当前位置:文档之家› 4.2留用留数定理计算实变函数定积分(白底)

4.2留用留数定理计算实变函数定积分(白底)

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

使用留数定理计算实积分

用留数定理计算实积分 一:教学容(包括基本容、重点、难点): 基本容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 , 仅以 为一级极点, 在 上无奇点,故由留数定理

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分0 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系 起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+?? ? ; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ? 就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是证 明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞) ;复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少 高于()x ?两次. 图1

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

留数定理在定积分中的应用

留数定理在定积分中的应用 1. 留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1 形如 ()20 cos ,sin f x x dx π ?型的积分 这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z -++== 得 ()222 10 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ???? ?

留数定理及其在积分中的运用

江西师范大学数学与信息科学学院 学士学位论文 留数定理及其在积分中的运用 (Residue theorem and the use in the Calculus) 姓名:刘燕 学号: 0507010122 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:易才凤(教授) 完成时间:2009年*月*日

留数定理及其在积分中的应用 【摘要】本文首先在预备知识中介绍了复函数积分,并介绍了留数的计算 方法等。在此基础上,我们叙述并证明了本文的主要内容--留数定理,并得到留数定理的推广。然后利用留数定理探讨分析学中的积分计算问题,并利用积分技巧得到它们的一般计算方法和公式,进而更简捷的解决了分析学中积分的计算问题. 【关键词】解析孤立奇点留数留数定理

Residue theorem and the use in the Calculus 【Abstract】This paper, we first introduce the prior knowledge of complex function Calculus,and introduce the method of calculating the residue, etc.On this basis,We described and proved the main contents of this article--the Residue theorem,and the promotion of the Residue theorem . This paper discussed the calculating problems of intgral in analysis with the theorem of residue, got the general computating method and formula by using analysical skills, and then made it easier to resolve the calculating problems. 【Key words】Analysis Isolated singular point Residue Residue theorem

抽样函数的积分

这个函数是不可积的,但是它的原函数是存在的,只是不能用初等函数表示而已。习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数。比如下面列出的几个积分都是属于“积不出”的函数 ∫e^(-x*x)dx,∫(sinx)/xdx,∫1/(lnx)dx,∫sin(x*x)dx ∫(a*a*sinx*sinx+b*b*cosx*cosx)^(1/2)dx(a*a不等于b*b) -------------------------------------- 以下是从别人那粘贴过来的..原函数我也不知道,不过希望下面的对你有帮助 ___________________________________ 下面证明∫sint/tdt=π/2(积分上限为∞,下限为0) 因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分。 I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0) 显然: I(0)=∫sint/tdt(积分上限为∞,下限为0) I`(x)=∫?(e^(-xt)sint/t)/?x dt (积分上限为∞,下限为0) =∫e^(-xt)sin(t)sint(积分上限为∞,下限为0) =e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0) =-1/(1+x^2) 从而有 I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1) |I(x)|=|∫e^(-xt)sint/tdt| ≤∫|e^(-xt)sint/t|dt ≤∫e^(-xt)dt =-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0) =1/x -->0 (x-->+∞) 即lim(I(x))-->0 (x-->+∞) 对(1)式两端取极限: lim(I(x))(x-->+∞) =-lim(-arctan(x)+C ) (x-->+∞)

留数定理及应用

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数, 因此我们只关心该奇点处罗朗 留数理论是复积分和复级数 理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点.

11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1 ()()() , ∞ ∞ -===+-∑∑-n n n n n n f z c z a c z a 称()n=1 ∞ -∑-n n c z a 为()f z 在点a 的主要部分,称 () ∞ =-∑n n n z a c 为()f z 在点a 的正则部分, 当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为 (1)11 (0)()()------+++≠---L m m m m m c c c c z a z a z a 称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点. 二. 留数的概念及留数定理 1. 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域 0z a R

用留数定理计算实积分

§2. 用留数定理计算实积分 一、教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 二、教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:4-7 §2. 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样 左端可应用留数定理,如果容易求出,则问题就解决了,下面具体

介绍几个类型的实变定积分. 1. 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以 1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理 当 时,在 内 仅以 为一级极点,在 上无奇点,

求定积分的原函数

求定积分中被积函数的原函数 利用微积分基本定理以求定积分的关键是求出被积函数的原函数,即寻找满足()()F x f x '=的函数()F x .如何求出一个被积函数的原函数呢?我们知道求一个函数的原函数与求一个函数的导数是互逆运算,所以要求被积函数的原函数,首先要明确它们之间的关系:原函数的导数就是被积函数,并且导函数是唯一确定的,而被积函数的原函数是不唯一的.即若()()F x f x '=,则被积函数()f x 的原函数为()F x c +(c 为常数). 类型一 被积函数为基本初等函数的导数 求这种类型被积函数的原函数,关键是要记准上述基本初等函数的导数公式,找到对应的被积函数.由基本初等函数的导数公式可知:若()f x 是被积函数,()F x 为原函数,则有: 若()f x k =,则()(,F x kx c k c =+为常数); 若()m f x x =,则11()(1,1m F x x c m m m += +≠-+,c 为常数); 若1()f x x =,则()ln (F x x c c =+为常数); 若()x f x e =,则()(x F x e c c =+为常数); 若()x f x a =,则()ln x a F x c a =+(其中0,1,,a a a c >≠为常数); 若()sin f x x =,则()cos F x x c =-+(c 为常数); 若()cos f x x =,则()sin F x x c =+(c 为常数). 例1 计算以下积分: (1)2 2 11(2)x dx x -?;(2)30(sin sin 2)x x dx π-?. 分析:解决问题的关键是找出被积函数的一个原函数,根据积分的性质,先求出一些简单被积函数的原函数,然后再进行相应的运算.显然,只由熟练掌握常见函数的导数公式,才会比较熟练地找出相应的原函数.2x 的一个原函数为313x ,1x 的一个原函数为ln x ;sin x 的一个原函数为cos x -,sin 2x 的一个原函数为1cos 22 x -. 解:(1)函数212y x x =-的一个原函数是32ln 3 y x x =-, 所以2122311216214(2)(ln )(ln 2)(ln1)ln 23333 x dx x x x -=-=---=-?. (2)函数sin sin 2y x x =-的一个原函数是1cos cos 22 y x x =-+,

定积分的计算方法

定积分的计算方法 摘要 定积分是积分学中的一个基本问题,计算方法有很多,常用的计算方法有四种:(1) 定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分 法。以及其他特殊方法和技巧。本论文通过经典例题分析探讨定积分计算方法,并在系 统总结中简化计算方法!并注重在解题中用的方法和技巧。 关键字:定积分,定义法,莱布尼茨公式,换元法 Calculation method of definite integral Abstract the integral is the integral calculus is a fundamental problem, its calculation method is a lot of, (1)definition method, (2)Newton - Leibniz formula, (3)integral subsection integral method, (4) substitute method.This paper, by classic examples definite integral analysis method, and in the system of simplified, summarized the approximate calculation method! And pay attention to problem in using the methods and skills. Key words:definite integral ,definition method, Newton - Leibniz, substitute method

抽样函数定积分的计算

附注:定积分sin x dx πx +∞-∞=?的计算,有如下三种方法 (1) 利用二重积分交换积分顺序 xy 0 00sin x sin x dx 2dx 2sin xdx dy x x e +∞+∞+∞+∞--∞==???? 上式利用了偶函数的性质。对上式右端交换积分顺序有 xy xy 0000xy 002 002sin xdx e dy 2sin xe dxdy 2dy sin xe dx 12dy 1y 2arctan y π+∞+∞+∞+∞ --+∞+∞-+∞+∞===+==??????? 即 sin x dx πx +∞ -∞=? (2) 利用傅里叶变换的对偶性,即若f (t)F(j ω)?,则F(jt)2πf (ω)??-。门函数对应的傅里叶变换为 ττsin(ωτ/2)u(t )u(t )τ22ωτ/2 +--?? 根据傅里叶变换的对偶性,有 sin(t τ/2)τττ2πu(ω)u(ω)t τ/222??????-+---???? ? 由于ττu(t )u(t )22 +--关于t 是偶对称的,因此上式等价于 sin(t τ/2)τττ2πu(ω)u(ω)t τ/222??????+--???? ? 令τ = 2,有[]sin(t)22πu(ω1)u(ω1)t ???+--,根据傅里叶变换的定义得 []j ωt sin(t)e πu(ω1)u(ω1)t +∞--∞=?+--? 上式令ω = 0,即得 sin x dx πx +∞-∞=? (3) 利用留数定理。用留数计算定积分,是一个有效的方法,可以参看有关复变函数的教科书,如复变函数(西安交通大学高等数学教研室编,高等教育出版社,1996年第4版),这里不赘述。

定积分计算公式和性质~定积分计算公式大全

第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为 图 5-10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图5-11

另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例2 求曲线和直线x=0、x= 及y=0所围成图形面积A(5-12)

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难 点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分.女口,在研究阻尼振动时 a \ b 为任意实数)如用实函数分析 中的方法计算这些积分几乎是 不可能的,既使能计算,也相当复杂 ?如果能把 它们化为复积分,用哥西定理和留数定理,那就简单了 ?当然最关键的是设法 把实变函数是积分跟复变函数回路积分联系起来 . 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间[口*]可以看作是复数平面上的实轴上的一段丄1,于是,或者利用自变数的 变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者 另外补上一段曲线。,使和一合成回路1,1包围着区域B ,这样 计算积分 ,在研究光的衍射时,需要计算菲涅耳积分 ;sin x 2dx 在热学中将遇到积分I '

打⑵必二 f f(z)dz + f f(z)dz 左端可应用留数定理,如果」 容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分? 2 n 一 计算° R(cos , sin )d 型积分 令z e i ,则cos 与sin 均可用复变量z 表示出来,从而实现将 R(cos ,sin )变形为复变量z 的函数的愿望,此时有 同时,由于z e i ,所以z 1,且当 由0变到2n 时,z 恰好在圆周c: z 1 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 当一’ 时,I 一;当一」时,令二 dz 稻 =1 r -1 *~ i I s !-1 (z _ 功(1 - pz) 2_亠戸 ':内,一 「宀〔二仅以 Z = 1:为一级极点, ‘:I 上无奇点, 故由留数定理cos z 2 1 2z sin 2iz 2 n 0 R(cos , sin )d R (—)丄dz H 1 2z 2iz iz 2 n 于是,计算积分o R(cos ,sin )d 的方法找到了,只需令z e i 即可。 ds

相关主题
文本预览
相关文档 最新文档