当前位置:文档之家› 高中物理 第一章 电场 1.6 示波器的奥秘素材2 粤教版3-1 精

高中物理 第一章 电场 1.6 示波器的奥秘素材2 粤教版3-1 精

高中物理 第一章 电场 1.6 示波器的奥秘素材2 粤教版3-1 精
高中物理 第一章 电场 1.6 示波器的奥秘素材2 粤教版3-1 精

1.6 示波器的奥秘

巧用示波器探究多匝问题

——对法拉第电磁感应定律实验的改进

内容摘要:由于高中阶段电磁感应定律的定量实验很难做成,因而通过三个定性实验让学生观察磁通量变化的快慢是影响感应电动势大小的主要因素,给出法拉第电磁感应定律。我又设计了巧用示波器探究多匝问题,最后再给出感应电动势的一般表达式

阶段安排实验设计设计意图

微观实质通过对两种典型的电磁感应现象分析,引出电动势的概念。

实验探究

1 改变导体切割运动的速度,观察感应电流的

大小

通过实验一,使学生在初中实验

的基础上,激发探寻闭合线路一

部分导体切割磁感线时产生感应

电流的动因。

实验探究

2 改变磁铁上下运动的速度,观察感应电流的

大小

通过实验二,让学生猜想和推断

决定感应电动势大小的因素。

实验探究

3

通过开关和变阻器控制电流, 观察感应电流的大小

通过实验三,让学生进一步发现和论证自己的想法,体验过程与方法。

通过实验四,巧用示波器探究多匝线圈的电动势,从而给出感应电动势的一般式:

t

n

E ??=?

感应线圈3匝 感应线圈6匝

感应线圈9匝

感应线圈12匝

结论:在同样的磁通量变化率下,感应电动势与线圈匝数成正比,即t

n E ??=?

A

学生电源 交流0~12V

接示波器

感应线圈

延伸拓展使学生能够将所学知识联系生活实际,注重体验,关注学生的发展。

做一做想一想

体验

探究类

找一个自发电式手电筒,观察研究是如何发电的?

通过听讲座、看录像或借助网络等活动,了解我国

发电种类及现状,尝试设计一种发电机。

思考

发展类

为什么线圈磁通量变化会产生感应电动势?其内在的本质是什

么?

接示波器

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理突破示波器几个重难点的方法

突破示波器几个重难点的方法 示波器的原理是高中物理比较难掌握的内容之一,学生不能理解的原因是学生没有理解示波器为什么能够直接观察电信号随时间变化,扫描原理及扫描频率与完整波形的关系,针对以上几个问题笔者设计以下教学过程,实践证明教学效果很好,现笔者总结如下,希望对同学有所启发。 1.为了让学生弄懂原理笔者采取类比的方法,先根据以下装置设计一些问题,并现场演示所设计的问题。 装置,如图1,把漏斗吊在支架上,下方放一块硬纸板,纸板上画一条直线,漏斗 静止不动时正好在纸板的正上方,在漏斗里装满细沙。 问:纸板不动,只有沙斗摆动看到什么现象? 答:看到垂直的直线。 问:纸板沿匀速运动,沙摆不动看到什么现象? 答:看到沿的直线。 问:沙摆摆动同时纸板沿匀速运动,看到什么现象? 答:看到正弦或余弦图,即单摆的振动图像。因为沿移动的位移除以速度即为时间。

问:以纸板为参照物沙摆怎样运动? 答:沙摆同时参与两个方向的运动,即垂直方向的简谐运动和沿方向的匀速直线运动。 问:如果纸板不动怎样得到相同的图形? 答:沙摆摆动同时,使沙摆沿方向做匀速直线运动。 问:纸板长度一定,怎样使纸条上正好得到一副完整的正弦(余弦)图?二副完整的正弦或余弦图?三副完整的正弦或余弦图? 答:设纸板的长度一定,纸板从始点运动到终点时间为纸条运动周期,若纸板运动周期是沙摆振动周期一倍正好得到一副完整的正弦或余弦图,若纸板运动周期是沙摆振动周期二倍正好得到二副完整的正弦或余弦图,若纸板运动周期是沙摆振动周期三倍正好得到三副完整的正弦或余弦图。 补充:纸板运动的周期是沙摆周期的n倍就在纸板条上得到n个完整的正弦(余弦)波形。或沙摆频率是纸板频率n倍就在纸板上得到n个完整的正弦(余弦)波形。 2.示波器工作原理与沙摆类似,它的工作原理可等效成下列情况:如图2,真空室中电极K发出电子经过加速电场后,由小孔沿水平金属板间的中心线射入板中。在两板间加 上如图3所示的正弦交流电压,竖直偏转位移与偏转电压的关系,在两极板右侧且与右侧相距一定距离与两板中心线(图中虚线)垂直的荧光屏,中心线正好与屏上坐标原点相交。 如果前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀。在每个电子通过极板的时间内,电场视作恒定的,电子在竖直方向按正弦规律上下移动。 问:荧光屏不动,只在竖直方向加正弦电压看到什么现象? 答:看到沿y轴的一条直线。由于视觉暂留和荧光物质的残光特性,电子打的径迹可显

揭开测试测量的小秘密——每周一考 【第3周】

揭开测试测量的小秘密——每周一考【第3 周】 1、如何测量一台示波器实际的波形捕获率? 2、何降低波形捕获率?比如 从100 万次每秒降到1000 次每秒? 3、哪些设置会影响到示波器的波形更新率(通常讲的示波器的快慢) ----------------------------------我是答案分界线---------------------------- 1、如何测量一台示波器实际的波形捕获率? (答案由安捷伦杜吉伟提供)对实时示波器而言,有两种情形,一种是示波 器自身带有触发输出的情况,一种是示波器自身不带有触发输出的情况。 情形一、示波器自身带有触发输出的情况,大部分示波器都带有触发输出。 每当示波器触发一次,即捕获一个波形,该触发输出位置就有一个脉冲输出。 因此,该处信号的频率就等于该示波器实际的触发率或波形捕获率,您可以用 频率计直接测量该处的信号频率,也可使用另外一台示波器测量该处波形的细 节及其频率。如果,您使用安捷伦较低价位的InfiniiVision 示波器 (DSOX2000、DSOX3000、DSO5000,DSO6000,DSO7000)系列示波器,其内置频率计数器,您可自由使用该内置计数器,也可直接观察波形。观察波形的 好处是,您可能会发现两个连续波形的时间间隔很可能不是相同的。 情形二、示波器自身不带有触发输出的情况,只有极少数示波器这样。这时 您需要借助一台单独的脉冲信号源,比如安捷伦的81150A, 产生双脉冲信号, 两个脉冲的幅度上有明显差异,时间间隔可调,在调整时间间隔的某一时刻, 示波器上有能够看到两种不同的脉冲,到开始不能看到,这一临界点,可视为 示波器的死区,其倒数即波形捕获率。 2、何降低波形捕获率?比如从100 万次每秒降到1000 次每秒? (答案由安捷伦杜吉伟提供)改变波形捕获率,说白了,就是改变触发速率,

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛辅导

高中物理竞赛辅导 .(分)一质量为M的平顶小车,以速度0v沿水平的光滑轨道作匀速直线运动。现将一质量为m的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为μ。 若要求物块不会从车顶后缘掉下,则该车顶最少要多长? 若车顶长度符合问中的要求,整个过程中摩擦力共做了多少功? .(分)在用铀作燃料的核反应堆中,铀核吸收一个动能约为eV的热中子(慢中子)后,可发生裂变反应,放出能量和~个快中子,而快中子不利于铀的裂变.为了能使裂变反应继续下去,需要将反应中放出的快中子减速。有一种减速的方法是使用石墨(碳)作减速剂.设中 子与碳原子的碰撞是对心弹性碰撞,问一个动能为 01.75MeV E=的快中子需要与静止的碳原子碰撞多少次,才能减速成为eV的热中子?

参考解答 . 物块放到小车上以后,由于摩擦力的作用,当以地面为参考系时,物块将从静止开始加速运动,而小车将做减速运动,若物块到达小车顶后缘时的速度恰好等于小车此时的速度,则物块就刚好不脱落。令v 表示此时的速度,在这个过程中,若以物块和小车为系统,因为水平方向未受外力,所以此方向上动量守恒,即 0()Mv m M v =+ () 从能量来看,在上述过程中,物块动能的增量等于摩擦力对物块所做的功,即 2112 mv mg s μ= () 其中1s 为物块移动的距离。小车动能的增量等于摩擦力对小车所做的功,即 22021122 Mv mv mgs μ-=- ()其中2s 为小车移动的距离。用l 表示车顶的最小长度,则 21l s s =- ()由以上四式,可解得 202() Mv l g m M μ=+ () 即车顶的长度至少应为202()Mv l g m M μ=+。.由功能关系可知,摩擦力所做的功等于系统动量的增量,即 2201 1()22W m M v Mv =+- ()由()、()式可得

高二物理选修示波器的奥秘同步测试题

高二物理选修示波器的奥秘同步测试题 一、选择题 A.只适用于匀强电场中,v0=0的带电粒子被加速 B.只适用于匀强电场中,粒子运动方向与场强方向平行的情况 C.只适用于匀强电场中,粒子运动方向与场强方向垂直的情况 D.适用于任何电场中,v0=0的带电粒子被加速 2.如图1,P和Q为两平行金属板,板间电压为U,在P板附近有一电子由静止开始向Q 板运动.关于电子到达Q板时的速率,下列说法正确的是[ ] A.两板间距离越大,加速时间越长,获得的速率就越大 B.两板间距离越小,加速度越大,获得的速率就越大 C.与两板间距离无关,仅与加速电压U有关 D.以上说法都不正确 3.带电粒子以初速v0垂直电场方向进入平行金属板形成的匀强 A.粒子在电场中作类似平抛的运动 C.粒子飞过电场的时间,决定于极板长和粒子进入电场时的初速度 D.粒子偏移距离h,可用加在两极板上的电压控制 4.带电粒子垂直进入匀强电场中偏转时(除电场力外不计其它力的作用)[ ] A.电势能增加,动能增加 B.电势能减小,动能增加 C.电势能和动能都不变 D.上述结论都不正确 5.电子以初速度v0沿垂直场强方向射入两平行金属板中间的匀强电场中,现增大两板间的电压,但仍使电子能够穿过平行板间,则电子穿越平行板所需要的时间[ ] A.随电压的增大而减小 B.随电压的增大而增大 C.加大两板间距离,时间将减小 D.与电压及两板间距离均无关 6.如图2所示,从灯丝发出的电子经加速电场加速后,进入偏转电场,若加速电压为U1,偏转电压为U2,要使电子在电场中的偏转量y增大为原来的2倍,下列方法中正确的是[ ]

B.使U2增大为原来的2倍ABD C.使偏转板的长度增大为原来2倍 7.如图3所示,A、B、C、D是某匀强电场中的4个等势面,一个质子和一个α粒子(电荷量是质子的2倍,质量是质子的4倍)同时在A等势面从静止出发,向右运动,当到达D 面时,下列说法正确的是[ ] A.电场力做功之比为1∶2 AC B.它们的动能之比为2∶1 C.它们的动能之比为1:4 D.它们运动的时间之比为1∶1 8.真空中水平放置的两金属板相距为d,两板电压是可以调节的,一个质量为m、带电量 为+q的粒子,从负极板中央的小孔以速度 A.使v0增大1倍 B.使板间电压U减半 C.使v0和U同时减半 9.分别将带正电、负电和不带电的三个等质量小球,分别以相同的水平速度由P点射入水平放置的平行金属板间,已知上板带负电,下板接地.三小球分别落在图4中A、B、C三

高中物理竞赛讲义-运动学综合题

运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高中物理《示波器的奥秘》课后精练

高中物理《示波器的奥秘》课后精练 一、单项选择题 1.一带电粒子在电场中只受到电场力作用时,它不可能出现的运动状态是(A.匀速直线运动B.匀加速直线运动C.匀变速曲线运动D.匀速圆周运动 解析:选A.只在电场力的作用下,说明电荷受到的合外力的大小为电场力,不为零,则粒子做变速运动,所以选项A 不可能;当电荷在匀强电场中由静止释放后,电荷做匀加速直线运动,选项B 可能;当电荷垂直进入匀强电场后,电荷做类平抛运动,选项C 可能;正电荷周围的负电荷只受电场力作用下且电场力恰好充当向心力时,可以做匀速圆周运动,选项D 可能. 2.如图所示,在xOy 平面上第Ⅰ象限内有平行于y 轴的有界匀强电

场,方向如图.y 轴上一点P 的坐标为(0,y 0,有一电子垂直于y 轴以初速度v 0从P 点射入电场中,当匀强电场的场强为E 时,电子从A 点射出,A 点坐标为(x A ,0,则A 点速度v A 的反向延长线与速度v 0的延长线交点坐标为( A.(0,y 0 A ,D.(x A ,y 0解析:选C.电子离开电场时,其速度v A 的反向延长线与速度v 0的延长线交点的横坐标一定为1 2 x A . 3.如图所示,质子(11H和α粒子(4 2He,以相同的初动能垂直射入偏

转电场(粒子不计重力,则这两个粒子射出电场时的侧位移y 之比为( A.1∶1 B.1∶2 C.2∶1 D.1∶4 解析:选B.由y =12Eq m L 2 v 2 0和E k0=12mv 20,得:y =EL 2q 4E k0

可知,y 与q 成正比,故选B.4.两平行金属板间有匀强电场,不同的带电粒子都以垂直于电场线方向飞入该电场,要使这些粒子经过匀强电场后有相同大小的偏转角,则它们应具备的条件是(不计重力作用( A.有相同的动能和相同的比荷 B.有相同的速度和相同的比荷 C.只要有相同的比荷就可以 D.无法确定 解析:选B.设金属板长为L ,两板间电压为U ,板间距为d ,粒子进入电 场时速度为v ,在电场中运动时间为t =L v ,在离开电场时沿电场线方向上的 速度为v y ,则v y =at =qU md ·L

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

是德科技keysight7000B系列示波器说明书技术资料安捷伦agilent

Agilent InfiniiVision 7000B 系列示波器 技术资料 提供最佳的信号可视性

2 为什么不考虑现在订购一台? 示波器是一种用来观测信号的工具。由于通用示波器除了显示传统示波器通道的信号之外, 还需要更大的空间以显示数字信号和串行信号, 因此具有高分辨率的大尺寸显示屏变得越来越重要。 想知道其中的奥秘吗? 安捷伦工程师开发的 I nfiniiVision 7000B 系列示波器采用了先进的技术,与市场上的任何其他示波器相比,可使您看到更多微小的信号细节和更多的偶然事件。请看 I nfiniiVision 7000B 系列示波器 — 业界最佳的信号查看产品。 体验 InfiniiVision 7000B 系列示波器卓越性能的最佳方法就是亲自去看一看。欢迎您现在就与安捷伦科技公司联系申请试用。 InfiniiVision 7000B 系列具有高达 1 GHz 的带宽。每个型号都配有 12.1 英寸 XGA LCD 大显示屏, 并且非常轻巧, 仅有 6.5 英寸深、13 磅重。 InfiniiVision 7000B 系列示波器有 14 种型号可供选择。 安捷伦还为客户先前购买的 7000 系列 DSO 提供了升级套件, 只需 5 分钟即可将 DSO 轻松升级至 MSO 。

3 InfiniiVision 7000B 系列为什么具有最佳信号可视性? 1. 最大的显示屏 示波器是一种显示被测信号波形的工具,而大尺寸、高分辨率显示屏可以提升示波器的显示能力。因为通用示波器除了要显示传统的示波器通道,还需要更大的空间来显示数字和串行信号,所以更大的显示屏变得越来越重要。 使用更大尺寸的显示屏,您能够同时轻松查看多达 20 个基于串行协议的通道。12.1 英寸的显示屏比同类产品几乎大了 40%。 2. 最快的架构 与其他任何一款示波器相比,可显示被测信号更多的细节。InfiniiVision 7000B 系列可显示其他示波器可能错过的抖动、偶然事件和微小的信号细节。旋转旋钮,仪器就可快速而轻松地响应。需要查看数字通道吗? 仪器同样可以灵敏地做出响应。需要解码串行数据包? Agilent InfiniiVision 系列具有业界唯一的硬件加速串行总线解码功能,能够在不影响模拟测量的同时进行串行调试。 InfiniiVision 示波器在先进的 0.13 μm ASIC 中集成了采集存储器、波形处理和显示存储器。这种已获专利的第三代技术(MegaZoom III)利用响应灵敏、始终可用的深存储器,每秒可采集高达 100,000 个波形。 3. 具有深入洞察力的应用软件 您还可以定制您的通用示波器。广泛的应用软件包可对特定应用的问题提供有价值的深入观察。(详细信息参见第 8-9页和第 13-14 页)。 硬件加速的串行解码 ? I 2 C 、SPI ? 内核辅助FPGA 调试? 安全环境? CAN/LIN ? 分段存储器? MIL-STD-1553? RS-232/UART ? 矢量信号分析 ? FlexRay ? I 2S ? DSO/MSO 离线分析? 模板测试 ? 功率测量

2020粤教版高中物理选修311.6示波器的奥秘专题

【学习目标】 1、能记住带电粒子在匀强电场中加速和偏转的原理 2、会运用带电粒子在匀强电场中的运动规律,分析解决问题。 3、体念示波管的构造和原理 【学习重点与难点】 1、理解带电粒子在匀强电场中加速和偏转的原理;用带电粒子在匀强电场中的运动规律,分析解决问题 2、示波管的构造和原理 【使用说明与学法指导】 1、带着预习案中问题导学中的问题自主设计预习提纲,通读教材P20-P22页内容,阅读随堂优化训练资料P21-P22页内容,对概念、关键词、等进行梳理,作好必要的标注和笔记。 2、认真完成基础知识梳理,在“我的疑惑”处填上自己不懂的知识点,在“我的收获”处填写自己对本课自主学习的知识及方法收获。 3、熟记、理解基础知识梳理中的重点知识。 一、问题导学 示波器的工作原理是什么?带电粒子在电场中偏转的公式有哪些? 二、知识梳理 1、示波器原理图 2、对应的公式:(1)在加速电场中: (2)在偏转电场中: 。 (3)到荧光屏的侧移距离y ' = 。 三、预习自测 1. (双选)如图所示,有三个质量相等,分别带正电,负电和不 带电 的小球,从上、下带电平行金属板间的P 点.以相同速率垂直电场方向射入电场,它们分别落到A 、B 、C 三点,则( ) A.A 带正电、B 不带电、C 带负电 B.三小球在电场中运动时间相等 C.在电场中加速度的关系a C >a B >a A D.到达正极板时动能关系E A >E B >E C 探究案 一、合作探究 探究1、示波器原理: 【例1】水平放置的两平行金属板,板长l=10cm,两板相距d=10mm.一质量为m=9.1×10-31kg , 带电量q=-1.6×10-19C 的电子以v 0=4×107m/s 的初速度从两板中央水平地进入板间,然后从 板间飞出射到距板L=45cm,宽度D=20cm 的荧光屏上,荧光屏的中点在两板间的中央线上.为了能使电子射中荧光屏,两板间所加电压应取什么范围? 思路小结: 探究2、带电粒子在电场中的综合应用:: 例2、(双选)如右图所示,三个质量相同,带电荷量分别为+q 、-q 和0的小液滴 我的疑惑: 我的收获: U 1 L v 0 y v v 0 v θ θ L ' y ' Y y v 0 L l v 0 v y

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

教科版高中物理选修3-2:《示波器的使用》规范训练-新版

2.3《示波器的使用》规范训练 (时间:60分钟) 知识点一示波器的原理 1.在“练习使用示波器”的实验中,关于竖直位移旋钮和Y增益旋钮的作用,下列说法正确的是() A.竖直位移旋钮用来调节图像在竖直方向的位置,Y增益旋钮用来调节图像在竖直方向的幅度 B.竖直位移旋钮用来调节图像在竖直方向的幅度,Y增益旋钮用来调节图像在竖直方向的位置 C.竖直位移旋钮和Y增益旋钮都是用来调节图像在竖直方向的位置的 D.竖直位移旋钮和Y增益旋钮都是用来调节图像在竖直方向的幅度的 解析竖直位移旋钮可以调节图像在屏幕竖直方向的位置,使观察的信号位于屏幕中央.Y增益旋钮则用来调节图像在竖直方向的幅度.故A正确.B、C、D错误. 答案 A 2.如图2-3-6所示,利用示波器观察亮斑在竖直方向的偏移时,下列做法正确的是() 图2-3-6 A.示波器的扫描范围应置于“外X”挡 B.“DC”、“AC”开关应置于“DC”位置 C.当亮斑如图乙所示在A位置时,将图中滑动变阻器滑动触头向左移动,则A 点下移 D.改变图甲电池的极性,图乙的亮斑将向下偏移 解析因竖直方向有偏转,水平方向无偏转,故选A.应直接输入信号,故选B.改变电源极性,偏转方向也反了,故D正确.R变大时,输入的电压也变大,偏转位移变大,故C错误.

答案ABD 3.若将变压器输出的交流信号按图2-3-7所示与示波器连接,对示波器调节后,在荧光屏上出现的波形应为下图所示四种波形中的() 图2-3-7 解析因二极管具有单向导电性,一个周期内只有半个周期的电压通过,故只有C选项正确. 答案 C 知识点二示波器的使用 4.用示波器观察其交流信号时,在显示屏上显示出一个完整的波形,如图2-3-8所示.经下列四组操作之一,使该信号显示出两个完整的波形,且波形幅度增大.此组操作是() 图2-3-8 A.调整X增益旋钮和竖直位移旋钮 B.调整X增益旋钮和扫描微调旋钮 C.调整扫描微调旋钮和Y增益旋钮 D.调整水平位移旋钮和Y增益旋钮 解析调节扫描微调旋钮,减小扫描电压的频率,也就增大了其周期,而信号电压的频率不变,所以在扫描的一个周期内显示的完整波形个数增多.调节Y增益旋钮即可使波形幅度增大,故C正确.

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛辅导 牛顿运动定律

牛顿运动定律 班级 姓名 1、一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重 合,如图。已知盘与桌布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边。若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度) 解:设圆盘的质量为m ,桌长为l ,在桌布从圆盘上抽出的过程中,盘的加速度为1a ,有 11`ma mg =μ ① 桌布抽出后,盘在桌面上作匀减速运动,以a 2表示加速度的大小,有 22`ma mg =μ ② 设盘刚离开桌布时的速度为v 1,移动的距离为x 1,离开桌布后在桌面上再运动距离 x 2后便停下,有 11212x a v = ③ 22212x a v = ④ 盘没有从桌面上掉下的条件是 122 1 x l x -≤ ⑤ 设桌布从盘下抽出所经历时间为t ,在这段时间内桌布移动的距离为x ,有 at x 21= ⑥ 21121 t a x = ⑦ 而 12 1 x l x += ⑧

由以上各式解得 g a 12 2 12μμμμ+≥ ⑨ 2、质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止 开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。(2 /10s m g =) 解:设撤去力F 前物块的位移为1s ,撤去力F 时物块速度为v ,物块受到的滑动摩擦力 mg F μ=1 对撤去力F 后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v s s 2 1=- 对物块运动的全过程应用动能定理011=-s F Fs 由以上各式得2 22gt s mgs F μμ-= 代入数据解得F=15N 3、如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为 m 1和m 2,拉力F 1和F 2方向相反,与轻线沿同一水平直线,且F 1>F 2。试求在两个物块 运动 过程中轻线的拉力T 。 设两物质一起运动的加速度为a ,则有 a m m F F )(2121+=- ① 根据牛顿第二定律,对质量为m 1的物块有

选修3-1示波器、电容、静电技术

龙文教育教师1对1个性化教案 学生教师 梁广芝 授课 日期 月日授课 时段 The lesson 课题电场强度和电势差的关系 教学目标1、了解带电粒子在电场中的加速问题 2、了解带电粒子在电场中的偏转问题 3、了解示波器的工作原理 教学步骤及教学 容教学过程: 一、教学衔接(课前环节) 二、教学容 1、知识点的讲解 知识点1、示波器的奥秘: 带电粒子在匀强电场中的加速:2 2 2 1 2 1 mv mv qU- = 带电粒子在匀强电场中的偏转:类平抛运动 知识点2、电容器: kd S C π4 ε = 2、例题指导 3、同步练习 4、课后小结 三、布置作业 教导处签字: 日期:年月日 教学过

示波器的奥秘

知识点1.示波器 (1)示波器:用来观察电信号随时间变化的电子仪器。其核心部分是示波管 (2)示波管的构造:由电子枪、偏转电极和荧光屏组成(如图)。 (3)原理:利用了电子的惯性小、荧光物质的荧光特性和人的视觉暂留等,灵敏、直观地显示出电信号随间变化的图线。 知识点2.带电粒子在电场中的运动情况 1、若带电粒子在电场中所受合力为零时,即∑F=0时,粒子将保持静止状态或匀速直线运动状态。 例带电粒子在电场中处于静止状态,该粒子带正电还是负电? 2、若不计重力,初速度v0⊥E,带电粒子将在电场中做类平抛运动。 复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。物体的实际运动为这两种运动的合运动。 与此相似,不计mg,v0⊥E时,带电粒子在磁场中将做类平抛运动。 ?板间距为d,板长为l,初速度v0,板间电压为U,带电粒子质量为m,带电量为+q。 ①粒子在与电场方向垂直的方向上做匀速直线运动,x=v0t;在沿电 若粒子能穿过电场,而不打在极板上,侧移量为多少呢?

高考物理示波器的使用方法

2019年高考物理示波器的使用方法 成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时中不断积累,小编为大家准备了物理示波器的使用方法,希望同学们不断取得进步! 1.原理:(1)示波管是其核心部件,还有相应的电子线路。(2)示波管的原理:用在xx'方向所加的锯齿波电压来使打在荧光屏上的电子位置距中心之距与时间成正比(好象一光点在屏上在水平方向上做周期性的匀速运动---这称为扫描,以使此距离来模拟时间轴(类似于砂摆的方法);在YY'上加上所要研究的外加电压(信号从Y输入和地之间输入),则就可在屏上显示出外加电压的波形了。 2.使用的一般步骤:(1)先预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于最高档,扫描置于"外X档"(2)再开电源,指示灯亮后等待一两分钟进行预热后再进行相关的操作(3)先调辉度,再调聚焦,进而调水平和竖直位移使亮点在中心合适区域(4)调扫描、扫描微调和X增益,观察扫描(5)把外X档拔开到扫描范围档合适处,观察机内提供的竖直方向按正余弦规律变化的电压波形(6)把待研究的外加电压由Y输入和地间接入示波器,调节各档到合适位置,可观察到此电压的波形(与时间变化的图象)(调同步极性开关可使图象的起点从正半周或负半周开始(7)如欲观察亮斑(如外加一直流电压时)的竖直偏移,可把扫描调节到"外X"档。 3.注意事项:(1)注意使用步骤,不要一开始就开电源,而应先预调,再预热,而后才能进行正常的调节(2)在正常观察待测电压时,应把

扫描开关拔到扫描档且外加电压由Y输入和地之间输入,此时XX'电压为机内自带的扫描电压以模拟时间轴,只有需单独在XX'上另加输入电压时,才将开关拔到外X档。 小编为大家提供的2019年高考物理示波器的使用方法到这里了,愿大家都能努力复习,丰富自己,锻炼自己。

高二物理16示波器课堂练习

1.6示波器的奥秘 一、单选题 1.一带电粒子在电场中只受电场力作用时,它不可能出现的运动状态是( ) A .匀速直线运动 B .匀加速直线运动 C .匀变速曲线运动 D .匀速圆周运动 2.下列粒子从初速度为零的状态经过电压为U 的电场加速后,粒子速度最大的是( ) A .质子 B .氘核 C .氦核 D .钠离子 3.两平行金属板间有匀强电场,不同的带电粒子都以垂直于电场线方向飞入该电场,要使这些粒子经过匀强电场后有相同大小的偏转角,则它们应具备的条件是(不计重力作用)( ) A .有相同的动能和相同的比荷 B .有相同的速度和相同的比荷 C .只要有相同的比荷就可以 D .无法确定 4.如图所示,M 、N 是真空中的两块平行金属板.质量为m 、电荷量为q 的带电粒子,以初速度v0由小孔进入电场,当M 、N 间电压为U 时,粒子恰好能到达N 板.如果要使这个带电 粒子到达M 、N 板间距的12 后返回,下列措施中能满足要求的是(不计带电粒子的重力)( ) A .使初速度减为原来的12 B .使M 、N 间电压减为原来的12 C .使M 、N 间电压提高到原来的4倍 D .使初速度和M 、N 间电压都减为原来的12 5.如图所示,带电荷量之比为qA ∶qB =1∶3的带电粒子A 、B ,先后以相同的速度从同一点水平射入平行板电容器中,不计重力,带电粒子偏转后打在同一极板上,水平飞行距离之比为xA ∶xB =2∶1,则带电粒子的质量之比mA ∶mB 以及在电场中飞行的时间之比tA ∶tB 分别为( ) A .1∶1,2∶3 B .2∶1,3∶2 C .1∶1,3∶4 D .4∶3,2∶1 6.如图所示,有一带电粒子贴着A 板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U2时,带电粒子沿②轨迹落到B 板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( ) A .U1∶U2=1∶8 B .U1∶U2=1∶4 C .U1∶U2=1∶2 D .U1∶U2=1∶1 7.如图所示,静止的电子在加速电压U1的作用下从O 经P 板的小 孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作 用下偏转一段距离.现使U1加倍,要想使电子的轨迹不发生变 化,应该( ) A .使U2加倍 B .使U2变为原来的4倍 C .使U2变为原来的2倍 D .使U2变为原来的12 倍

相关主题
文本预览
相关文档 最新文档