当前位置:文档之家› 矩阵的逆特征值问题

矩阵的逆特征值问题

湖南师范大学

硕士学位论文

矩阵的逆特征值问题姓名:田英

申请学位级别:硕士专业:基础数学指导教师:欧阳柏玉

20070301

12 特征值估计、广义特征值与极大极小原理

第十二讲 矩阵特征值估计 特征值计算较困难,希望找到简便的特征值界限或分布范围的估计方法。 一、 特征值界的估计 定理1. 设n n A R ?∈,λ为A 的任意特征值,则有 () Im M λ≤其中,ij ji 1i ,j n a a M m a x 2 ≤≤-= 证明:设x 为A 的属于特征值λ的单位特征向量,即A x x =λ, H x x 1=, 则 H x A x λ= → ( ) () H H H H H x A x x A x x A x λ== = () ()()H H H T 2jIm x A A x x A A x λ-λ=λ=-=- 将x 写成[] T 12n x ,,,=ξξξ ()()n n H T i ij ji j i 1 j 1 x A A x a a ==-=ξ-ξ∑∑ () ()()n n i ij ji j i 1j 1 n n i ij ji j i 1 j 1 2I m a a a a ====λ= ξ-ξ≤ ξ-ξ∑∑ ∑∑ n ' i j ij ji i ,j 1 a a == ξξ-∑ ('∑表示不含i =j ) n ' i j i ,j 1 2M =≤ξξ∑ () 2 n 2 2 ' i j i ,j 1 I m M =? ?λ≤ξξ ? ? ? ∑

() n 2 2 ' i j i ,j 1M n n 1=≤-ξξ∑ () n 2 2 2 ' i j i ,j 1M n n 1==-ξξ∑ n n n n n 2 2 2 2 4 2 4 ' i j i j i i i i ,j 1 i ,j 1 i 1 i 1 i 1 =====ξξ= ξξ- ξ≤ ξ- ξ∑ ∑ ∑ ∑ ∑ ( )n 2 2 i i i 11== ξ-ξ∑ 不妨写为: ( ) ( ) ( )n 2 222 2 2 1 1 2 2 i i i 3 111==ξ-ξ +ξ -ξ + ξ -ξ∑ ( )( )( )2 2 2 2 2 2 n 11 22 2 2 i i i 3 1112 2 =????ξ +-ξξ +-ξ ? ? ≤++ ξ-ξ ? ? ? ???? ? ∑ 12 ≤ 取等号的条件为2 2 1 2 12 ξ=ξ= ,但 2 x 1 =,所以其它2 i ξ= ∴ () Im M λ≤定理2. 设n n A R ?∈,λ为A 的任意特征值,则有 n λ≤ρ ()R e n λ≤τ () I m n s λ≤ 其中,ij 1i,j n m a x a ≤≤ρ =,ij ji 1i,j n m a x a a ≤≤τ =+,ij ji 1i,j n s m a x a a ≤≤=- 二、 盖尔圆法 定义:设() n n ij n n A a C ??= ∈,由方程 n ii i ij j 1 i j z a R a =≠-≤= ∑ 所确定的圆称 为A 的第i 个盖尔圆,i R 称为盖尔圆的半径。

求矩阵特征值算法及程序

求矩阵特征值算法及程序简介 1.幂法 1、幂法规范化算法 (1)输入矩阵A、初始向量( 0),误差eps; (2) k 1; (3)计算V(k)A(k 1); (4)m k max(V(k)) ,m k1max( V ( k 1)); (5) (k)V(k)/m k; (6)如果m k m k 1eps,则显示特征值1和对应的特征向量x(1) ),终止; (7)k k 1, 转(3) 注:如上算法中的符号max(V )表示取向量V 中绝对值最大的分量。本算法使用了数据规范化处理技术以防止计算过程中出现益出错误。 2、规范化幂法程序 Clear[a,u,x]; a=Input[" 系数矩阵A="]; u=Input[" 初始迭代向量u(0)="]; n=Length[u]; eps=Input[" 误差精度eps ="]; nmax=Input[" 迭代允许最大次数nmax="]; fmax[x_]:=Module[{m=0,m1,m2}, Do[m1=Abs[x[[k]]]; If[m1>m,m2=x[[k]];m=m1], {k,1,Length[x]}]; m2] v=a.u; m0=fmax[u]; m1=fmax[v]; t=Abs[m1-m0]//N; k=0; While[t>eps&&k

文本预览
相关文档 最新文档