当前位置:文档之家› 2017年高考数学(理)-函数的概念及其表示(定义域和值域、解析式和分段函数)-专题练习

2017年高考数学(理)-函数的概念及其表示(定义域和值域、解析式和分段函数)-专题练习

2017年高考数学(理)-函数的概念及其表示(定义域和值域、解析式和分段函数)-专题练习

1 / 1

2017年高考数学(理)专题练习

函数的概念及其表示(定义域和值域、解析式和分段函数)

【典例1】【2015高考浙江,理7】存在函数()f x 满足,对任意x ∈R 都有( )

A .(sin 2)sin f x x =

B .2(sin 2)f x x x =+

C .2(1)1f x x +=+

D .2(+2x)1f x x =- 【典例2】【2014山东,理3

】函数()f x = ) A .1

(0,)2 B .(2,)+∞ C .1

(0,)(2,)2+∞ D .1

(0,][2,)2+∞ 【典例3】【2014,安徽理9】若函数1()12f x x x a =+++的最小值为3,则实数a 的值为( )

A .5或8

B .1-或5

C .1-或4-

D .4-或8

【典例4】【2015高考新课标2,理5】设函数211log (2),1,()2,1,

x x x f x x -+-

【典例5】【2014年浙江卷,理6】已知函数32(),f x x ax bx c =+++且0(1)(2)(3)3f f f ≤-=-=-≤则( )

A.3c ≤ B .36c <≤ C .69c <≤ D .9c >

【跟踪训练】

1.【2015高考山东,理10】设函数()31,1,2,1

x x x f x x -

???? B.[]0,1 C.2

,3??+∞???? D.[

)1,+∞ 2.【2016高考山东理数】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则()6f =( ) A.?2 B.?1 C.0 D.2

3.若函数6,2(),3log ,2

a x x f x x x -+≤?=?+>?(01a a >≠且)的值域是[4,)+∞,则实数a 的取值范围是__________.

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结 函数概念 1.映射的概念 设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则 注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。 2.函数的概念 (1)函数的定义: 设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都

冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常

⑵函数的定义域、值域 在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。 (3)函数的三要素:定义域、值域和对丿应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式來表示。 4.分段函数 在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。 (-)考点分析 考点1:映射的概念 例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ; (2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ; (3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x . 上述三个对应是A到B的映射. 例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对 (4)8 个(3)12 个(C)16 个(0)18 个 M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是() 考点2:判断两函数是否为同一个函数

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高中数学必修一幂函数及其性质

幂函数及其性质专题 一、幂函数的定义 一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、函数的图像和性质 (1)y x = (2)12 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出: 3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 三.两类基本函数的归纳比较: ① 定义 对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 幂函数的定义:一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质 对数函数的性质:定义域:(0,+∞);值域:R ;

过点(1,0),即当x =1,y =0; 在(0,+∞)上是增函数;在(0,+∞)是上减函数 幂函数的性质:所有的幂函数在(0,+∞)都有定义, 图象都过点(1,1)x >0时,幂函数的图象都通过原点, 在[0,+∞]上,y x =、2y x =、3 y x =、1 2 y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。 【例题选讲】 例1.已知函数()() 2 53 1m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =- (4)2 5 m =-(5)1m =- 变式训练:已知函数()()2 223 m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲 线。 简解:2 20230 m m m m ?+>??-->??解得:()(),13,m ∈-∞-+∞ 例2.比较大小: (1)1122 ,1.7 (2)33 ( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.5 30.5,3,log 0.5 例3.已知幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2 230m m --≤,∴13m -≤≤; ∵m Z ∈,∴2 (23)m m Z --∈,又函数图象关于原点对称, ∴2 23m m --是奇数,∴0m =或2m =. 例4、设函数f (x )=x 3, (1)求它的反函数; (2)分别求出f - 1(x )=f (x ),f - 1(x )>f (x ),f - 1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f - 1(x )=x 3 1 . (2)∵函数f (x )=x 3和f -1 (x )=x 3 1 的图象都经过点(0,0)和(1,1).

函数的定义域和值域

函数的定义域、值域 一、知识回顾 第一部分:函数的定义域 1.函数的概念: 设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域. 如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或 a x y =,所有的函数值所构成的集合{} A x x f y y ∈=),(叫做这个函数的值域. 2.定义域的理解: 使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <. 满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,. 满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作 (][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括 时用空心点表示. 4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集. 5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零. (4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

二次函数定义域与值域习题(强烈推荐)

高中数学专题训练二次函数与幂函数 一、选择题 1.“a=1”是“函数f(x)=x2-2ax+3在区间[1,+∞)上为增函数”的( ) A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是( ) 3.函数y=xα(x≥1)的图象如图所示,α满足条件( ) A.α<-1 B.-1<α<0 C.0<α<1 D.α>1 4.若函数f(x)=ax2+bx+c满足f(4)=f(1),那么( ) A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 5.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( ) A.[1,+∞) B.[0,2] C.[1,2] D.(-∞,2] 6.(2010·安徽卷)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( ) 7.已知f(x)=ax2+2ax+4(0f(x2) B.f(x1)

D.f(x1)与f(x2)的大小不能确定 二、填空题 8.已知y=(cos x-a)2-1,当cos x=-1时y取最大值,当cos x=a时,y取最小值,则a的范围是________. 9.抛物线y=8x2-(m-1)x+m-7的顶点在x轴上,则m=________. 10.设函数f1(x)=x 1 2 ,f2(x)=x-1,f3(x)=x2,则f1(f2(f3(2010)))= ________. 11.在函数f(x)=ax2+bx+c中,若a,b,c成等比数列且f(0)=-4,则f(x)有最________值(填“大”或“小”),且该值为________. 12.已知幂函数f(x)=x 1-α 3 在(-∞,0)上是增函数,在(0,+∞)上是 减函数,那么最小的正整数a=________. 13.方程x2-mx+1=0的两根为α,β,且α>0,1<β<2,则实数m的取值范围是________. 三、解答题 14.已知函数f(x)=2 x -x m,且f(4)=- 7 2 . (1)求m的值; (2)判断f(x)在(0,+∞)上的单调性,并给予证明. 15.已知对于任意实数x,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求函数g(a)=(a+1)(|a-1|+2)的值域.

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

高中数学:幂函数的概念、图象和性质

高中数学:幂函数的概念、图象和性质 1、幂函数的概念 一般地,函数叫做幂函数,其中是自变量,是常数;其定义域是使有意义的值的集合。 例1、已知幂函数,且当时为减函数。求幂函数的解析式。 分析:正确理解幂函数的概念、幂函数的图象与性质。求幂函数的解析式,一般用待定系数法,弄明白幂函数的定义是解题的关键。 解答:由于为幂函数, 所以,解得,或。 当时,,在上为减函数; 当时,,在上为常函数,不合题意,舍去。 故所求幂函数的解析式为。 2、幂函数的图象和性质 图象: 定

义域值域奇 偶性奇偶奇 非奇非 偶 奇 单 调性上增 上减, 上增 上增上增 , 上分别减 定 点 , (1)所有的幂函数在上都有定义,并且图象都过点; (2)如果,则幂函数的图象过点和,并且在区间上是增函数; (3)如果,则幂函数的图象过点,并在区间上是减函数。在第一象限内,当从趋向于原点时,图象在轴右方无限地逼近轴,当趋于时,图象在轴上方无限地逼近轴; (4)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数。 例2、比较,,的大小。 分析:先利用幂函数的增减性比较与的大小,再根据幂函数的图象比较与的大小。 解答: 而在上单调递增,且, 。故。

例3、若函数在区间上是递减函数,求实数m的取值范围。 分析:本题考查简单幂函数的性质以及函数图象的平移问题。 函数是一个比较常用的幂函数,它也叫做反比例函数,其定义域是,是一个奇函数,对称中心为(0,0),在和 上都是递减函数。一般地,形如的函数都可以通过对 的图象进行变换而得到,所以这些函数的性质都可以借助的性质来得到。 解答:由于,所以函数的图象是由幂 函数的图象先向右平移2个单位,再向上平移3个单位得到的,所以其图象如图所示。 其单调递减区间是和,而函数在区间上是递减函数,所以应有。 例4、若点在幂函数的图象上,点在幂函数的图象 上,定义,试求函数的最大值及其单调区间。分析:首先根据幂函数的定义求出,然后在同一坐标系下画出函数和的图象,得出的函数图象,最后根据图象求出最大值和单调区间。

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

幂函数与指数函数及其性质

(一)指数函数的定义 一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R 。 将a 如数轴所示分为:a <0,a =0,01五部分进行讨论: (1)如果a <0, 比如y =(-4)x ,这时 对于等,在实数范围内函数值不 存在; (2)如果a =0,、 (3)(3)如果a =1,y =1x =1,是个常值函数,没有研究的必要; (4)4)如果01即a >0且a ≠1,x 可以是任意实数。 (四)指数函数性质的简单应用 例 2: 比较下列各题中两个值的大小 : (l)1.72.5,1.73; (2)0.8-01,0.8-02 ; (3)(0.3)-0.3,(0.2)-0.3 (4)1.70.3,0.93.1 解 :(1) 考察指数函数 y =1.7x , 由于底数 1.7>1, 所以指数函数 y =1.7x 在R 上是增函数 因为 2.5< 3, 所以 1.72.5<1.73 (2) 考察指数函数 y =0.8x , 由于底数0<0.8-0.2,所以 0.8-0.1< 0.8-0.2 总结:同底数幂比大小时 , 可构造指数函数,利用单调性比大小 . (3) 观察图像可得,(0.3)-0.3<(0.2)-0.3 不同底数幂在比大小时,可利用多个指数函数图象比大小 (4) 由指数函数的性质知:1.703 >1.7 0 =1,093.1<0.90 =l 即 1.70.3 >0.93.1 <1,所 以 1.70.3 >0.93.1 总结:不同底数幂比大小时 , 可利用图象法或利用中间变量 ( 多选0,1) 例3:已知下列不等式 , 比较m 和n 的大小 : (l )2m <2n (2)0.2m >0.2n (3)a m 0) 解:(1) 因为y =2x 是一个单调递增函数,所以由题意m 1时y =a x 是一个单调递增函数,所以此时m n 特点:已知幂值大小判断指数大小。可以构造指数函数,利用单调性解题。 1、求下列函数的定义域: 2 .比较下列各题中两个值的大小 : (1)30.9 ,30.8 ; (2)0.75-0.2,0.750.2 3、已知a = 0.80.7,b = 0.80.9,c = 1.20.8 ,则a 、b 、c 的大小关系是 指数函数(选择题) 1. 的单调递减区间是函数| 1|)3 1( -=x y ) [1,,0)(- D. )[1, C. ,1](- B. ,0)(- .+∞∞+∞∞∞ A 2. 是且1)a 0(a 1 1 )(≠>+-=x x a a x f A.奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数。 3. 已知函数f (x )=2x +1的反函数为f -1(x ),则f -1 (x )<0的解集是 A.(-∞,2) B.(1,2) C.(2,+∞) D (-∞,1) 4. 已知函数x x x x e e e e x f --+-=)(的反函数是)(1 x f -,且k f f =---|)6.0(||)8.0(|11,则 A.)21,0(∈k B.)1,21 (∈k C.)23,1(∈k D.)2,2 3 (∈k 5. 若f –1(x )是函数f (x )=2x 的反函数,则f –1 (4)等于 A.1 B.2 C.3 D.4 1 自变量 x 2 定义域 R 3 a 的范围 a >0,且a ≠ 1 4 定义的形式(对应法则) y =a x

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

指数函数对数函数幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥ ==) 0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(0 1)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2、对数的性质与运算法则 (1)对数的性质(0,1a a >≠且):①1log 0a =,②log 1a a =,③log N a a N =,④log N a a N =。 (2)对数的重要公式: ①换底公式:log log (,1,0)log N N a b b a a b N =>均为大于零且不等于; ②1 log log b a a b = 。 (3)对数的运算法则: 如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=;

相关主题
相关文档 最新文档