当前位置:文档之家› 北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法
北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法

1. 椭球体、基准面及地图投影

GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。

基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

上述3个椭球体参数如下:

椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。

地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。

2. GIS中基准面的定义与转换

虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。

GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出

版的《城市地理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz

表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。

美国国家测绘局(National Imagery and Mapping Agency)公布了世界大多数国家的当地基准面至WGS1984基准面的转换3参数(平移参数),可从 http://164.214.2.59/GandG/wgs84dt/dtp.html下载,其中包括有香港Hong Kong 1963基准面、台湾 Hu-Tzu-Shan 基准面的转换3参数,但是没有中国大陆的参数。

实际工作中一般都根据工作区内已知的北京54坐标控制点计算转换参数,如果工作区内有足够多的已知北京54与WGS84坐标控制点,可直接计算坐标转换的7参数或3参数;当工作区内有3个已知北京54与WGS84坐标控制点时,可用下式计算WGS84到北京54坐标的转换参数(A、B、C、D、E、F):x54 = AX84 BY84 C,y54 = DX84 EY84 F,多余一点用作检验;在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时精度也足够了。

C、F ;当有3个已知控制点时,可利用得到的转换系数(A、B、C、

D、

E、F)定义 AffineTransform坐标系变换对象,实现坐标系的转换,如:(8,104,7,123,0,1,21500000,0,map.AffineTransform),其中AffineTransform定义为AffineTransform.set(7,A、B、C、D、E、F)(7表示单位米);当然有足够多已知控制点时,直接求定7参数自定义基准面就行了。 )

用EXCEL完成GPS坐标转换的简易方法

[摘要] 对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。

[关键字] 电子表格;GPS;坐标转换

作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机

定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS 坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS坐标转换方法。

一、用EXCEL进行高斯投影换算

从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从X Y换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。

完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用

21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下:

单元格

单元格内容

说明

A2

输入中央子午线,以度.分秒形式输入,如115度30分则输入115.3 0

起算数据L0

B2

=INT(A2) (INT(A2*100)-INT(A2)*100)/60 (A2*10000-INT(A2*100) *100)/3600

把L0化成度

C2

以度小数形式输入纬度值,如38°14′20″则输入38.1420

起算数据B

D2

以度小数形式输入经度值

起算数据L

E2

=INT(C2) (INT(C2*100)-INT(C2)*100)/60 (C2*10000-INT(C2*100) *100)/3600

把B化成度

F2

=INT(D2) (INT(D2*100)-INT(D2)*100)/60 (D2*10000-INT(D2*100) *100)/3600

把L化成度

G2

=F2-B2

L-L0

H2

=G2/57.2957795130823

化作弧度

I2

=TAN(RADIANS(E2)) Tan(B)

J2

=COS(RADIANS(E2)) COS(B)

K2

=0.006738525415*J2*J2

L2

=I2*I2

M2

=1 K2

N2

=6399698.9018/SQRT(M2)

O2

=H2*H2*J2*J2

P2

=I2*J2

Q2

=P2*P2

R2

=(32005.78006 Q2*(133.92133 Q2*0.7031))

S2

=6367558.49686*E2/57.29577951308-P2*J2*R2 ((((L2-58)*L2 61) *

O2/30 (4*K2 5)*M2-L2)*O2/12 1)*N2*I2*O2/2

计算结果X

T2

=((((L2-18)*L2-(58*L2-14)*K2 5)*O2/20 M2-L2)*O2/6 1)*N2*(H2 *J2)

计算结果Y

表中公式的来源及EXCEL软件的操作方法,请参阅有关资料,这里不再赘述。按上面表格中的公式输入到相应单元格后,就可方便地由经纬度求得平面直角坐标。当输入完所有的经纬度后,用鼠标下拉即可得到所有的计算结果。表中的许多单元格公式为中间过程,可以用E XCEL的列隐藏功能把这些没有必要显示的列隐藏起来,表面上形成标准的计算报表,使整个计算表简单明了。从理论上讲,可计算的数据量是无限的,当第一次输入公式后,相当于自己完成了一软件的编制,可另存起来供今后重复使用,一劳永逸。

二、GPS坐标转换方法与面积计算

GPS所采用的坐标系是美国国防部1984世界坐标系,简称WGS-84,它是一个协议地球参考系,坐标系原点在地球质心。GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。由此可见,必须将WGS-84坐标进行坐标系转换才能供标图使用。坐标系之间的转换一般采用七参数法或三参数法,其中七参数为X平移、Y平移、Z平移、X旋转、Y 旋转、Z旋转以及尺度比参数,若忽略旋转参数和尺度比参数则为三参数方法,三参数法为七参数法的特例。这里的Z、Y、Z是空间大地直角坐标系坐标,为转换过程的中间值。在实际工作中我们常用的是平面直角坐标,是否可以跳过空间直角坐标系,省略复杂的运算,进行简单转换呢?为此,笔者进行了长期的实践,证明是可行的。其在原理是:不把GPS所测定的WGS-84坐标当作WGS-84坐标,而是当作具有一定系统性误差的54系坐标值,然后通过国家已知点纠正,消除该系统误差。我们暂把该方法称作坐标改正法,下面以WGS-84坐标转换成54系坐标为例,介绍数据处理方法:

首先,在测区附近选择一国家已知点,在该已知点上用GPS测定WGP S-84坐标系经纬度B和L,把此坐标视为有误差的54系坐标,利用

54系EXCEL将经纬度BL转换成平面直角坐标X’Y’,然后与已知坐标比较则可计算出偏移量:

△X=X-X’

△Y=Y-Y’

式中的X、Y为国家控制点的已知坐标,X’、Y’为测定坐标,△X

和△Y为偏移量。

求得偏移量后,就可以用此偏移量纠正测区内的其他测量点了。把其他GPS测量点的经纬度测量值,转换成平面坐标X’Y’,在此XY坐标值上直接加上偏移值就得到了转换后的54系坐标:

X=X’ △X

Y=Y’ △Y

在上述EXCEL计算表的最后两列,附加上求得的改正数并分别与计算出来的XY相加后,即得到转换结果。若测量路线是一闭合区域的话,可把计算结果按路线顺序排列起来,再输入相应的计算公式,即可计算出该区域的面积。有关用坐标计算面积的原理与公式,这里不再叙

述,读者可参阅有关资料。需要说明的是,面积的计算精度基本上不受坐标转换精度的影响,若只需要求算面积的话,可不进行坐标系转换这一步,只需要把BL化成XY就行了。

就1:1万比例尺成图而言,在一般的县行政区范围内(如40Km×40 Km),用此简单的坐标改正法进行转换与较复杂的七参数法没有多大差别。能否满足1:1万比例尺变更调查的要求,主要取决于GPS接收机本身的精度,与转换方法的选择关系不大。当面积较大时,使用该方法可能会使误差增大,这时可考虑分区域转换。

你可以通过这个链接引用该篇文

章:https://www.doczj.com/doc/1418574941.html,/viewdiary.218952654.html

使用cass进行北京54坐标与西安80坐标相互转换教程

使用cass进行北京54坐标与西安80坐标相互转换教程 北京54坐标和西安80坐标是使用比较多的,有的时候涉及到这两个坐标系的转换,我们在这里介绍一下使用cass来进行互转的方法。当然还有其他的方法,比如利用COORD4.1进行坐标转换。COORD 4.1是一个免费的坐标转换软件,也是测绘工作者常备的工具之一。以后有机会再来介绍。先跟大家介绍如何使用cass来进行坐标系的互转。 第一步:输入公共点坐标数据 首先准备好2至3个公共点,即同时拥有54和80两套坐标,这些点要覆盖要转换数据所在在地区。然后打开CASS2008,选择“地物编辑”菜单下的“坐标转换”进入坐标转换界面,在“公共点”下面“转换前”后面的三个输入框中输入第一个公共点的54坐标, 再在“转换后”的三个输入框中输入该点的80西安坐标, 输完点击右侧“添加”按钮, 依次输入第二、第三个点的“54、80坐标并添加;如果经常在此区域进行坐标转换,可点击“存到公共点文件”,输入文件存储路径及文件名称,保存,下次使用时直接读入公共点文件即可。 第二步:输入转换前、后的数据文件名 在“转换前”右侧的输入框中输入转换前即54坐标数据的文件路径及文件名,也可以直接点击最右侧的查找按钮直接查找,然后在“转换后”右侧的输入框中输入转换后的文件名。 第三步:计算转换参数 如果用仅有两个已知点,可以计算四参数,三个或三个以上已知点则可以计算七参数。利用四参数转换就点击“计算转换四参数”按钮,如果用七参数转换还需选择转换前、后的坐标系统及转换点所在的中央子午线,点击“计算转换七参数”,软件就自动计算出了七参数。 第四步:进行数据转换 如果转换的是数据就把“转换数据”前面的对勾选上,点击“使用七参数”,即完成了数据的转换,当然也可点击“使用四参数”,完成转换。 补充:北京54坐标与西安80坐标转换原理 北京54坐标与西安坐标之间的转换其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密的,因此不存在一套转换参数可以全国通用,也没有现成的公式来完成转换因此必须利用具有两套坐标值的公共点实现转换。

北京54坐标与GPS坐标的转化RT

WGS 一84坐标系与BJ 一54坐标系 转换方法 摘要 GPS 测量得到的是WGS-84中的地心空间直角坐标,而工程施工中通常使用地方独立坐标系,要求 得到地方平面坐标。如何实现两者的转换,一直是工程施工中关心的热点问题。介绍了从GPS 定位结果至平面坐标的两种转换模型。平面转换模型原理简单,数值稳定可靠,但只适用于小范围的GPS 测量;空间转换模型可用于大范围GPS 测量,按实际情况又分为7参数转换和3参数转换两种。鉴于54坐标点的大地高通常不能精确得知,对这两种转换方法得到的平面坐标的精度进行了比较,得出大地高精度主要表现为对高程的影响,对平面坐标影响较小的结论。此外,还讨论了7参数与3参数模型对转换结果的影响。 关键词 坐标系 GPS 平面转换 空间转换 前言 随着GPS 定位精度的不断提高,GPS 技术在测量中的应用也越来越广泛。由于GPS 卫星星历表示于WGS-84坐标系中,算得的GPS 定位结果也直接表示在WGS-84全球坐标系中。而我国测绘成果普遍表示在北京54坐标系中,它以克拉索夫斯基椭球为参考椭球,投影方式为Gauss 投影,以3。或6。带划分整个中国所在区域。由于我国北京54坐标系是20世纪50年代建立的,受当时观测和计算手段的限制,精度不是很高,我国大部分城市为了避免 Gauss 投影变形带来的不便,而采用地方独立坐标系。地方独立坐标系的建立仍采用克拉索夫斯基椭球,中央子午线定在城市中央,投影面定为城市平均高度。这些原因使得我国的平面坐标较为复杂。本文针对这些问题,详细介绍将GPS 定位结果转换为平面坐标的算法,并进行精度对比,得出了一些有利于工程施工应用的结论和建议。 平面转换模型 假设北京54椭球的中心和坐标轴方向与WGS-84椭球相一致,可通过平面转换模型,将GPS 定位得到的大地经纬度和大地高,通过以下过程转换成平面坐标()848484,,T B L h ,通过以下过程转换成平面坐标(),T g g x y : (1) 由WGS-84的椭球参数,即椭球长半径和扁率,将() 848484,,T B L h 换算至空间直角 坐标(),,T X Y Z 的公式为:

mapgis54转80坐标详解(附图)

MAPGIS“北京54 坐标系”转“西安80坐标系”详细教程 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来);第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”

输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下: 首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京 54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供 3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示:

南方CASS坐标转换方法

南方CASS坐标转换方法 摘要本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的两种方法。 关键词:坐标系坐标转换方法 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。

一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球) 。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。

北京54坐标系与西安80坐标系及常用坐标系参数(精)

北京54坐标系与西安80坐标系及常用坐标系参数西安80坐标系与北京54坐标系其实是一种椭球参数的转换,作为这种转,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移, Y平移,Z平移,X旋转(WX,Y 旋转(WY,Z旋转(WZ,尺度变化(DM。要求得七参数就需要在一个地区需要3个以上的已知点。如果区域范围不大,最远点间的距离不大于30Km(经验值,这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转, Z旋转,尺度变化面DM视为0。 方法如下: 第一步:向地方测绘局(或其它地方找本区域三个公共点坐标对; 第二步:求公共点的操作系数。 第三步:利用相关软件进行投影变换。 54国家坐标系: 建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c.大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为1956年青岛验潮站求出的黄海平均海水面;

f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天 文水准路线推算而得。 自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。 1954北京坐标系参考椭球基本几何参数 长半轴a=6378245m 短半轴b=6356863.0188m 扁率α=1/298.3 第一偏心率平方=0.006693421622966 第二偏心率平方=0.006738525414683 80国家坐标系:采用国际地理联合会(IGU第十六届大会推荐的椭球参数,大地 坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。 C80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件: (1大地原点在我国中部,具体地点是陕西省径阳县永乐镇; (2C80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面; X轴在大地起始子午面内与Z轴垂直指向经度0方向; Y轴与Z、X轴成右手坐标系; (3椭球参数采用IUG1975年大会推荐的参数因而可得C80椭球两个最常用的几何参数为:

北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法 1. 椭球体、基准面及地图投影 GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

54坐标系、80坐标系、84坐标系之间的转换关系

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。 3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中:V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差 解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。但是要想GPS观测成果用于工程或者测绘,还需要将地方直

WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 张兢1 王文瑞2 陈溪1 (1.广西第一测绘院广西南宁530023; 2.南宁市勘测院广西南宁530022) 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1 坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法 一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而 来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1 。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但 该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成果相矛盾给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建 立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球 ) 。其主要参数为长半轴为6378140 米扁率为 1/。IAG-1975 椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面较好的吻合。 此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平 差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。 由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球

WGS84坐标与北京54坐标转换

WGS84坐标与北京54坐标转换 1. 椭球体、基准面及地图投影 GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影 (Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数 据多以WGS1984为基准。 上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye 基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为 X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬 度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校 正因子,用于调整椭球大小。 美国国家测绘局(National Imagery and Mapping Agency)公布了世界大多数国家的当地基准面至

部分地区WGS84坐标系转换BJ54坐标系参数

部分地区WGS84坐标系转换BJ54坐标系参数 部分地区WGS84坐标系转换BJ54坐标系参数 转换参数来自 https://www.doczj.com/doc/1418574941.html,/forum_view.asp?forum_id=14&view_id=61&page =4鼎星在线GPS俱乐部,来自全国各地网友的共享,使用中最好验证一下该参数的正确性。注:以下参数仅供参考!! 拉萨GPS参数 DX=11.9 DY=-120.8 DZ=-62.4 DA=-108.0 DF=0.00000050 E=93°00.000 +1.0000000 +5000000.0 0.0 藏东可用99°,其它参数不变,可对照地形图校对。 广东省GPS参数:这是WGS84转北京54的,适宜河源、惠州、深圳、东莞地区 DX=-19 DY=-112 DZ=-55 DA=-108.0 dF=0.00000050 E=114°00.000 +1.0000000 +5000000.0 0.0 ,WGS84转西安80的是 DX=-96 DY=-51 DZ=12 DA=-3 DF=0.00000000 E=114°00.000 +1.0000000 +5000000.0 0.0 适宜整个广东。 广东?河源GPS参数转换参数/ DX=12 DY=-121 DZ=-62 DA=-108 dF=0.00000050 E=114°00.000 +1.0000000 +5000000.0 0.0

坐标参数 海南坐标转换参数: dx=-9.8 dy=-114.6 dz=-62.7 da=-108.0 df=0.0000005 中央子午线:111 DX = -18 DY = -104.5 DZ = -57.5 DA= -108; DF= 0.0000005 中央子午经度:117或123(东为123,西为117) 新疆乌鲁木齐地区坐标转换参数: DX = 19 DY = -33 DZ = 5 DA= -108; DF= 0.0000005 中央子午经度:87 各地WGS84坐标系转换BJ54坐标系参数(不断加入中...)以下为四川盆地坐标系转换参数 Dx=-4 Dy=-104 Dz=-45 Da=-108 Df=+0.0000005 中央子午经度:105 以下为包头地区坐标系转换参数 Dx=-92 Dy=-49 Dz=-4 Da=-108 Df=+0.0000005 中央子午经度:114 安徽省坐标转换区域化参数: DX = -15 DY = -120 DZ = -48 DA= -108; DF= 0.0000005 中央子午经度:117

坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80等)

坐标转换的相关问题(椭球体、投影、坐标系统、转换、BEIJING54、XIAN80 等) 最近需要将一些数据进行转换,用到了一点坐标转换的知识,发现还来这么复杂^_^,觉得自己真是愧对了武汉大学以及中科院这么多年培养我,让我上了好多课却从来没有好好听,今天才知道其实很有用!不多废话,给您分享下我的坐标转换之路。 Part one: Background 地理坐标系与投影坐标系的区别 (cite from:https://www.doczj.com/doc/1418574941.html,/f?kz=354009166) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000 2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。 Projection: Gauss_Kruger

北京54坐标系向国家2000大地坐标系的转换

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与

前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。 3国家2000坐标系(CGCS2000)经国务院批准我国自2008年7月1日启用2000国家大地坐标系,2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,为各项社会经济活动提供基础性保障;更好地阐明地球空间物体的运动,满足各部门高精度定位的需求。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。2000国家大地坐标系采用的地球椭球参数的数值为:长半轴,a=6378137m;扁率,f=1/298.257222101;地心引力常数,GM=3.986004418×1014m3s-2;自转角速度,ω=7.292l15×10-5 rads-1 。2000国家大地坐标系(CGCS2000)其定义与ITRS协议的定义一致,即坐标系原点为包括海洋和大气的整个地球的质量中心;尺度为在引力相对论意义下的局部地球框架的尺度;定向的初始值由1984.0时BIH定向给定,而定向的时间演化保证相对地壳不产生残余的全球旋转;长度单位为引力相对意义下局部

北京54转80坐标系软件操作步骤

“北京54 坐标系”转“西安80坐标系” 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X 平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来); 第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下:

首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示: 图1 1、单击“投影转换”“单下“S坐标系转换”“令,系统弹出“转换坐标值”“话框,如图2所示:

wgs84和北京54坐标转换的一些参数

主要介绍的是:3参数(七参数)转换法,三参数坐标纠正法 一:3参数(七参数)转换法 从本质上来说,转换的步骤应该大致遵循这样的规则: 首先,将84的经纬度坐标(b84,l84,h84)转换为以地心为中心点的大地坐标(x84,y84,z84); 然后根据七参数法(或3参数法)将其转换为54下的地心坐标(x54,y54,z54); 然后根据54下的椭球参数,将第二步得到的地心坐标转换为大地坐标(b54,l54,h54); 最后根据工程需要以及各种投影(如高斯克吕格)规则进行投影得到对应的投影坐标。 只有在第二步的时候涉及到七个参数的计算,其他的步骤都有现成的公式可供计算,稍后我会将各种论文贴上来。如果这里涉及到您的利益还请跟我联系,我将马上删除下载链接,我本意只是用于学习使用。 其实如果在公司或者做项目的时候,当对这起个参数要求的很急的时候,我们可以从政府部门或者通过坐标转换软件求出这七个参数或者三个参数,这个可以大大提高效率,节省时间。这些坐标转换软件有:坐标转换大师(这个不错),coorconvert.exe(一般),coord.exe(这个不错)。 一旦求出了七个参数,可以进行坐标转换的软件除了上述这些小软件可以进行转换外,一些比较有名的gis开发软件或者开发平台都提供了利用七个参数转换整个数据的功能或者提供了转换单个点的功能,这些在arc gis,supermap,mapgis中都有。 二:三参数坐标纠正法 这个方法是这次我在实践中得出来的。因为求出七个参数太过麻烦,所以选用了本方法。本方法的使用范围为:大比例尺地形图比较适用,如县范围等。 具体方法: 1.从测区取出适量的坐标控制点,坐标控制点是些这样的点,他们拥有84下的经纬度坐标,同时也拥有54下的投影坐标; 2.取出后利用将经纬度坐标在esupermap平台中编写程序将其转成84下的高斯克吕格投影坐标(可以看成是一种虚假的投影); 3.由2步中得到的投影坐标和原54下的投影坐标相比较得到一个差值p1(x1,y1,z1),并将其保存起来; 4.重复第二步一直到把所有的点都计算完,计算完后将差值进行汇总并得到一个平均值p(x,y,z). 通过此方法得到的三个参数经过测试和验证,他的精度在厘米或者亚米级的进度,这个对于一般的定位来说已经足够了。他正宗的参数法法的精度还要高。 总结:当然,如果要提高精度的话,最好还是用七参数法,他的定位精度基本上都在厘米或者毫米级。 54大地参数: 参考椭球体:krasovsky_1940 长半轴:6378245 短半轴:6356863.0188

MATLAB程序北京54转换为WGS84坐标(GPS)

%北京54转换为WGS84坐标(GPS) %X=3459174.0300 Y=36503163.4500 X=3459181.0255; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%输入X值 Y=36503206.2860; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%输入X值 x=X; y=Y-fix(Y/1000000)*1000000-500000; b=x*3600*180/pi/6367558.4969; T=(cos(b*pi/180/3600))^2; Bf=b+(50221746+(293622+(2350+22*T)*T)*T)*sin(b*pi/180/3600)*cos(b*pi/180/3600)*3600* 180/pi/10^10; Q=(cos(Bf*pi/180/3600))^2; Nf=6399698.902-[21562.267-(108.973-0.612*Q)*Q]*Q; Z=y/(Nf*cos(Bf*pi/180/3600)); b2=(0.5+0.003369*Q)*sin(Bf*pi/180/3600)*cos(Bf*pi/180/3600); b3=0.333333-(0.166667-0.001123*Q)*Q; b4=0.25+(0.16161+0.00562*Q)*Q; b5=0.2-(0.1667-0.0088*Q)*Q; B=Bf-[1-(b4-0.12*Z^2)*Z^2]*Z^2*b2*180*3600/pi; L=[1-(b3-b5*Z^2)*Z^2]*Z*180*3600/pi; B1=fix(B/3600); B2=fix((B-B1*3600)/60); B3=B-B1*3600-B2*60; L1=fix(L/3600); L2=fix((L-L1*3600)/60); L3=L-L1*3600-L2*60; L4=fix(Y/1000000)*3+L1; fprintf('\n\n') fprintf('p点的WGS84坐标:%f\t%f\t%f\t\n',B1,B2,B3) fprintf('p点的WGS84坐标:%f\t%f\t%f\t\n',L4,L2,L3)

ArcGIS中的北京54和西安80投影坐标系详解

ArcGIS中的北京54和西安80投影坐标系详解 (2013-02-25 20:26:39) 转载▼ ArcGIS中的北京54和西安80投影坐标系详解 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system 直译为 地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940

相关主题
文本预览
相关文档 最新文档