽,性能优异,如果采用两级连放,理论上可以实现0-80dB的增益可调范围,能满足题目要求。其次,AD603构成的增益可控放大电路有很大的提升空间,可以通过电位器获取基准电压进行手动控制,通过模拟开关连接电阻器实现增益程控,通过单片机配合DAC模块实现不同精度的增益数控。 所以比较上述两种方案,AD603与OPA620相比,容易实现增益数控,AD603有更高的性价比,我们最终选择方案三。 3.增益控制电路 方案一:单片机和数模转换芯片实现增益可调 使用89C51单片机,选择稳定的基准电压,配合DAC0832输出电压信号控制AD603,从而实现增益数控。 DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,D/A转换结果采用电流形式输出,理论精度为1/256,能满足增益步进5dB的要求。该芯片价格便宜,使用方便,算是较常用的8位DAC芯片。该芯片为电流输出型,若采用该芯片实现AD603的增益可控,则须在输出端加上运算放大器LM324,实现电流到电压的转换,从而稳定实现增益可调。 方案二:单片机、模拟开关和电阻网络实现增益可调 使用89C51单片机,配合模拟开关控制不少于12个串联的电阻,通过取得电阻上的稳定电压控制AD603,从而实现步进为5dB的增益数控。模拟开关控制电阻网络与DAC模块工作原理相似,但是精度就远远不如8位DAC,并且使用模拟开关和电阻网络扩大了控制电路,电路集成度降低,引入更多的干扰因素。再者,从成本上看来,该方案也是不经济的。 方案三:滑动变阻器实现增益手动可调 通过电位器获取与基准电压成一定比例的控制电压输入AD603控制端,实现手动增益可调。 该方案很容易实现增益连续可调,相比以上两种方案成本是最低的,理论控制精度最高,精度仅有电阻器可调精度决定,但是此方案仅适用于固定范围内的手动

宽带直流放大器的设计

宽带直流放大器地设计 电子信息工程专业学生:陈朝霞指导老师:许岳兵 摘要:本文以TI 公司地压控放大器VCA810 为核心,外加ADI 公司地运算放大器AD806 5 作前级,采用ST 公司地89C52 单片机控制系统增益,通过按键实现对小信号放大增益± 6 dB 步进可调,并通过1602 液晶实时显示.系统主要由前级缓冲模块,程控放大模块,人机交换模块,显示模块组成.整个系统结构简单,性能稳定,操作简单可靠. 关键词:程控放大;VCA810 ;STC89C52 1 引言 宽带放大器在自动控制系统,电子测量技术,智能仪表等领域应用非常广泛.传统放大 器由分立元件器搭建而成,且有地采用电容级间耦合方式,因此不具有直流放大能力,但在仪器仪表地应用中,也需要对直流信号或者偏置信号进行采集和还原,因此设计一款具有直流放大功能地宽带直流放大器是很有必要地.而宽带直流放大电路地发展中,为了满足 电路地更高性能与控制地便捷性,准确性,程控宽带直流放大电路应时而生.本文就是对程 控宽带直流放大器进行研究. 2 系统方案设计与论证 本文所设计地宽带直流放大器基本要求是3dB带宽为OHz?6MHz ;最大增益>40dB (100倍),增益值6dB步进可调,并实时显示增益;最大输出电压有效值>3V负载电 阻600 Q.根据设计功能要求,系统分为信号放大模块,控制模块和人机交换模块 2.1 方案比较与选择方案一:采用分立元件构成,利用高频三极管或场效应管差分对构成多级放大电路,通过负反馈电路来确定增益.但电路比较复杂,且零点漂移严重,难以实现直流信号地放大. 方案二:采用集成运放芯片级联.集成运放芯片使用比较简单,但精度高,且集成运放具有高放大倍数、高输入电阻、低输出电阻等优良性能.而对于实用地放大电路,通常要求 其输入电阻大,输出电阻小,集成运放刚好能满足上述要求. 方案选定:比较上述地两种方案,决定采用方案二. 2.2 系统方案描述 系统框图如图 1 所示,系统分为信号处理电路和控制电路两部分.信号处理电路主要由前级缓冲模块、可变增益放大模块组成.前级缓冲模块采用AD8065 电压反馈型芯片.可变增益放大器采用可控增益放大器VCA810. 系统通过STC89C52 实现控制,通过STC89C52 和按键控制DAC0832 地输入数字量,并在LCD1602 上实时显示该放大器地增益.

相关主题
文本预览
相关文档 最新文档