当前位置:文档之家› 高中数学必修一函数概念与基本初等函数精品教案

高中数学必修一函数概念与基本初等函数精品教案

高中数学必修一函数概念与基本初等函数精品教案
高中数学必修一函数概念与基本初等函数精品教案

函数概念与基本初等函数

1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.

2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。

3.了解分段函数,能用分段函数来解决一些简单的数学问题。

4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。

5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值. 6.会运用函数图像理解和研究函数的性质.

(二)指数函数

1.了解指数函数模型的实际背景。

2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念,会求与指数函数性质有关的问题。

4.知道指数函数是一类重要的函数模型。

(三)对数函数

1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

2.理解对数函数的概念;会求与对数函数性质有关的问题.

3.知道对数函数是一类重要的函数模型.

4.了解指数函数与对数函数互为反函数()。

(四)幂函数

1.了解幂函数的概念。

2.结合函数的图像,了解它们的变化情况。

(五)函数与方程

1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

2.理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数.

(六)函数模型及其应用

1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

根据考试大纲的要求,结合2009年高考的命题情况,我们可以预测2010年集合部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.

函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.

考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.

第1课时 函数及其表示

一、映射

1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .

2.象与原象:如果f :A →B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。

二、函数

1.定义:设A 、B 是 ,f :A →B 是从A 到B 的一个映射,则映射f :A →B 叫做A 到B 的 ,记作 .

2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。

3.函数的表示法有 、 、 。

例1.下列各组函数中,表示同一函数的是( ).

A. 1,x

y y x == B. y y ==C. ,y x y ==2

||,y x y ==解:C

变式训练1:下列函数中,与函数y=x 相同的函数是 ( ) A.y=

x

x 2 B.y=(x )2 C.y=lg10

x

D.y=x 2log 2

解:C

例2.给出下列两个条件:(1)f(x +1)=x+2x ; (2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.

解:(1)令t=x +1,∴t≥1,x=(t-1)2

.

则f(t)=(t-1)2

+2(t-1)=t 2

-1,即f(x)=x 2

-1,x∈[1,+∞).

(2)设f(x)=ax 2

+bx+c (a≠0),

∴f(x+2)=a(x+2)2

+b(x+2)+c, 则f(x+2)-f(x)=4ax+4a+2b=4x+2.

∴??

?=+=2

2444b a a , ∴???-==11b a ,又f(0)=3?c=3,∴f(x)=x 2

-x+3.

变式训练2:(1)已知f (12

+x

)=lgx ,求f (x );

(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); (3)已知f (x )满足2f (x )+f (x

1

)=3x ,求f (x ). 解:(1)令

x

2+1=t ,则x=12-t ,

∴f(t )=lg

12

-t ,∴f(x )=lg 1

2-x ,x∈(1,+∞). (2)设f (x )=ax+b ,则

3f (x+1)-2f (x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17, ∴a=2,b=7,故f (x )=2x+7.

(3)2f (x )+f (

x

1

)=3x , ① 把①中的x 换成

x 1,得2f (x 1)+f (x )=x

3

①32-②得3f (x )=6x-

x 3,∴f(x )=2x-x

1.例3. 等腰梯形ABCD 的两底分别为AD=2a ,BC=a ,∠BAD=45°,作直线MN⊥AD 交AD 于M ,交折线

ABCD 于N ,记AM=x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.

解:作BH⊥AD,H 为垂足,CG⊥AD,G 为垂足,

依题意,则有AH=

2

a

,AG=23a.

(1)当M 位于点H 的左侧时,N∈AB,

由于AM=x ,∠BAD=45°. ∴MN=x. ∴y=S △AMN =2

1x 2

(0≤x≤2

a

). (2)当M 位于HG 之间时,由于AM=x , ∴MN=2a ,BN=x-2

a

. ∴y=S AMNB =2

·21a

[x+(x-2

a )]=21ax-).23

2(82a x a a ≤<

(3)当M 位于点G 的右侧时,由于AM=x ,MN=MD=2a-x.

∴y=S ABCD -S △MDN =).

223(45221)44(2143)2(21)2(2·21222

222a x a a ax x x ax a a x a a a a ≤<-+-=+--=--+综上:y=???????

??????

? ??∈-

+-??? ??∈-

??????

∈a a x a ax x a a x a ax a x x 2,234522

1.23,282

1

2,0212222

变式训练3:已知函数f(x)=??

?????<-=>.

0,1,

0,

1,0,2x x

x x x (1)画出函数的图象;(2)求f(1),f(-1),f [])1(-f 的值.

解:(1)分别作出f(x)在x >0,x=0,x <0段上的图象,如图所示,作法略.(2)f(1)=12

=1,f(-1)=-,11

1

=-f [])1(-f =f(1)=1.

1.了解映射的概念,应紧扣定义,抓住任意性和唯一性.

2.函数的解析式常用求法有:待定系数法、换元法(或凑配法)、解方程组法.使用换元法时,要注意研究定义域的变化.

3.在简单实际问题中建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.

第2课时 函数的定义域和值域

一、定义域:

1.函数的定义域就是使函数式 的集合.2.常见的三种题型确定定义域:

① 已知函数的解析式,就是 .

② 复合函数f [g(x )]的有关定义域,就要保证内函数g(x )的 域是外函数f (x )的 域.

③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.二、值域:

1.函数y =f (x )中,与自变量x 的值 的集合.2.常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法)

例如:① 形如y =

2

21x +,可采用 法;② y =)3

2(2

312-≠++x x x ,可采用 法

或 法;③ y =a [f (x )]2

+bf (x )+c ,可采用 法;④ y =x -x -1,可采用 法;⑤ y =x -21x -,可采用 法;⑥ y =x

x cos 2sin -可采用 法

等.

例1. 求下列函数的定义域: (1)y=

x

x x -+||)1(0; (2)y=

23

253

1

x x -+-; (3)y=1·1-+x x .

解:(1)由题意得,0||0

1?

??>-≠+x x x 化简得,||1???>-≠x x x 即.01

?

?

?<-≠x x 故函数的定义域为{x|x <0且x≠-1}. (2)由题意可得,05032

2???≥-≠-x x 解得.5

53

?????≤≤-±≠x x 故函数的定义域为{x|-5≤x≤5且x≠±3}. (3)要使函数有意义,必须有

,0

10

1??

?≥-≥+x x 即,11???≥-≥x x ∴x≥1,故函数的定义域为[1,+∞). 变式训练1:求下列函数的定义域:

(1)y=2

12)

2lg(x x x -+-+(x-1)0

; (2)y=)34lg(2+x x +(5x-4)0

; (3)y=

225x -+lgcosx;

解:(1)由??

?

??≠->-+>-0

1,012022x x x x 得?????≠<<-<1,432x x x 所以-3<x <2且x≠1.

故所求函数的定义域为(-3,1)∪(1,2).

(2)由???

??≠-≠+>+0

45,134034x x x 得??????

???

-≠->54

,214

3x x x ∴函数的定义域为).,54()54,21(21,43+∞-??? ??--

(3)由???>≥-0cos 0252x x ,得,)

(22225

5??

?

??∈+<<-≤≤-Z k k x k x π

πππ 借助于数轴,解这个不等式组,得函数的定义域为.5,23)2,2(23,5??

?

??-??????-

-ππππ 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(

x

1

); (3)y=f()3

1()3

1

-++x f x ; (4)y=f(x+a)+f(x-a). 解:(1)0≤3x≤1,故0≤x≤3

1

, y=f(3x)的定义域为[0, 3

1]. (2)仿(1)解得定义域为[1,+∞).

(3)由条件,y 的定义域是f )31(+x 与)3

1(-x 定义域的交集.

列出不等式组,323134

3

13

231

13101310≤≤????????≤≤≤≤-???????

?≤-≤≤+≤x x x x x 故y=f )3

1()31(-++x f x 的定义域为??

?

??

?32

,31. (4)由条件得,111010???+≤≤-≤≤-????≤-≤≤+≤a

x a a

x a a x a x 讨论:

①当???+≤--≤,

11,1a a a a 即0≤a≤21

时,定义域为[a,1-a ];

②当??

?+≤--≤,

1,a a a a 即-21

≤a≤0时,定义域为[-a,1+a ].

综上所述:当0≤a≤2

1

时,定义域为[a ,1-a ];当-2

1≤a≤0时,定义域为[-a ,1+a ]. 变式训练2:若函数f(x)的定义域是[0,1],则f(x+a)2f(x -a)(0<a <2

1)的定义域是 ( ) A.? B.[a ,1-a ] C.[-a ,1+a ] D.[0,1] 解: B

例3. 求下列函数的值域:

(1)y=

;

122+--x x x x (2)y=x-x 21-; (3)y=1

e 1

e +-x x . 解:(1)方法一 (配方法) ∵y=1-,112

+-x x 而,4

3

43)21(122≥+-=+-x x x

∴0<

,34112≤+-x x ∴.131<≤-y ∴值域为??

?

???-1,31. 方法二 (判别式法)

由y=,1

22+--x x x

x 得(y-1).0)1(2=+-+y x y x

∵y=1时,≠∴?∈y x , 1.又∵∈x R ,∴必须?=(1-y)2

-4y(y-1)≥0.

∴.13

1

≤≤-y ∵,1≠y ∴函数的值域为??

?

???-1,31.(2)方法一 (单调性法) 定义域?

???

??≤21|x x ,函数y=x,y=-x 21-均在??

? ?

?∞-21,上递增,

故y≤.2

1212121=?

-- ∴函数的值域为??

?

?

?∞-21,.

方法二 (换元法) 令x 21-=t,则t≥0,且x=.2

12t - ∴y=-21(t+1)2

+1≤21(t≥0),

∴y∈(-∞,2

1

]. (3)由y=

1e 1e +-x x 得,e x =.

11y y -+ ∵e x

>0,即y y -+11>0,解得-1<y <1. ∴函数的值域为{y|-1<y <1}.

变式训练3:求下列函数的值域: (1)y=

5

21+-x x

; (2)y=|x|21x -. 解:(1)(分离常数法)y=-)52(272

1++

x ,∵)

52(27

+x ≠0,

∴y≠-2

1.故函数的值域是{y|y∈R,且y≠-2

1

}.

(2)方法一 (换元法)

∵1-x 2

≥0,令x=sin α,则有y=|sin αcos α|=2

1|sin2α|, 故函数值域为[0,2

1].

方法二 y=|x|2,4

1)21(12

2

2

4

2

+--=+-=-x x x x

∴0≤y≤,2

1即函数的值域为??

?

???21,0.

例4.若函数f (x )=2

1x 2

-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. 解:∵f(x )=2

1(x-1)2

+a-2

1.

∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间. ∴f(x )min =f (1)=a-2

1=1 ① f (x )max =f (b )=2

1b 2

-b+a=b ②

由①②解得??

???

==.3,

23b a

变式训练4:已知函数f(x)=x 2

-4ax+2a+6 (x∈R).

(1)求函数的值域为[0,+∞)时的a 的值;

(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.

解: (1)∵函数的值域为[0,+∞),

∴Δ=16a 2

-4(2a+6)=0?2a 2

-a-3=0∴a=-1或a=2

3.

(2)对一切x∈R ,函数值均非负,∴Δ=8(2a 2

-a-3)≤0?-1≤a≤2

3,∴a+3>0,

∴f(a)=2-a(a+3)=-a 2

-3a+2=-(a+2

3)2

+

4

17(a ??

?

??

?-∈23,1).

∵二次函数f(a)在??

?

??

?-23,1上单调递减,∴f(a )min =f )23(=-

4

19,f (a )max =f (-1)=4, ∴f(a)的值域为??

?

???-

4,419.

1.求函数的定义域一般有三类问题:一是给出解释式(如例1),应抓住使整个解式有意义的自变量的集合;二是未给出解析式(如例2),就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.

2.求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.

第3课时 函数的单调性

一、单调性

1.定义:如果函数y =f (x )对于属于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2,当x 1、

若函数f (x )在整个定义域l 内只有唯一的一个单调区间,则f (x )称为 . 2.判断单调性的方法:

(1) 定义法,其步骤为:① ;② ;③ . (2) 导数法,若函数y =f (x )在定义域内的某个区间上可导,①若 ,则f (x )在这个区间上是增函数;②若 ,则f (x )在这个区间上是减函数. 二、单调性的有关结论

1.若f (x ), g (x )均为增(减)函数,则f (x )+g (x ) 函数; 2.若f (x )为增(减)函数,则-f (x )为 ; 3.互为反函数的两个函数有 的单调性;

4.复合函数y =f [g(x )]是定义在M 上的函数,若f (x )与g(x )的单调相同,则f [g(x )]为 ,若f (x ), g(x )的单调性相反,则f [g(x )]为 .

5.奇函数在其对称区间上的单调性 ,偶函数在其对称区间上的单调性 .

例1. 已知函数f(x)=a x

+

1

2

+-x x (a >1),证明:函数f(x)在(-1,+∞)上为增函数. 证明 方法一 任取x 1,x 2∈(-1,+∞),

不妨设x 1<x 2,则x 2-x 1>0, 1

2x x a ->1且1

x a >0, ∴0)1(1

21

1

2

>-=--x x x x x a a a a ,又∵x 1+1>0,x 2+1>0,

)

1)(1()

(3)1)(1()1)(2()1)(2(121221122121121122++-=

+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f(x 2)-f(x 1)=1

2

x x a a -+

1

2

121122+--

+-x x x x >0, 故函数f(x)在(-1,+∞)上为增函数. 方法二 f(x)=a x

+1-1

3

+x (a >1), 求导数得)(x f '=a x lna+

2

)1(3+x ,∵a >1,∴当x >-1时,a x

lna >0,2

)1(3+x >0, )(x f '>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上为增函数.

方法三 ∵a >1,∴y=a x

为增函数, 又y=

13

112+-+

=+-x x x ,在(-1,+∞)上也是增函数. ∴y=a x

+

1

2

+-x x 在(-1,+∞)上为增函数. 变式训练1:讨论函数f (x )=x+

x

a

(a >0)的单调性. 解:方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性, 设x 1>x 2>0,则

f(x 1)-f(x 2) =(x 1+

1

x a )-(x 2+2x a

)=(x 1-x 2)2(1-21x x a ). ∴当0<x 2<x 1≤a 时,

2

1x x a

>1, 则f (x 1)-f (x 2)<0,即f(x 1)<f(x 2),故f (x )在(0,a ]上是减函数.

当x 1>x 2≥a 时,0<

2

1x x a

<1,则f (x 1)-f (x 2)>0,即f(x 1)>f(x 2), 故f (x )在[a ,+∞)上是增函数.∵f (x )是奇函数, ∴f (x )分别在(-∞,-a ]、[a ,+∞)上为增函数; f (x )分别在[-a ,0)、(0,a ]上为减函数. 方法二 由)(x f '=1-2

x a =0可得x=±a

当x >a 或x <-a 时,)(x f '>0∴f (x )分别在(a ,+∞)、(-∞,-a ]上是增函数. 同理0<x <a 或-a <x <0时,)(x f '<0

即f (x )分别在(0,a ]、[-a ,0)上是减函数. 例2. 判断函数f(x)=12

-x 在定义域上的单调性.

解: 函数的定义域为{x|x ≤-1或x ≥1}, 则f(x)= 12

-x ,

可分解成两个简单函数.

f(x)=)(,)(x u x u =x 2

-1的形式.当x ≥1时,u(x)为增函数,)(x u 为增函数.

∴f (x )=12

-x 在[1,+∞)上为增函数.当x ≤-1时,u (x)为减函数,)(x u 为减函数,

∴f(x)=12

-x 在(-∞,-1]上为减函数.

变式训练2:求函数y=1log (4x-x 2

)的单调区间.

解: 由4x-x 2>0,得函数的定义域是(0,4).令t=4x-x 2

,则y=2

1log t.

∵t=4x-x 2=-(x-2)2+4,∴t=4x-x 2

的单调减区间是[2,4),增区间是(0,2]. 又y=1log t 在(0,+∞)上是减函数,

∴函数y=2

1log (4x-x 2

)的单调减区间是(0,2],单调增区间是[2,4).

例3. 求下列函数的最值与值域:

(1)y=4-2

23x x -+; (2)y=x+

x

4

;(3)y=4)2(122+-++x x . 解:(1)由3+2x-x 2

≥0得函数定义域为[-1,3],又t=3+2x-x 2

=4-(x-1)2

.

∴t ∈[0,4],t ∈[0,2],

从而,当x=1时,y min =2,当x=-1或x=3时,y max =4.故值域为[2,4].

(2)方法一 函数y=x+

x

4

是定义域为{x|x ≠0}上的奇函数,故其图象关于原点对称,故只讨论 x >0时,即可知x <0时的最值. ∴当x >0时,y=x+

x

4≥2x x 4

?=4,等号当且仅当x=2时取得.当x <0时,y ≤-4,

等号当且仅当x=-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值.

方法二 任取x 1,x 2,且x 1<x 2, 因为f(x 1)-f(x 2)=x 1+

1

4x -(x 2+24

x )=,)4)((212121x x x x x x --

所以当x ≤-2或x ≥2时,f(x)递增,当-2<x <0或0<x <2时,f(x)递减.

故x=-2时,f(x)最大值=f(-2)=-4,x=2时,f(x)最小值=f(2)=4,

所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值. (3)将函数式变形为 y=2

2

2

2

)20()2()10()0(++-+-+-x x ,

可视为动点M (x,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点.

y min =|AB|=13)21()20(2

2

=++-,可求得x=3

2时,y min =13.

显然无最大值.故值域为[13,+∞).

变式训练3:在经济学中,函数f(x)的边际函数Mf(x)定义为Mf (x )=f (x+1)-f (x ).某公司每

月最多生产100台报警系统装置,生产x (x >0)台的收入函数为R (x )=3 000x-20x 2

(单位:元),其成本函数为C (x )=500x+4 000(单位:元),利润是收入与成本之差. (1)求利润函数P (x )及边际利润函数MP (x );

(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?

解:(1)P (x )=R (x )-C (x )=(3 000x-20x 2)-(500x+4 000)=-20x 2

+2 500x-4 000

(x ∈[1,100]且x ∈N,)

MP (x )=P (x+1)-P (x )=-20(x+1)2+2 500(x+1)-4 000-(-20x 2

+2 500x-4 000) =2 480-40x (x ∈[1,100]且x ∈N ).

(2)P (x )=-20(x-)2

1252

+74 125,当x=62或63时,P(x)max =74 120(元).

因为MP (x )=2 480-40x 是减函数,所以当x=1时,MP(x)max =2 440(元). 因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值. 例4.(20092广西河池模拟)已知定义在区间(0,+∞)上的函数f(x)满足f()2

1

x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;

(2)判断f(x )的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

解:(1)令x 1=x 2>0,代入得f(1)=f(x 1)-f(x 1)=0,故f(1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则

2

1

x x >1,由于当x >1时,f(x)<0, 所以f )(2

1x x <0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2),

所以函数f(x)在区间(0,+∞)上是单调递减函数. (3)由f(

2

1

x x )=f(x 1)-f(x 2)得f()39=f(9)-f(3),而f(3)=-1,所以f(9)=-2.

由于函数f(x)在区间(0,+∞)上是单调递减函数,

由f(|x|)<f(9),得|x|>9,∴x >9或x <-9.因此不等式的解集为{x|x >9或x <-9}.

变式训练4:函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数;

(2)若f(4)=5,解不等式f(3m 2

-m-2)<3. 解:(1)设x 1,x 2∈R ,且x 1<x 2,

则x 2-x 1>0,∴f(x 2-x 1)>1.

f(x 2)-f(x 1)=f((x 2-x 1)+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. ∴f (x 2)>f(x 1).

即f(x)是R 上的增函数.

(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,

∴f (2)=3,

∴原不等式可化为f(3m 2

-m-2)<f(2),

∵f(x)是R 上的增函数,∴3m 2

-m-2<2,

解得-1<m <3

4,故解集为(-1,3

4).

1.证明一个函数在区间D 上是增(减)函数的方法有:(1) 定义法.其过程是:作差——变形——判断符号,而最常用的变形是将和、差形式的结构变为积的形式的结构;(2) 求导法.其过程是:求导——判断导函数的符号——下结论.

2.确定函数单调区间的常用方法有:(1)观察法;(2)图象法(即通过画出函数图象,观察图象,确定单调区间);(3)定义法;(4)求导法.注意:单调区间一定要在定义域内.

3.含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.

第4课时 函数的奇偶性

1.奇偶性:

① 定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;若 ,则称f (x )为偶函数. 如果函数f (x )不具有上述性质,则f (x )不具有 . 如果函数同时具有上述两条性质,则f (x ) . ② 简单性质:

1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称.

2) 函数f (x )具有奇偶性的必要条件是其定义域关于 对称. 2.与函数周期有关的结论:

①已知条件中如果出现)()(x f a x f -=+、或m x f a x f =+)()((a 、m 均为非零常数,0>a ),都可以得出)(x f 的周期为 ;

②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图象关于直线

b x a x ==,轴对称,均可以得到)(x f 周期

例1. 判断下列函数的奇偶性. (1)f(x)=2

2

11x x -?-;

(2)f(x)=log 2(x+12

+x ) (x ∈R );

(3)f(x)=lg|x-2|.

解:(1)∵x 2-1≥0且1-x 2

≥0,∴x=±1,即f(x)的定义域是{-1,1}. ∵f (1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1), 故f(x)既是奇函数又是偶函数.

(2)方法一 易知f(x)的定义域为R , 又∵f(-x)=log 2[-x+1)(2

+-x ]=log 2

1

12

++x x =-log 2(x+12

+x )=-f(x),

∴f(x)是奇函数.

方法二 易知f(x)的定义域为R ,

又∵f (-x )+f (x )=log 2[-x+1)(2

+-x ]+log 2(x+12

+x )=log 21=0,即f(-x)=-f(x),

∴f(x)为奇函数.

(3)由|x-2|>0,得x ≠2.

∴f (x )的定义域{x|x ≠2}关于原点不对称,故f(x)为非奇非偶函数. 变式训练1:判断下列各函数的奇偶性: (1)f (x )=(x-2)

x

x

-+22; (2)f (x )=2|2|)

1lg(22---x x ;

(3)f (x )=??

???>+-≤-<+.

1(2),1|(|0

),1(2

)x x x x x 解:(1)由

x

x

-+22≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数. (2)由???≠-->-.

02|2|0122x x ,

得定义域为(-1,0)∪(0,1).

这时f (x )=

2

222)

1lg(2)2()1lg(x x x x --

=----. ∵f (-x )=-[]),()

1lg()()(1lg 2

222x f x x x x =--=---∴f (x )为偶函数.

(3)x <-1时,f (x )=x+2,-x >1,∴f (-x )=-(-x )+2=x+2=f (x ).

x >1时,f (x )=-x+2,-x <-1,f(-x)=x+2=f(x).

-1≤x ≤1时,f (x )=0,-1≤-x ≤1,f (-x )=0=f (x ).

∴对定义域内的每个x 都有f (-x )=f (x ).因此f (x )是偶函数. 例2 已知函数f(x),当x,y ∈R 时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数;

(2)如果x ∈R +

,f (x )<0,并且f(1)=-2

1,试求f(x)在区间[-2,6]上的最值. (1)证明: ∵函数定义域为R ,其定义域关于原点对称.

∵f (x+y )=f (x )+f (y ),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0, ∴f(0)=f(0)+f(0),得f(0)=0.∴f (x )+f (-x )=0,得f(-x)=-f(x), ∴f(x)为奇函数.

(2)解:方法一 设x,y ∈R +

,∵f (x+y )=f (x )+f (y ),

∴f (x+y )-f (x )=f (y ). ∵x ∈R +

,f (x )<0, ∴f(x+y)-f(x)<0, ∴f(x+y)<f(x).

∵x+y >x, ∴f(x)在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0, ∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f(6)为最小值. ∵f(1)=-2

1,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f (1)+f (2)]=-3. ∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3. 方法二 设x 1<x 2,且x 1,x 2∈R.

则f(x 2-x 1)=f [x 2+(-x 1)]=f(x 2)+f(-x 1)=f(x 2)-f(x 1).

∵x 2-x 1>0,∴f(x 2-x 1)<0.∴f(x 2)-f(x 1)<0.即f(x)在R 上单调递减. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-2

1,

∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3. ∴所求f(x )在区间[-2,6]上的最大值为1,最小值为-3.

变式训练2:已知f(x)是R 上的奇函数,且当x ∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 解:∵f (x )是奇函数,可得f(0)=-f(0),∴f(0)=0.

当x >0时,-x <0,由已知f(-x)=xlg(2+x),∴-f (x )=xlg (2+x ), 即f (x )=-xlg(2+x) (x >0).∴f(x)=??

?≥+-<--).0()

2lg(),0()2lg(x x x x x x

即f(x)=-xlg(2+|x|) (x ∈R ).

例3 已知函数f(x)的定义域为R ,且满足f(x+2)=-f(x) . (1)求证:f(x)是周期函数;

(2)若f(x)为奇函数,且当0≤x ≤1时,f(x)=2

1x,求使f(x)=-2

1在[0,2 009]上的所有x 的个数.

(1)证明: ∵f (x+2)=-f (x ),

∴f (x+4)=-f (x+2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数. (2)解: 当0≤x ≤1时,f(x)=2

1x,

设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=2

1(-x )=-2

1x. ∵f(x)是奇函数,∴f (-x )=-f (x ),

∴-f (x )=-21x ,即f(x)= 2

1x. 故f(x)= 2

1x(-1≤x ≤1) 又设1<x <3,则-1<x-2<1, ∴f(x-2)=21(x-2),

又∵f (x-2)=-f (2-x )=-f ((-x )+2)=-[-f (-x )]=-f (x ), ∴-f (x )=21(x-2),

∴f (x )=-21(x-2)(1<x <3).

∴f (x )=??????

?<<--≤≤-)

31()2(2

1)

11(2

1x x x x

由f(x)=-21,解得x=-1.

∵f (x )是以4为周期的周期函数. 故f(x)=-2

1的所有x=4n-1 (n ∈Z ). 令0≤4n-1≤2 009,则4

1≤n ≤

2

005

1, 又∵n ∈Z ,∴1≤n ≤502 (n ∈Z ),

∴在[0,2 009]上共有502个x 使f(x)=-2

1. 变式训练3:已知函数f(x)=x 2

+|x-a|+1,a ∈R . (1)试判断f(x)的奇偶性; (2)若-21≤a ≤2

1,求f(x)的最小值.

解:(1)当a=0时,函数f(-x)=(-x)2

+|-x|+1=f(x),

此时,f(x)为偶函数.当a ≠0时,f(a)=a 2+1,f(-a)=a 2

+2|a|+1, f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数. (2)当x ≤a 时,f(x)=x 2

-x+a+1=(x-2

1)2

+a+

4

3

, ∵a ≤2

1,故函数f(x)在(-∞,a ]上单调递减, 从而函数f(x)在(-∞,a ]上的最小值为f(a)=a 2

+1. 当x ≥a 时,函数f(x)=x 2

+x-a+1=(x+2

1)2

-a+4

3,

∵a ≥-2

1,故函数f(x)在[a ,+∞)上单调递增,从而函数f(x)在[a ,+∞)上的 最小值为f(a)=a 2

+1.

综上得,当-2

1≤a ≤2

1时,函数f(x)的最小值为a 2

+1.

1.奇偶性是某些函数具有的一种重要性质,对一个函数首先应判断它是否具有这种性质. 判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断(或证明)函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证f (a )±f (-a )≠0.

2.对于具有奇偶性的函数的性质的研究,我们可以重点研究y 轴一侧的性质,再根据其对称性得到整个定义域上的性质.

3.函数的周期性:第一应从定义入手,第二应结合图象理解.

第5课时 指数函数

1.根式:

(1) 定义:若a x n

=,则x 称为a 的n 次方根

① 当n 为奇数时,n a 的次方根记作__________;

② 当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作________(a >0). (2) 性质:

① a a n n

=)(;

② 当n 为奇数时,a a n n =;

③ 当n 为偶数时,=n n a _______= ??

?<-≥)

0()

0(a a a a 2.指数: (1) 规定:

① a 0= (a ≠0); ② a -p = ; ③ (0,m

n m n

a a a m => . (2) 运算性质:

① a a a a s

r s r ,0(>=?+ (a>0, r 、∈s Q ) ② a a a s

r s r ,0()(>=? (a>0, r 、∈s Q ) ③ >>?=?r b a b a b a r

r r ,0,0()( (a>0, r

、∈s Q ) 注:上述性质对r 、∈s R 均适用. 3.指数函数:

① 定义:函数 称为指数函数,1) 函数的定义域为 ;2) 函数的值域为 ;3) 当________时函数为减函数,当_______时为增函数. ② 函数图像:

1) 过点 ,图象在 ;2) 指数函数以 为渐近线(当10<

象向 无限接近x 轴,当1>a 时,图象向 无限接近x 轴);3)函数x

x a y a y -==与的图

象关于 对称. ③

例1. 已知a=9

1,b=9.求: (1);3

153

83327

a a a a ?÷-- (2)

1

1

1)(---+ab b a . 解:(1)原式=3

127?a

.3

123?-a

÷[a

2

1)38(?-22

1315?a

] = 2

167-a )

2

534(+--=a 2

1-

.

∵a=9

1,∴原式=3.

(2)方法一 化去负指数后解.

.1111)(11

1

b a ab

ab b a ab b a ab b a +=+=+

=

+---∵a=,9,91=b ∴a+b=.982 方法二 利用运算性质解.

.1

1)(111111111

11a b a

b b a b b a a ab b a +=+=+=+----------- ∵a=,9,91

=b ∴a+b=

.9

82

变式训练1:化简下列各式(其中各字母均为正数): (1)

;)(65

12

12

112b

a b

a b a ????--

(2).)4()3(6

521

3321

21231----?÷-??b a b a b a

解:(1)原式=

.1005111116

5613

12

12

13

1=?=?=?-+-+--b a b

a

b

a b a b a

(2)原式=-.4514

54

5)(4

5)·2(2

52

3

2

32

12

313

12

31

3

1ab ab

ab b a b a b a b a b a -

=?

-=?-=÷-=÷-

-

-

--

-

-- 例2. 函数f(x)=x 2-bx+c 满足f(1+x)=f(1-x)且f(0)=3,则f(b x

)与f(c x

)的大小关系是 ( )

A.f(b x )≤f(c x )

B.f(b x )≥f(c x

)

C.f(b x )>f(c x

) D.大小关系随x 的不同而不同 解:A

变式训练2:已知实数a 、b 满足等式b

a

)3

1()21(=,下列五个关系式: ①0<b <a;②a <b <0;③0

<a <b;④b <a <0;⑤a=b. 其中不可能成立的关系式有 ( )

A.1个

B.2个

C.3个

D.4个 解:B

例3. 求下列函数的定义域、值域及其单调区间: (1)f(x)=3

4

52+-x x ; (2)g(x)=-(5)2

1(4)41++x

x

.

解:(1)依题意x 2

-5x+4≥0, 解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).

令u=,4

9)25(4522--=+-x x x ∵x ∈(-∞,1]∪[4,+∞), ∴u ≥0,即452

+-x x ≥0,而f(x)=3

4

52+-x x ≥30

=1,

∴函数f(x)的值域是[1,+∞). ∵u=4

9

)2

5(2-

-x ,∴当x ∈(-∞,1]时,u 是减函数, 当x ∈[4,+∞)时,u 是增函数.而3>1,∴由复合函数的单调性可知, f (x )=3

4

52+-x x 在(-∞,1]上是减函数,在[4,+∞)上是增函数.

故f (x )的增区间是[4,+∞),减区间是(-∞,1]. (2)由g(x)=-(,5)2

1(4)21(5)21(4)412++-=++x

x

x

x

∴函数的定义域为R ,令t=()2

1x (t >0),∴g(t)=-t 2+4t+5=-(t-2)2

+9,

∵t >0,∴g(t)=-(t-2)2

+9≤9,等号成立的条件是t=2,

即g(x)≤9,等号成立的条件是(x

)2

1=2,即x=-1,∴g (x )的值域是(-∞,9].

由g(t)=-(t-2)2

+9 (t >0),而t=(x

)2

1

是减函数,∴要求g(x)的增区间实际上是求g(t)的减

区间, 求g(x)的减区间实际上是求g(t)的增区间. ∵g (t )在(0,2]上递增,在[2,+∞)上递减, 由0<t=(x

)21≤2,可得x ≥-1, 由t=(x

)2

1≥2,可得x ≤-1.

∴g (x )在[-1,+∞)上递减,在(-∞,-1]上递增,

故g(x)的单调递增区间是(-∞,-1],单调递减区间是[-1,+∞). 变式训练3:求下列函数的单调递增区间: (1)y=(2

26)2

1x x -+;(2)y=2

6

2--x x .

解:(1)函数的定义域为R. 令u=6+x-2x 2

,则y=(u

)2

1.

∵二次函数u=6+x-2x 2

的对称轴为x=4

1,

在区间[4

1,+∞)上,u=6+x-2x 2

是减函数, 又函数y=()2

1u

是减函数, ∴函数y=(2

26)2

1x x -+在[4

1,+∞)上是增函数.

故y=(2

26)

2

1x x -+单调递增区间为[4

1,+∞).

(2)令u=x 2

-x-6,则y=2u

,

∵二次函数u=x 2

-x-6的对称轴是x=2

1, 在区间[2

1,+∞)上u=x 2

-x-6是增函数. 又函数y=2u

为增函数, ∴函数y=26

2--x x 在区间[2

1,+∞)上是增函数. 故函数y=2

6

2--x x 的单调递增区间是[2

1,+∞).

例4.设a >0,f(x)=x x a

a e

e +是R 上的偶函数.

(1)求a 的值;

(2)求证:f(x)在(0,+∞)上是增函数.

(1)解: ∵f (x )是R 上的偶函数,∴f (-x )=f (x ), ∴,e

e e e x x x x a

a a a +=+--

∴(a-)e 1

e )(1

x

x

a -

=0对一切x 均成立, ∴a-

a

1

=0,而a >0,∴a=1. (2)证明 在(0,+∞)上任取x 1、x 2,且x 1<x 2, 则f(x 1)-f(x 2)=1

e x +

1e 1x

-2

e x -2

e

1x =)e e (1

2

x x - (

).1e

121-+x x

∵x 1<x 2,∴,e e 2

1

x x <有.0e e 1

2

>-x x

∵x 1>0,x 2>0,∴x 1+x 2>0,∴2

1e

x x +>1,

2

1e

1x x +-1<0.∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),

故f(x)在(0,+∞)上是增函数.

变式训练4:已知定义在R 上的奇函数f(x)有最小正周期2,且当x ∈(0,1)时,f(x)=1

42+x x

.

(1)求f (x)在[-1,1]上的解析式; (2)证明:f(x)在(0,1)上是减函数. (1)解: 当x ∈(-1,0)时,-x ∈(0,1).

∵f (x )是奇函数,∴f (x )=-f (-x )=-

.1

42142+-=+--x x

x x 由f(0)=f(-0)=-f(0),且f(1)=-f(-1)=-f(-1+2)=-f(1),

得f(0)=f(1)=f(-1)=0.∴在区间[-1,1]上,有 f (x )={}

????

?????-∈-∈+-∈+1,0,10)0,1(142

)1,0(142x x x x

x x x

(2)证明 当x ∈(0,1)时,f(x)=.1

42+x x

设0<x 1<x 2<1, 则f(x 1)-f(x 2)=

,)

14)(14()

12)(22(1421422

1

2

1

1

2

2

2

1

1

++--=+-++x x x x x x x x x x ∵0<x 1<x 2<1,∴1

222x x -

>0,2

2

1x x +-1>0,∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),

故f(x)在(0,1)上单调递减.

1.

b

N

=a ,a b =N ,log a N =b (其中N>0,a >0,a ≠1)是同一数量关系的三种不同表示形式,

因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同底.

2.处理指数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解. 3.含有参数的指数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.

4.含有指数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的 函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.

第6课时 对数函数

1.对数:

(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中

a 称为对数的底,N 称为真数.

① 以10为底的对数称为常用对数,N 10log 记作___________.

② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:

① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:

① log a (MN)=___________________________;

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇 数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分 数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫 做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

高中数学必修一幂函数及其性质

幂函数及其性质专题 一、幂函数的定义 一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、函数的图像和性质 (1)y x = (2)12 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出: 3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 三.两类基本函数的归纳比较: ① 定义 对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 幂函数的定义:一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质 对数函数的性质:定义域:(0,+∞);值域:R ;

过点(1,0),即当x =1,y =0; 在(0,+∞)上是增函数;在(0,+∞)是上减函数 幂函数的性质:所有的幂函数在(0,+∞)都有定义, 图象都过点(1,1)x >0时,幂函数的图象都通过原点, 在[0,+∞]上,y x =、2y x =、3 y x =、1 2 y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。 【例题选讲】 例1.已知函数()() 2 53 1m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =- (4)2 5 m =-(5)1m =- 变式训练:已知函数()()2 223 m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲 线。 简解:2 20230 m m m m ?+>??-->??解得:()(),13,m ∈-∞-+∞ 例2.比较大小: (1)1122 ,1.7 (2)33 ( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.5 30.5,3,log 0.5 例3.已知幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2 230m m --≤,∴13m -≤≤; ∵m Z ∈,∴2 (23)m m Z --∈,又函数图象关于原点对称, ∴2 23m m --是奇数,∴0m =或2m =. 例4、设函数f (x )=x 3, (1)求它的反函数; (2)分别求出f - 1(x )=f (x ),f - 1(x )>f (x ),f - 1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f - 1(x )=x 3 1 . (2)∵函数f (x )=x 3和f -1 (x )=x 3 1 的图象都经过点(0,0)和(1,1).

高中数学必修1第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 ()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .12 2lg x x x >> B .12 2lg x x x >> C .12 2lg x x x >> D .12 lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

数学必修一集合与函数概念知识点梳理

高中数学必修1知识点 第一章集合与函数概念 〖〗集合 【】集合的含义与表示 (1) 集合的概念 集合中的元素具有确定性、互异性和无序性 (2) 常用数集及其记法 N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表 示实数集? (3) 集合与元素间的关系 对象a与集合M的关系是a M,或者a M,两者必居其一. (4) 集合的表示法 ①自然语言法:用文字叙述的形式来描述集合 ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 ③描述法:{X| x具有的性质},其中x为集合的代表元素? ④图示法:用数轴或韦恩图来表示集合? (5) 集合的分类 ①含有有限个元素的集合叫做有限集?②含有无限个元素的集合叫做 无限集?③不含有 任何元素的集合叫做空集()? 【】集合间的基本关系

)已知集合有个元素,则它有个子集,它有个真子集,它有个 非空子集,它有2n2非空真子集. 【】集合的基本运算 (1)

(2)—元二次不等式的解法 〖〗函数及其表示 【】函数的概念 (1) 函数的概念 ① 设A 、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数 f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B . ② 函数的三要素:定义域、值域和对应法则. ③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.

(2)区间的概念及表示法 ①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b]; 满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b). 注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须 a b. (3)求函数的定义域时,一般遵循以下原则: ①f(x)是整式时,定义域是全体实数. ②f(x)是分式函数时,定义域是使分母不为零的一切实数. ③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等 于1. ⑤y tanx中,x k (k Z). 2 ⑥零(负)指数幕的底数不能为零. ⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各 基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函 数f[g(x)]的定义域应由不等式a g(x) b解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的?事实上,如果在函数的值 域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值

人教A版数学必修一《函数的概念》教案

福建省光泽第一中学高中数学人教版必修一《函数的概念》教案【教材内容分析】 通过学生的回顾,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。通过对实例的探究,让学生感受、体验对应关系在刻画函数概念中的作用,使学生对数学的高度抽象性、严密的逻辑性和广泛的应用性有进一步认识,提高抽象概括、分析总结、数学表达交流等基本数学思维能力;培养学生分析问题、解决问题的能力。 【重点、难点】 重点是函数概念的理解,难点是对函数符号y=f(x)的理解。 教具准备:教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率 【课时安排】一课时 【教学方法】学案教学法,通过不同实例的探究,让学生积极参与教学活动 【教学过程和步骤】

教学环节教学内容师生活动设计意图 课题引入1、回顾、实例引入1)复习初中的常量、变量 与函数的概念在一个变化过程中,有两个变 量x和y ,如果给定了一个x值,相应地就确 定唯一的一个y值,那么我们称y是x的函 数,其中x是自变量,y是因变量。2)请同 学们回顾一下我们在初中学习了哪些函数? (板书)Y=kx;y=kx+b;y=k/x;Y=ax2+bx+c; 请同学们再次回顾在初中物理及日常生活中 见到哪些符合上述的实例?(对应板书)3) 问题1:在加油站为汽车加油,油价为每升 4.93元,启动加油机开关后表示加油量和金 额的两个窗口的数字不停地跳动直到加油量 为12升时停止,问金额y元与加油量x升之 间的关系式是什么?学生回答 学生回 答 学生回 答 学生 回答 通过学生的回 顾,再现初中变 量观点描述函数 的概念,为后面 用集合和对应 的观点来定义函 数奠定基础。 通过实例使 学生进一步认识 生活中充满变量 间的依赖关系; 激发学生学习数 学的兴趣,提高 发散思维能力 概念形成一、请同学们看课本第29页至30页(1)到 (4),回答下列问题: 1、你从上述4例了解到哪些信息?(对应、唯 一、数集等) 2、自变量与因变量之间有何关系?(法 则)T学生独 立思考 2~3分 钟,再讨 论、交 流、分 享。教师 关注学生 通过实际问题引 出概念,激发学 生学习兴趣, 给学生思考、探 索的空间,让学 生体验数学发现 和创造的历程, 提高分析问题和 解决问题的能 力。 二、函数的概念 设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有唯一确定的数值y 与它对应,则这种对应关系叫做集合A上的一个函数,记作y=f(x),x∈A, 其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域。 如果自变量取值a,则由法则f确定的值y 称为函数在a处的函数值,记作y=f(a),所有函数值构成的集合{y∣y=f(x),x∈A}叫做这个函数的值域。进一步理解函数概念定义域、对应法则、值域三者关系深刻理解 f(x)中的f与x的关系 3、怎样判断两个函数是否是同一个函数? 总结出 函数关系 实质 1、师生互动抓住 函数概念这一重 点,举出实例来 突破理解对应法 则f这一难点。 2、突出强调重 点,积极调动学 生 例题精析例1:判断下列函数是否是同一函数 1、y=x2,x∈R;s=t2,t∈R 2、y=x2,x∈R;s=2t2,t∈R 3、y=x2,x∈Z;s=t2,t∈R 4、f(x)= x2,x∈R;g(x-2)=(x-2)2, x∈R; 例2:求下列函数定义域 1、f(x)=2x, 2、f(x)= 3、f(x)= 4、f(x)=(2x-3) 例3:求函数f(x)= ,x,在x=0、1、2处的函 数值和值域 例4:1)已知函数f(x)= x2,求f(x-1) 2)已知函数f(x-1)= x2,求f(x) 例1~例3 第一问均 让学生独 立进行 然后师生 交流分享 例3第2 问及例4 交流后教 师讲解板 书 培养学生解题能 力及学习方法和 习惯 请同学们把下面集合用数轴表示出来 设a、b∈R,a<b 1、{x︱a≤x≤b,x∈R} 2、{x︱a<x<b,x∈R 3、{x︱a≤x<b,x∈R 4、{x︱a<x≤b,x∈R 从而引出闭区间,开区间,半开半闭区间学生实物投影展示

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

(完整版)人教版高一数学必修一基本初等函数解析

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

高中数学必修一幂函数教案

高中数学必修一幂函数 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学必修一幂函数教案 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 索一般幂函数的图象规律.

教学过程与操作设计:

环节教学内容设计师生双边互动 组织探究 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定 义,并且图象都过点(1,1); (2)0 > α时,幂函数的图象通过原 点,并且在区间) ,0[+∞上是增函数.特别 地,当1 > α时,幂函数的图象下凸;当 1 0< <α时,幂函数的图象上凸; (3)0 < α时,幂函数的图象在区间 ) ,0(+∞上是减函数.在第一象限内,当x从 右边趋向原点时,图象在y轴右方无限地逼 近y轴正半轴,当x趋于∞ +时,图象在x轴 上方无限地逼近x轴正半轴. 师:引导学生 观察图象,归纳概 括幂函数的的性质 及图象变化规律. 生:观察图 象,分组讨论,探 究幂函数的性质和 图象的变化规律, 并展示各自的结论 进行交流评析,并 填表.

探究与发现 1.如图所示,曲线 是幂函数αx y=在第一象 限内的图象,已知α分别 取2, 2 1 ,1,1 -四个值,则相 应图象依次 为:. 2.在同一坐标系内,作出下列函数的图 象,你能发现什么规律? (1)3- =x y和3 1 - =x y; (2)4 5 x y=和5 4 x y=. 规律1:在第 一象限,作直线 )1 (> =a a x,它同 各幂函数图象相 交,按交点从下到 上的顺序,幂指数 按从小到大的顺序 排列. 规律2:幂指 数互为倒数的幂函 数在第一象限内的 图象关于直线x y= 对称. 作业回馈 1.在函数 1 , , 2 , 1 2 2 2 = + = = =y x x y x y x y中,幂函数的个数为: A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计2.已知幂函数) (x f y=的图象过点 )2 ,2(,试求出这个函数的解析式. 3.在固定压力差(压力差为常数)下, 当气体通过圆形管道时,其流量速率R与管 道半径r的四次方成正比. (1)写出函数解析式; (2)若气体在半径为3cm的管道中,流 量速率为400cm3/s,求该气体通过半径为r 的管道时,其流量速率R的表达式; (3)已知(2)中的气体通过的管道半 径为5cm,计算该气体的流量速率. 4.1992年底世界人口达到54.8亿, 若人口的平均增长率为x%,2008年底世界人 口数为y(亿),写出: (1)1993年底、1994年底、2000年底 的世界人口数; (2)2008年底的世界人口数y与x的 函数解析式.

人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高

人教版高中数学必修一 知识点梳理 重点题型(常考知识点)巩固练习 指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a≠1). 【知识框图】 【要点梳理】 要点一:指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n 为偶数时,正数 的n 次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0. n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n a =;当n ,0, ,0;a a a a a ≥?==? -

)0,,,1m n a a m n N n =>∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二:指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2

人教版高中数学必修一《集合与函数概念》全章练习及答案

第一章集合与函数 建议用时实际用时满分实际得分120分钟150分 1.集合{1,2,3}的所有真子集的个数为() A.3B.6 C.7 D.8 2.下列五个写法,其中错误 ..写法的个数为() ①{0}∈{0,2,3};②?{0};③{0,1,2}?{1,2,0};④0∈?;⑤0∩?=?. A.1 B.2 C.3 D.4 3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值的集合可以表示为() A.M∪F B.M∩F C.?M F D.?F M 4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于() A.N B.M C.R D.? 5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是() A.y=x(x-2) B.y=x(|x|-1) C.y=|x|(x-2) D.y=x(|x|-2) 6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于() A.20-2x(0

8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是() ①y=f(|x|); ②y=f(-x); ③y=xf(x); ④y=f(x)+x. A.①③B.②③ C.①④D.②④ 9.已知0≤x≤3 2,则函数f(x)=x 2+x+1() A.有最小值-3 4,无最大值 B.有最小值3 4,最大值1 C.有最小值1,最大值19 4 D.无最小值和最大值 10.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如图所示,则函数f(|x|)的图象是() c

人教版高一数学必修一基本初等函数解析(完整资料)

此文档下载后即可编辑 基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,? ??<-≥==)0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的 对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ;

高中数学必修1公开课教案2.3.1 幂函数

2.3 幂函数 整体设计 教学分析 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究 y =x,y =x 2,y =x 3,y =x -1 ,y =x 2 1 等函数的性质和图象,让学生认识到 幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习. 将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径. 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标 1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣. 2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望. 3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点 教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时 教学过程 导入新课 思路1 1.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数. 2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数. 3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数.

必修一数学第一章集合与函数概念知识点总结

必修一数学第一章集合与函数概念知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 ◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x ∈R| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A ?A ②真子集:如果A ?B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A) ③如果 A ?B, B ?C ,那么 A ?C ④ 如果A ?B 同时 B ?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ◆ 有n 个元素的集合,含有2n 个子集,2n-1个真子集 B A ?? /?/

高一数学必修1《基本初等函数》测试题

高一数学必修1《基本初等函数》测试题 一、选择题.(共50分每小题5分.每题都有且只有一个正确选项.) 1、若0a >,且,m n 为整数,则下列各式中正确的是 ( ) A 、m m n n a a a ÷= B 、n m n m a a a ?=? C 、()n m m n a a += D 、01n n a a -÷= 2、对于0,1a a >≠,下列说法中,正确的是 ( ) ①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则 M N =;④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为 ( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算lg52lg2)lg5()lg2(22?++等于 ( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是 ( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、 231a a -- 9、已知幂函数f(x)过点(2,2 2),则f(4)的值为 ( )

高中数学必修1幂函数测试卷

高中数学学科测试试卷 学校:___________姓名:___________班级:___________考号:___________ 一.单选题(共__小题) 1.已知幂函数f(x)过点,则f(4)的值为() A.B.1C.2D.8 答案:A 解析: 解:设幂函数f(x)=x a,x>0, ∵幂函数f(x)过点, ∴,x>0, ∴,∴, ∴f(4)==. 故选A. 2.幂函数y=(m2+2m-2)的图象过(0,0),则m的取值应是()A.-3或1B.1C.-3D.0<m<4 答案:B 解析: 解:由幂函数的定义得:m2+2m-2=1,且-m2+4m>0, 解得:m=1,

3.函数y= 的图象是( ) A . B . C . D . 答案:C 解析: 解:∵函数y=的定义域是[0,+∞), ∴排除选项A 和B , 又∵,∴曲线应该是下凸型递增抛物线. 故选:C . 幂函数y=x -1及直线y=x ,y=1,x=1将平面直角坐标系的第一 象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数的图象经过的“卦限”是( ) A .④⑦ B .④⑧ C .③⑧ D .①⑤ 答案:D 解析: 解:取x=得∈(0,1),故在第⑤卦限; 再取x=2得∈(1,2),故在第①卦限

5.幂函数f(x)=xα的图象经过点,则的值为() A.4B.3C.2D.1 答案:C 解析: 解:幂函数f(x)=xα的图象经过点,所以,∴ ∴ 故选C. 二.填空题(共__小题) 6.若f(x)=x a是幂函数,且满足=3,则f()=______. 答案: 解析: 解析:设f(x)=xα,则有=3,解得2α=3,α=log23, ∴f()= = = = =. 故答案为: 7.设,则使函数y=xα的定义域为R且为偶函数的所有的α值为______.答案:,2

必修一第一章集合与函数概念

第一章 集合与函数概念 一、选择题. 1. 设 A ={a },则下列各式中正确的是( ) A. 0∈A B. a ∈A C. a ∈A D. a = A 2. 设集合 A ={x |x = a 2 +1,a ∈N +},B ={y |y = b 2 - 4b + 5,b ∈N +},则下述关系中正确的是( ) A . A = B B. A B C. A ?B D. A ∩B =? 3. 如图,阴影部分可用集合 M ,P 表示为( ) A. M ∩ P B. M ∪P C.(UM )∩(UP ) D.(UM )∪(UP ) 4. 若集合 A ,B ,C 满足 A ∩B = A ,B ∪C = C ,则 A 与 C 之间的关系必定是( ) A. A C B. C A C. A ?C D. C ?A 5. 下列四组函数中,表示同一个函数的是( ) A. )(x f = |x |,2)(t t g = B. 2)(x x f =,2)()(x x g = C. 1 1)(2--=x x x f ,1)(+=x x g D. 11)(-?+=x x x f ,1)(2-=x x g 6. 若函数 )(x f 的定义域为 [1,2],则函数 )(2x f y = 的定义域为( ) A. [1,4] B. [1,2] C. [2-,2] D. [2-,-1]∪[1,2] 7. 函数 1 1 1-- =x y 的图象是( ) A B 第 3 题

C D 8. 若二次函数y = x 2 + bx + c 的图象的对称轴是 x = 2,则有( ) A. f (1)<f (2)<f (4) B. f (2)<f (1)<f (4) C. f (2)<f (4)<f (1) D. f (4)<f (2)<f (1) 9. 如果奇函数 f (x )在区间[3,7]上是增函数且最小值是 5,那么函数 f (x )在区间 [-7,-3]上( ) A. 是增函数且最小值为 -5 B. 是增函数且最大值是 -5 C. 是减函数且最小值为 -5 D. 是减函数且最大值是 -5 10. 已知函数f (x )= x 5 + ax 3 + bx - 3,且 f (2) = 2,则 f (-2) =( ) A. -6 B. -8 C. -2 D. 6 二、填空题. 1. 若B ={a ,b ,c ,d ,e },C = {a ,c ,e ,f },且集合 A 满足 A ?B ,A ?C ,则集合 A 的个数是______. 2. 设 f (x )= 2x - 1,g (x )= x + 1,则 f [g (x )] = . 3. 已知f (2x + 1)= x 2 - 2x ,则=)2(f . 4. 已知一次函数 y = f (x )中,f (8)= 16,f (2)+ f (3)= f (5),则 f (1)+ f (2)+ f (3)+ ··· + f (100) = . 5. 若函数 a x bx x f ++= 2)( 为奇函数,则 a = ,b = . 6. 若函数 f (x )= x 2 + px + 3在(-∞,1]上单调递减,则 p 的取值范围是 . 三、解答题. 1. 已知非空集合 A ={x |2a + 1≤x ≤3a - 5},B ={x |3≤x ≤22},能使 A ?(A ∩B )成立的所有 a 值的集合是什么?

相关主题
文本预览
相关文档 最新文档