当前位置:文档之家› Faint Blue Galaxies and Merging the Evolution of the Luminosity Function

Faint Blue Galaxies and Merging the Evolution of the Luminosity Function

a r X i v :a s t r o -p h /9612162v 1 17 D e c 1996F AINT BLUE GALAXIES AND MERGING:

THE EVOLUTION OF THE LUMINOSITY FUNCTION

A.CAVALIERE 1,and N.MENCI

21Astro?sica,Dipartimento di Fisica II Universit`a di Roma,

via della Ricerca Scienti?ca 1,I-00133Roma,Italy.

2

Osservatorio Astronomico di Roma,

via dell’Osservatorio,I-00040Monteporzio (Roma),Italy.ABSTRACT.We probe to what extent not only the counts of the faint blue galaxies and their redshift distribution but also their z -resolved luminosity functions can be explained in terms of binary merging (aggregations).We present a dynamical theory of such interactions.On this basis we ?nd that “minimal aggregations”taking place within large scale structures and triggering star-bursts yield rates and timing such as to explain the observations of the local,?at lumi-nosity function and of its progressive rising and steepening for redshifts out to z ~1.Correspondingly,we predict faint blue counts still rising up to m B ~28?29,redshift distributions shifting toward larger z with increasing m B ;in addition,we predict an upturn of the faint end of the luminosity function more pronounced in clusters than in the ?eld.We propose that our picture provides the di?erential dynamics missing in the canon-ical hierarchical clustering theories.This reconciles with the observations the steep luminosity functions predicted at high z by such theories.

Subject headings:cosmology –galaxies:evolution –galaxies:formation.

1.INTRODUCTION

The observations of faint blue galaxies(FBGs)provided statistically signi?cant counts

in works by Koo(1986),Tyson(1988),and Cowie et al.(1988).Then an excess became

apparent,namely,by a factor≈5at magnitudes B~<24and≈7at fainter ones,over the values expected from normal local galaxies?lling a critical Friedmann-Robertson-

Walker universe.Over the last decade the growing data base concerning FBGs kept challenging the interpretations.

Various contributions to that excess have been discussed,the simplest being based

on improved measurements of the local luminosity function(hereafter local LF).These include the correction of the incompleteness by a factor~<1/2in the previous samples of local galaxies,as pointed out by Lilly et al.(1995)and by Ellis et al.(1996), and the consideration of the upturn at M B≥?16from a?atter Schechter shape pinpointed by Marzke,Huchra,&Geller(1994).Both these improvements in the local baseline increase,albeit moderately,the expected counts,since the latter are given by the convolution along the line of sight of the LFs weighted with the cosmological volumes.

Meanwhile,it became apparent that toward faint magnitudes blue galaxies make

up a fraction of all galaxies which increases both with decreasing luminosity and with increasing redshift z(Koo&Kron1992;Colless et al.1993).Thus,some sort of galaxy evolution must be at work.

Passive luminosity evolution driven by the shift with age of stellar populations would provide the observed blue counts only if helped by the larger volume contributed by widely open cosmologies with?o?1(see Pozzetti,Bruzual,&Zamorani1996).A similar result also holds in the red band down to K=24(Cowie et al.1994;Djorgovski et al.1996),though the excess is considerably smaller here.Such cosmologies,however, are out of tune with other evidence(summarized,e.g.,by Ostriker&Steinhardt1995) favoring a?at universe of higher density,i.e.,?o~>0.3with a cosmological constant λo=1??o.

On the other hand,a constraint was added with the advent of large spectroscopic

samples(Cowie,Songaila,&Hu1991;Lilly1993;Colless et al.1993;Glazebrook et al.1995)that provided redshift distributions N(z)with a median value as low as z ≈0.5-0.6for the identi?ed objects with B~<24.The low value of the redshift where N(z)is peaked rules out strong luminosity evolution in a?at universe;rather,for z~<0.5,the distribution resembles the behavior provided by passive-evolution models with sophisticated color mixes(Koo1990).The latter,on the other hand,would imply a very substantial high-z tail unless very speci?c recipes are implemented(see Gronwall &Koo1995),which imply mismatches at lower z(see Cowie et al.1996).

However,recently Lilly et al.(1995)and Ellis et al.(1996)have provided direct evidence of considerable evolution in the resolved luminosity functions over the range z≈0.1?1.This concerns only the blue objects,while the red ones appear to be already “in place”by z≈1,and quite similar to typical L?galaxies of the local kind mainly undergoing passive change.The observed evolution appears to be strongly di?erential,

being faster for the lower luminosities measured.

Two main interpretations have been proposed for the onset of such a blue,later lineage of galaxies.One(Babul&Rees1992;Babul&Ferguson1996)holds these to be very small and numerous lumps in which gas collapse and star formation have been delayed by the high level of the UV background prevailing before z≈1;shortly thereafter,the photoionizing UV?ux might decline sharply enough for this constraint to be lifted.Following the initial short starburst,these objects would rapidly fade away.

The other interpretation stems from the widespread local evidence of starbursts associated with galaxy-galaxy interactions(among the vast literature see the recent papers by Zabludo?et al.1996;Hutchings1996and references therein);this maintains that many more,if smaller,blue starbursts are triggered at increasing depths by tidal interactions taking place mainly with or between numerous dwarfs(Lacey&Silk1991). Some such interactions are likely to end up in galaxy-galaxy aggregations,i.e.,binary merging,also causing considerable number evolution.A phenomenological treatment of these e?ects has been outlined by Guiderdoni&Rocca-Volmerange(1991)and by Broadhurst,Ellis,&Glazebrook(1992).

A dynamical approach to the kinetics of aggregations has been given by Cavaliere& Menci(1993),motivated to complement the standard hierarchical clustering theory by its intrinsic inadequacy in two speci?c respects:it predicts too many small objects,and it envisages too little dynamics to erase them;so by itself it would set and preserve a steep luminosity function.A reconciliation between excess counts and a locally?at LF may be sought in terms of star formation processes(see White1994;Frenk,Baugh,&Cole 1995),but it still falls short of the full goal even on tuning several parameters.Cavaliere &Menci(1993)instead,on the basis of the dynamics of aggregations,predicted that N(M,z)and hence N(L,z)should?atten out with z decreasing in the range z~<1.

We are encouraged to pursue our dynamical approach further not only by the recent data concerning the z-resolved luminosity functions(which we now compare with)but also by some very recent lines of additional evidence.These include the following:a sizable fraction of FBGs at z~1show dynamical signs of ongoing or recent interactions,or the presence of blue satellites(Koo et al.1996;Van den Bergh et al.1996);some FBGs look like spirals with a red bulge(Koo et al.1996)and peripheral starbursts;widespread post-starburst galaxies mark the action of pervasive galaxy-galaxy interactions(Zabludo?et al.1996);measurements of clustered redshifts have shown the presence of at least some galaxy concentrations(Le F`e vre et al.1994; Koo et al.1996).

Here we will start from?rst principles and build up a dynamical theory of in-teractions containing no free parameters once one speci?es the environment where the interactions take place.Our main point will be that many such interactions can occur even at moderate redshifts(z~1)within large scale structures that o?er the best com-bination of volume and density contrast.Such interactions,with their mass-dependent cross sectionΣ(M),naturally yield a di?erential evolution.This a?ects the dwarf galaxy numbers yielding considerable density evolution,while the associated starbursts a?ect all blue luminosities yielding a milder luminosity evolution.In terms of observables,

we?nd counts still rising at very faint magnitudes,redshift distributions peaked at a value shifting from z≈0.5at B~<24toward z≈1for fainter magnitudes,and resolved luminosity distributions which that?atten out from z≈2toward a local Schechter-like shape.

The plan of the paper is as follows.In§2we present our dynamical framework to compute the mass functions evolving by aggregations.In§3we discuss the strong dependence of such evolution on the galaxy environment.We compare three kinds of environments:the homogeneous“?eld”;the bound,virialized structures;and the large-scale structures,which in fact will dominate the observables.In§4we describe how from the evolutionary mass distribution we compute the observables:the resolved luminosity distribution N(L,z),the blue counts N(m B)and the redshift distribution N(z).In§5 we give our results and predictions for these observables.In the?nal section we give and discuss our conclusions.

2.THE MASS FUNCTION FROM BINARY AGGREGATIONS

2.1The dynamics

A dynamical theory for galaxy evolution directly concerns the mass function N(M,t). The governing equation will be of the general form

?N

,(2.1)

τ

whereτ?1is an average evolutionary rate.

In the simplest case when the evolution of a galaxy is not a?ected by surrounding companions,the rate will not depend on the mass function itself.But this produces self-similar N(M,t)with faint-end slope unchanged in time.A well known instance is constituted by the Press&Schechter(1974)formula,corresponding to the choice ofτdiscussed by Cavaliere,Colafrancesco,&Scaramella(1991)and by Kitayama&Suto (1996).

Hence,we consider the case when the evolutionary rateτ?1does depend on the number of surrounding masses that interact and eventually aggregate.For a total density n g(t)of galaxies,this corresponds to consideringτ?1∝n g ΣV ,whereΣis the cross section for aggregation and V is the relative velocity of the two aggregating masses;the average runs over the galaxy velocity distribution.The requirement of total mass conservation(see Lucchin1988)requires a positive and a negative term on the right hand side of equation(2.1),and easily leads to the following Smoluchowski form for the kinetic equation:

?N

2 m0dm′K(m′,m?m′,t)N(m′,t)N(m?m′,t)

?N(m,t) ∞0dm′K(m,m′,t)N(m′,t).(2.2)

Here the kernel K(m,m′,t)=n g(t) ΣV corresponds to the interaction rate for each pair of masses m,m′,and contains the physics driving the evolution of the distribution N(m,t).The latter is written in its comoving form;the masses m≡M/M?are nor-malized in terms of M?,the mass corresponding locally to the standard characteristic luminosity L?(see Peebles1993).

Each galaxy aggregation comprises two stages:?rst,the dark matter halos coalesce; second,the baryonic cores may eventually coalesce.The former process requires grazing, weakly hyperbolic encounters for which the cross section is given by(Saslaw1986, Cavaliere,Colafrancesco,&Menci1992,hereafter CCM92)

Σ=?(V

r m V2 with r m=r?m1/3,v m=v?m1/3,(2.3)

where v?and r?are the velocity dispersion and dark-halo radius of the present M?galaxy.We use M?=51011h?1M⊙1;r?is conservatively taken to be40h?1kpc(see Persic,Salucci,&Stel1996),and v?=270km/s(three dimensional).The function ?(V/v m)describes the decreasing e?ciency of the aggregations for increasing relative velocities.Following the results from N-body simulations(see Richstone&Malumuth 1983)we will take?=1for V<3v m,and just?=0for larger values;we shall discuss the e?ect of such a cuto?in§5and§6.The second term(proportional to G)in the cross section describes the focusing e?ect of gravity,an important addition to the purely geometrical cross section proportional toπr2m only for large masses and in the range V<

1We parameterize the Hubble constant using H o=100h km/s/Mpc.

we think of aggregations as complementary to the standard hierarchical clustering(for which see Peebles1993),we focus on initial mass functions having the Press&Schechter (1974)form

N(m)dm=2a bδc

πM?

φ(m)dm,(2.4)

whereφ(m)=m?2+a exp(?b2δ2c m2a/2).Hereδc≈1.68,b?1~1?xes the amplitude, and a=(n+3)/6is related to the spectral index n~?2of the power spectrum for the density?uctuations from which galaxies form(see White1994).

In the same spirit,the typical galactic mass at the initial time M?(t in)is identi?ed with the characteristic mass M c(t in)provided by the standard hierarchical theory;when normalized to its present value[e.g.,M c(t o)=0.6×1015h?1M⊙for?=1],this reads (Lupini1995)

M c(t in)?

o

α?2

t2

in

+3λo

√M?(t

in

) φ(m)dm,(2.6) integrated from M?/500(the smallest mass considered);hereρco is the critical cosmo-logical density at the present epoch,and C makes explicit the contrast factor at t in of the environment where interactions take place.

Note that assuming the Press&Schechter expression(2.4)and the above values for the parameters is not mandatory;because of the very negative values of the spectral index n at galactic scales,the exponent of the power-law inφ(m)is always close to-2,a generic feature of the mass distributions also found in other variants of the hierarchical clustering scenario(see,e.g.,White1994).On the other hand,shortly after t in the integro-di?erential nature of equation(2.2)causes the solutions to lose memory of the detailed shape of the initial conditions.

2.3Interaction rates

The numerical value of the interaction kernel K=n g(t) ΣV determines the timescale for the aggregation https://www.doczj.com/doc/1617194488.html,puting n g as described above,and substituting?ducial

values for r?and for the initial relative velocity V in,we obtain an expression for K that we conveniently write in the form

K(m,m′,t)=310?4H o t o(m2/3+m′2/3) 1+v2?

V in

10kpc 2

1+z in 4,(3.3) where z in is the redshift corresponding to the initial time t in.

The corresponding rapid decrease of f(t)with time makes the aggregation rate rapidly negligible,so that the evolution of the mass function after equation(2.2)will

become mild at most.Nevertheless,for comparison purposes we compute it using a value for z in typical of the formation era of galaxies,according to equation(2.5)which in turn depends on?o,λo and on the perturbation spectrum.For a scale-free spectrum with n=?2.2we obtain z in=3.5when?=1andλo=0;and z in=4.5when ?o=0.2andλo=0.8.The initial V in=V o(1+z in)is given in terms of the local value V o for the pairwise galaxy velocity dispersion.

The latter was measured?rst by Davis&Peebles(1983)(see also Tormen et al. 1993)who found V o≈340km/s.Recently Marzke et al.1995combined the data from the CfA Redshift Survey and the Southern Redshift Survey and obtained a larger value ≈540km/s;however,when the Abell clusters with R≥1are removed from the sample, the pairwise“velocity dispersion of the remaining galaxies drops to V o=298km/s”. We adopt the value300km/s.Actually,such a value for V o is conceivably due to the present perturbed gravitational potential;so our scaling back as1+z in this subsection will optimistically maximize the e?ect,which will be shown to be inadequate anyway.

3.2Virialized structures

Following the standard hierarchical clustering,virialized structures like groups or clus-ters as environments for galaxy interactions may be characterized simply in terms of the redshift z at virialization.Then,the density contrast is~180,the galaxy density scales as n g(z)/n g(0)=(1+z)3,and the virial velocity dispersion as

V(z)/V o=(1+z)n?1

2t in

1+z in

2n+1

1+z in 2n+1

We start our computation at a redshift typical for formation of groups of galaxies,

z in=2.2for an index n=?1.3at the cluster scale.With this value,the initial V in is evaluated from equation(3.4)on the basis of a(three-dimensional)value V o=1270

km/s for clusters of richness1,to obtain V in=480km/s.The corresponding e?ective contrast from equation(3.7)is C≈45for?=1.

3.3Large scale structures

The large scale structures(LSSs;among the vast literature see De Lapparent,Geller &Huchra1992;Sahni&Coles1995;Vettolani et al.1996)constitute an interesting

environment for interactions to take place in;over the?eld they have the advantage of a larger density,and over groups and clusters the advantage of lower velocity dispersions.

However,they are quantitatively less understood as yet from both the observational and the theoretical points of view.

In the following,we shall use the semi-analytical approach proposed by Do-roshkevich et al.(1995)based on the Zel’dovich approximation and supported by nu-

merical N-body simulations(see again Doroshkevich et al.1995,and references therein). In such a picture,caustics form?rst in the matter?eld at z f≈4(for?=1),then LSSs build up by accretion of matter falling onto them.In this stage aggregations are

not e?ective,because most galaxies have either closely parallel motions or large relative velocities.

Aggregation can be e?ective in a subsequent stage when the thickness of the pan-cakes approaches half of their typical separation.This is the epoch z in when we start our calculations.We evaluate it taking up the results by Doroshkevich et al.(1995),for ?=1.For z~<3the mean comoving distance L between LSSs increases for decreasing z after

L1≈r c 8152)exp(?y2

1+z

1?

1+[(1+z t)/(1+z)]2?1 1/2 (Doroshkevich et al.1995),with z t≈0.2.From such an expression we?nd the comoving thickness of the structures to scale approximately as(1+z)1/2so that the contrast

behaves like C(z)∝(1+z)(D?3)/2,where D is the dimensionality of the LSS(D=2 for sheet-like structures,and D=1for?laments).In terms of the function f(z)de?ned in equation(2.7)this translates to

f(z)= (1+z)/(1+z in) (3+D)/2.(3.10) If the local contrast is≈5,consistent with observations(Geller&Huchra1989; Ramella,private communication)and with numerical simulations(Brainerd and Vil-lumnsen1991;Menci&Valdarnini1993),then from the scaling of C(z)we infer an initial contrast C=5(1+z in)(D?3)/2,with the value C≈3for D=2.

In this section we have de?ned the quantities which enter equation(2.2)for the computation of the evolving mass function in di?erent environments.A summary of the resulting numerical values is given in Table1.Next we describe how,from the mass function,we compute the observables like the luminosity function,the galaxy number counts and redshift distributions.

4.FROM N(M,t)TO OBSERVABLES

Our basic assumption in deriving the observables is that interactions also trigger star formation(see,e.g.,Zabludo?et al.1996,Hutchings1996,and references therein). Speci?cally,we conservatively assume that in the range of parameters where aggrega-tions are e?ective,they also induce and sustain star formation at a rate s(z)equal to the rate of dynamical interactionsτ?1(z)acting on the available gas(see Lacey&Silk 1991;Broadhurst,Ellis,&Glazebrook1992).

The associated luminosity for the dwarf galaxies is given by the relation L∝M gas/τ,considering thatτexceeds the dynamical time of a single galaxy and con-stitutes the limiting factor.Moreover,the deposition of energy from Supernovae will be initially balanced by cooling,but then for shallow potential wells it will go predom-inantly into gas expulsion.In this regime,even more directly than in White&Frenk (1991),the relation M gas∝M v2m is obtained.Sinceτ?1has the same M and t(or z) dependencies as given for K by equation(2.7),we obtain

L/L?= M/M? ηand L?(z)∝f(z,λo,?o),(4.1) whereη=4/3.Such a value applies when the cross section(2.3)is purely geometrical and is consistent with the observational results by Kormendy(1990).From equation (4.1)the luminosity function N(L)=N[M(L)]dM/dL is obtained.

Since our aim is to isolate the e?ects of dynamical evolution,we deliberately simplify colors and k-corrections to the bones.So we identify the prompt luminosity L with that in the blue band(see Broadhurst et al.1992),and in the blue spectral region at moderate z we assume a neutral k-correction(see Lilly,Cowie,&Gardner1991and Koo&Kron 1992).We take an absolute characteristic magnitude M B?=?20(see Lilly et al.1995; Ellis et al.1996).

The counts and the redshift distributions are found by convolving the comoving N(L,z)with the cosmological volume V,to obtain

N(m B)dm B= z max0dz d V dm B dm B,(4.2)

where the relation between L and m B is given,e.g.,by Guiderdoni&Rocca-Volmerange (1991),and the cosmological volume for a?at universe with?o+λo=1is given,e.g., by Peebles(1993).The range of integration over z extends out to the maximum z from which the magnitude m B can be observed.

5.RESULTS

In this section we present our results for the mass distribution,the z-depen-

dent luminosity function N(L,z),the counts N(m B)and the redshift distributions N(z) in di?erent magnitude ranges.These observables are derived from galaxy evolution driven by aggregations acting in the di?erent environments described in§3.

The plots we present are obtained through the following steps:

i)For a given galaxy environment we compute the aggregation rate given by equation

(2.7);the parameters C,t in(or z in),V in and the function f(?o,λo,t)are discussed in §3,and summarized in Table1.

ii)We numerically integrate equation(2.2)from the initial time t in to the present time t o.The time step is set at?t=(t?t o)/500while the mass step is M?/500.

iii)Following the equations recalled in§4we compute N(L,z),N(m B)and N(z). The results we obtain are compared with the observations concerning the faint blue counts,the z-distributions,and the z-resolved LFs.

5.1The homogeneous“?eld”

For comparison,we put on record the corresponding results,although this is not ex-pected to be an environment conducive to many late binary aggregations due to the rapid decrease of density and velocities.

Figure1a shows that such is indeed the case for?=1(λo=0).Because of the fast decrease of f(?o,λo,t)with time(see Table1),the interaction rate rapidly becomes small,so that N(M,t)hardly evolves from the initial shape.The corresponding LFs are shown in Figure1b.Any small evolution that occurs takes place at high redshifts, so that no appreciable change can be observed in the range z~<1.The faint counts in Figure1c are well?tted,which is not not surprising considering the steep LFs at all redshifts.But the z-distributions(Figure1d)are peaked at z≈1even at relatively bright magnitudes.

Thus,aggregations of galaxies uniformly distributed in a FRW universe are un-interesting,and clearly fail to account for the observed evolution in the LFs out to z≈1.

One might expect that the plateau(actually the in?ection)characteristic of the cosmic scale factor in a Lema?itre universe(λ=0)could provide an era of roughly con-stant density when the binary aggregation processes could proceed for a while.However, in a?at universe such processes are suppressed after the in?ection by the accelerated expansion.The net e?ect is still close to the case?=1,as can be seen from Figures 2a?2d computed for?o=0.2andλo=0.8.

5.2Virialized structures

A more favorable environment for galaxy aggregations is constituted by the bound, virialized structures like groups and clusters of galaxies.Here the large density contrast C(though convoluted with the limited survival time discussed in§3.2),and the milder time decrease of the interaction kernel f(?o,λo,t)yield a sustained evolution of N(M,t) (see Figure3a)compared to that found for the“?eld”.In Figures3b?3d we show the LFs,the counts,and the z-distributions expected if all galaxies resided within virialized structures for a considerable fraction of their lifetime.It is found that the evolution of N(L,z)consists of a rapid?attening in the sub-L?range,with relatively little change in the range from z≈1to the present.

It must be noted that in clusters,in spite of the larger value of the contrast C,the aggregation rate is suppressed not only by the limited survival time(see§3.2),but also by the increase with decreasing z of the velocity dispersion entering the cuto??(V/v m) in equation(2.3).The latter circumstance has the e?ect of decreasing the gravitational term inΣ,and even of shrinking to zero the whole cross section of the smaller galaxies with the lower internal velocities;so at the faint end the mass distribution will hardly be changed from the initial steep shape.The net result will be a LF with an upturn toward the faint end(see Figure3e).The balance between the e?ect of the sharp, mass-dependent decrease of the cross section and the general speeding up driven by the large e?ective contrast is a delicate one,and deserves an aimed study motivated by the LFs recently found(see Driver et al.1994)to be appreciably steeper in local clusters than in the“?eld”.

5.3Large scale structures

A result in a way intermediate between the two extremes above is provided by the environment constituted by the LSSs,where observations show most galaxies to reside not only locally(Geller&Huchra1989),but also at increasingly larger redshifts(see Broadhurst et al.1990;Schectman et al.1995;Vettolani et al.1995;Carlberg et al. 1996).For galaxies inside sheet-like structures(our case D=2)the parameters entering the aggregation rate are summarized in Table1,and yield the evolution of N(M,t) shown in Figure4a.The corresponding counts and redshift distributions(Figures4c, 4d)agree with the observations.In particular,they agree with the spectroscopic redshift distribution by Glazebrook at al.(1995)if L∝M4/3holds,and yield an enhanced high-z tail for a stronger dependence of L on M,e.g.,L∝M1.5.The luminosity functions

(Figure4b)show a clear?attening from z≈1toward a Schechter-like,local shape with α≈?1.1in agreement with the data.

Note that an upturn at faint luminosities should also be expected here;the mecha-nism is similar to that discussed at the end of§5.2,but the e?ect is considerably milder (and shifted toward fainter luminosities)because the relative velocities inside LSSs are and remain smaller than those in clusters.

De?ning a characteristic luminosity by the ratio of the second to the?rst moment of N(L,z),we?nd this evolves by about1from z=1to z=0,as also illustrated in Figure4a.Actually,the intrinsic luminosity change L?(z)∝(1+z)(3+D)/2(see eqs.

[4.1]and[3.10])is nearly balanced by the change following approximately(1+z)?1.5, due to characteristic mass after the relation L∝M4/3.The net result is a moderate change(about1Mag)of all luminosities,competing with the large change in number for setting the shape of N(L,z).The corresponding M/L ratio evolves(for an L?galaxy) as M?(z)?1/3(1+z)?(3+D)/2which yields M?/L?~(1+z)?(2+D)/2.

6.CONCLUSIONS AND DISCUSSION

We have derived for FBGs a luminosity function that changes considerably for increasing z as a result of number evolution and a milder luminosity evolution.In particular,in the observed range out to z≈1the luminosity function N(L,z)rises and steepens from a local logarithmic slope about?1.1to a value close to?1.6at redshift ≈0.8,as observed(see Figure4b,and below for a discussion).

This is derived from a dynamical theory of the galaxy mass function based on mass-conserving binary aggregations.The resulting evolution of N(M,t)is far from being self-similar;indeed,it is strongly di?erential with mass,causing for smaller galaxies stronger number changes and shift of the mass scale.This constitutes an important complement to the canonical hierarchical clustering,which in fact contains too little dynamics to account for the observed evolution of the luminosity function,as recalled in the Introduction.

The actual strength of the evolution induced by aggregations depends on the envi-ronment where these take place.In CCM92we stressed that in long-lived groups strong, gravitationally focused interactions of large galaxies occur,leading to the formation of cD-like mergers.Here,we?nd that in the large-scale structures—which comprise most local galaxies,are being observed out to z~1,and in a critical universe are expected to loom out at redshifts z~2—small-small and small-large aggregations are favored. Their strength is such as to match–with no special e?ort at optimization–the existing data for the resolved N(L,z)and for the integrated but deeper observables like counts and magnitude distributions(see Figures4a to4d).

A simple way of summarizing the interaction(and starburst)rates derived in§3.3is to note that they scale–di?erently than in the“maximal merging”model,see Carlberg

(1996)–likeτ?1=τ?1

o (M?/M)1/3(1+z)2.5.This is because in the rateτ?1=n gΣV

the scaling of the background density(1+z)3is partly o?set by the LSS contrast C(z)∝(1+z)?0.5;with mass,on the other hand,the scaling results from n g∝M?1

andΣ∝M2/3.Toomre(1977)has?xed the observed interaction probability t o/τo at

a few percent for interactions of bright local galaxies;we?ndτ?1

o =C n g(t o)ΣV o≈

1/500Gyr?1.At z≈1our probability t/τfor galaxies of5×109M⊙exceeds30 %.The bright career of this dwarf population activated by interactions is e?ectively started at z≈2when the large scale structures begin to loom out;they reshu?e the conditions set by the canonical hierarchical clustering including the initial correlations of linear perturbations,sustain contrasts larger than unity and produce non-linear relative velocities con?ned to one or two dimensions.This career terminates,due to the Hubble expansion,with a progressive fading for z~<0.5and with the number of sub-L*units reduced by~10?1.

The LSS features used in our computation–?lamentary(D=1)or sheet-like (D=2as considered above)structures produce similar results–come down to three key points:formation era around z in≈2,local density contrast≈5,and slow growth of the contrast from z in to the present.These features,which appear in the relatively local observations and also in all N-body experiments,are also incorporated in analytic interpretations di?erent from those of Zel’dovich’s(see Bond,Kofman,&Pogosyan 1996).We stress that all such structures are ultimately traced back to long-distance correlations,not considered in the homogeneous renditions of the hierarchical cluster-ing scenario,but actually intrinsic,and e?ective in bringing to interact galaxies that otherwise would not have met.

The detailed value of the initial contrast C is the only“free”parameter at present. In fact,its magnitude is constrained by its very de?nition to be of the order of a few,as we have used.As to?ner adjustments,its local distribution is currently being measured (Ramella,private communication);the analytic theory of its evolution is being re?ned, beyond the approximation used in§3.3(see Sahni&Coles1995);observations are reaching beyond z≈1(see Willinger et al.1996).

Our results are conserved when the shape of the initial mass function is changed from the detailed Press&Schechter form but is still steep as predicated by all hierar-chical clustering scenarios(cf.White1994).

The main trends are also robust with respect to variations of the M/L ratio from the value M/L∝M?1/3used in§§4and5,to include M/L∝const.and M/L∝M?2/3 as shown in Figure5.The di?erent M/L ratios tilt,but moderately,the shape of the distant LFs;correspondingly,the tail of N(z)for z>1rises to the values indicated by the data by Cowie et al.(1996)if the dependence of M/L goes toward M?2/3.

We also computed the counts in the K-band.These,as expected,increase consid-erably less than in the blue due to the long evolutionary times of the red stars and to the stronger k-correction.

One recurrent objection to the aggregation scenario concerns the correlation func-tion,as discussed by Efstathiou(1995).This is a delicate issue,as is shown in Figure 6.At the statistical level of the correlation function,aggregations with cross section less than linear in mass(likeΣ∝M2/3for nearly geometrical cross sections that ap-ply here,see§2)do not cause the slope of the initial correlation function to change.

A steepening instead takes place for the stronger,gravitationally focussed interactions

with non-linear cross sectionΣ∝M4/3.The whole issue may peter out,however,with the growing evidence for clustered redshifts at z≈0.8?1as observed and discussed by Le F`e vre et al.(1994)and by Koo et al.(1996).

The other recurrent objection to aggregations is that the spiral disks may be dam-aged by merging,as discussed by Ostriker(1990).In our framework,however,at the level of M?the mass growth is due to minor episodes of merging with the numerous but much smaller(and often more di?use)galaxies.On the other hand,the overall change of the characteristic mass seen in Figure4a is mainly due to the changing shape of the mass function,i.e.,to its?attening corresponding to the disappearance of small galaxies.This results in a mild statistical change in time of the second moment of the distribution,which does not imply a corresponding change in the masses of individual galaxies.For similar reasons,the population of ellipticals does not evolve appreciably by aggregations in the redshift range considered here.

To conclude,excess counts at B~<24may result from the combination of several e?ects:local shape and normalization of the luminosity function,long line-of-sight as-sociated with?o<1,passive evolution,and interactions as stressed here.The shape of N(z)is more telling,and at relatively bright magnitudes m B~<24requires some evo-lution,yet it rules out the pure luminosity kind in a?at universe.The resolved N(L,z) with its evolving shape restricts the issue to the following alternatives:luminosity-dependent luminosity evolution or a combination of(di?erential)density plus luminos-ity evolution,as naturally provided by aggregations.The steepening associated with the latter drives a speci?c di?erential shift of N(z),characterized by the peak marching on toward higher z at fainter magnitudes(see Figure4d);it also sustains the rise of the counts at very faint magnitudes(see Figure4c)even beyond b j=27measured by Metcalfe et al.(1995),probing in an integrated fashion the driver’s action at redshifts not yet reached by spectroscopy.

The above predictions stem from simple dynamics in which interactions produce aggregations and starbursts together.On the other hand,Cavaliere&Menci(1993) and Moore et al.(1996)point out that in clusters higher densities but larger relative velocities cause more frequent but weaker encounters(“harassment”)resulting mainly in pure starbursting and in blueing of the Butcher-Oemler(1984)type.In fact,such ?ybys and the true aggregations constitute two facets of a single process,di?ering as for the detailed form of the cross section(see equation2.3)and for the ratio s(z)/τ?1(z) of the star formation to the interaction rates.

These two facets stem from the same dynamics,and concur to stress the importance of interactions as drivers of galaxy evolution.Actually,the intermediate regime should also be observable in clusters,in the form of a local LF frozen with a steeper faint end or a more pronounced upturn,as shown by Figure3e.

We have bene?ted from many informative discussions with G.De Zotti,M.D’Onofrio, E.Giallongo,M.Ramella,R.Windhorst and G.Zamorani.We thank the referee for his helpful comments which improved our presentation.This work was supported by partial grants from MURST and ASI.

REFERENCES

Babul,A.,&Rees,M.J.1992,MNRAS,255,346

Babul,A.,&Ferguson,H.C.1996,ApJ,458,100

Barnes,J.E.,&Hernquist,L.E.1991,ApJ,370,L65

Barnes,J.E.1992,ApJ,393,484

Bond,J.R.,Kofman,L.,&Pogosyan,D.1996,Nature,380,603

Brainerd,T.G.,&Villumsen,J.V.1992,ApJ,394,409

Broadhurst,T.J.,Ellis,R.S.,Koo,D.C.,&Szalay,A.S.1990,Nature,311,726 Broadhurst,T.J.,Ellis,R.S.,&Glazebrook,K.1992,Nature,355,55

Butcher,H.,&Oemler,A.1984,ApJ,285,L45

Carlberg,R.G.1996,in“Galaxies in the Young Universe”,MPI Conference,ed.H.

Hippelein(Springer),preprint

Carlberg,R.G.,Cowie,L.L.,Songaila,A.,&Hu,E.M.1996,preprint[astro-ph/9605024] Cavaliere,A.,Colafrancesco,S.,&Scaramella,R.1991,ApJ,380,15

Cavaliere,A.,Colafrancesco,S.,&Menci,N.1992,ApJ,392,41(CCM92) Cavaliere,A.,&Menci,N.1993,ApJ,407,L9

Colless,M.M.,Ellis,R.S.,Broadhurst,T.,Taylor,K.,&Hook,R.N.1993,MNRAS, 261,19

Cowie,L.L.,Lilly,S.J.,Gardner,J.P.,&McLean,I.S.1988,ApJ,332,L29

Cowie,L.L.,Gardner,J.P.,Hu,E.M.,Songaila,A.,Hodapp,K.W.,&Wainscoat,R.J.

1994,ApJ,434,114

Cowie,L.L.,Songaila,A.,&Hu,E.M.1991,Nature,354,460

Cowie,L.L.,Songaila,A.,Hu,E.M.,&Cohen,J.G.1996,AJ in press[astro-ph/9606079] Davis,M.,&Peebles,P.J.E.1983,ApJ,267,465

de Lapparent,V.,Geller,M.J.,&Huchra,J.P.1992,ApJ,369,273

Djorgowski,S.et al.1996,ApJ,438,L13

Doroshkevich,A.G.,Fong,R.,Gottl¨o ber,S.,M¨u cket,J.P.,&M¨u ller,F.1995,preprint Driver,S.P.,Phillips,S.,Davies,J.I.,Morgan,I.,&Disney,M.J.1994,MNRAS,266, 155

Efstathiou,G.P.E.1995,MNRAS,272,L25

Ellis,R.S.,Colless,M.,Broadhurst,T.,Heyl,J.,&Glazebrook,K.1996,MNRAS,280, 235

Frenk,C.S.,Baugh,C.M.,&Cole,S.1995,in Proc.of‘Mapping,Measuring and Modelling the Universe’,Valencia,to appear

Geller,M.J.,&Huchra,J.P.1989,Science,246,897

Glazebrook,K.,Ellis,R.S.,Colless,M.M,Broadhurst,T.J.,Allington-Smith,J.R., Tamvir,N.R.,&Taylor,K.1995,MNRAS,273,157

Gronwall,C.&Koo,D.C.,1995,ApJ,440,L1

Guiderdoni,B.,&Rocca-Volmerange,B.1991,A&A,252,435

Kau?man,G.,White,S.D.M,&Guiderdoni,B.,1993,MNRAS,264,201 Kitayama,T.,&Suto,Y.1996,MNRAS,280,638

Koo,D.C.1986,ApJ,311,651

Koo,D.C.1990,in ASP Conf.Ser.10,‘Evolution of the Universe of Galaxies-The Edwin Hubble Centennial Symposium’,Aed.R.G Kron(San Francisco:ASP),268 Koo,D.C.,&Kron,R.G.1992,ARAA,30,613

Koo,D.C.et al.1996,ApJ,469,535

Kormendy,J.1990,in ASP Conf.Ser.10,‘Evolution of the Universe of Galaxies’,ed.

R.G.Kron(San Francisco:ASP),33

Jones,L.R.,Fong,R.,Shanks,T.,Ellis,R.S.,&Peterson,B.1991,MNRAS,249,481 Hutchings,J.B.1996,ApJ,111,712

Lacey,C.,&Cole,S.1993,MNRAS,262,627

Lacey,C,&Silk,J.1991,ApJ,381,14

Le F`e vre,O.,Crampton,D.,Hammer,F.,Lilly,S.J.,&Tresse,L.1994,ApJ,423,L89 Lilly,S.J.,Cowie,L.L.,&Gardner,J.1991,ApJ,369,79

Lilly,S.J.1993,ApJ,411,501

Lilly,S.J.,Tresse,L.,Hammer,F.,Crampton,D.,&Le F`e vre,O.1995,ApJ,455,108 Lucchin,F.1988,in Lecture Notes in Physics,332,‘Morphological Cosmology’,ed.P.

Flin(Berlin:Spriger),284

Lupini,F.1996,II Rome University Thesis

Maddox,S.J.,Sutherland,W.J.,Efstathiou,G.,Loveday,J.,&Peterson,B.A.1990, MNRAS,247,1p

Marzke,R.O.,Huchra,J.P.,&Geller,M.J.1994,ApJ,428,43

Marzke,R.O.,Geller,M.J.,da Costa,L.N.,&Huchra,J.P.1995,AJ,110,477 McLeod,J.V.1962,Quart.J.Math.Oxford,13,119

Menci,N.,Colafrancesco,S.,&Biferale,L.1993,Journ.de Physique,3,1105 Menci,N.,&Valdarnini,R.1993,ApJ,436,559

Metcalfe,N.,Shanks,T.,Fong,R.,&Roche,N.1995,MNRAS,273,257

Moore,B.Katz,N.,Lake,G.,Dressler A.,&Oemler,A.1996,Nature,379,613 Ostriker,J.P.1990,in ASP Conf.Ser.10,“The Evolution of the Universe of Galaxies”, ed.R.Kron(San Francisco:ASP),25

Ostriker,J.P.,&Steinhardt,P.1995,Nature,377,600

Peebles,P.J.E.1993,Principles of Physical Cosmology(Princeton:Princeton Univ.

Press)

Persic,M.,Salucci,P.,&Stel,F.1996,MNRAS,281,27

Pozzetti,L.,Bruzual,G.,&Zamorani,G.1996,MNRAS,281,953

Press,W.H.,&Schechter,P.1974,ApJ,187,425(P&S)

Richstone,D.O.,&Malumuth,E.M.1983,ApJ,268,30

Sahni,V.,&Coles,P.1995,Phys.Rep.,262,1

Saslaw,W.C.1985,‘Gravitational Physics of Stellar and Galactic Systems’(Cambridge: Cambridge Univ.Press),231

Shectman,S.A.,Landy,S.D.,Oemler,A.,Tucker,D.L.,Kirshner,R.P.,Lin,H.,& Schechter,P.L.1995,in“Wide Field Spectroscopy and the Distant Universe”,in Proc.of35th Herstmonceaux Conf.,eds.S.J.Maddox and A.Aragon-Salamanca (Singapore:World Scienti?c),99

Toomre,A.1977,in‘Evolution of Galaxies and Stellar Populations’,ed.B.M.Tinsley &https://www.doczj.com/doc/1617194488.html,rson(New Haven:Yale Univ.Observatory),401

Tormen,G.,Moscardini,L.,Lucchin,F.&Matarrese,S.1993,ApJ,411,16

Tyson,A.J.1988,AJ,96,1

van den Bergh,S.,Abraham,R.G.,Ellis,R.S.,Tanvir,N.R.,Santiago,B.X.,&Glaze-brook,K.1996,AJ,112,359

Vettolani,G.et al.1995,in“Wide Field Spectroscopy and the Distant Universe”,in Proc.of35th Herstmonceaux Conf.,eds.S.J.Maddox and A.Aragon-Salamanca (Singapore:World Scienti?c),115

White,S.D.M.,&Frenk,C.S.,1991,ApJ,379,52

White,S.D.M.1994,preprint MPA831

Willinger,G.M.,Hazard,C.,Baldwin,J.A.,&McMahon,R.G.1996,ApJS,in press Zabludo?,A.I.,Zaritsky,D.,Lin,H.,Tucker,D.,Hashimoto,Y.,Schectman,S.A., Oemler,A.,&Kirshner,R.P.1996,ApJ,466,104

FIGURE CAPTIONS

Figure1:Results for galaxies with M/L∝M?1/3interacting in the homogeneous “?eld”with?=1andλ=0.

Panel a):The solid lines show the comoving mass function at10equally spaced time intervals,from the initial time t in(dashed line)to the present.

Panel b):The corresponding luminosity functions in the B band for three redshift bins:z=0?0.2,0.2?0.5and z>0.5;the data are taken from Ellis et al.1996.

Panel c):The computed galaxy counts(solid line),compared with data from various authors:Maddox et al.(1990)solid circles;Jones et al.(1991),open triangles;

Tyson(1988),open circles;Lilly,Cowie&Gardner(1991),open stars;Metcalfe et al.(1995),solid triangles.

Panel d):The computed redshift distribution in the magnitude range22.5

Figure2:Same as Figure1but for?o=0.2andλo=0.8.

Figure3:Same as Figure1but for galaxies within virialized structures.

Figure3e:The e?ect of varying the position of the cuto?for the e?ciency?(V/v m)in the cross section(2.3).In this?gure?=0is taken for V>2.5v m rather than V>3v m as adopted throughout the paper.

Figure4:Same as Figure1but for galaxies within large scale structures with D=2.

In panel b)we show also our prediction for the luminosity function at z=1(dot-dashed line).In panel c)we show also our predictions for24

Figure5:The evolution of the luminosity function of interacting galaxies within large scale structures,computed for M/L=constant(left panel)and for M/L∝M?2/3 (right panel).

Figure6:The time evolution of the slopeγof the two-point correlation function for aggregating galaxies,as computed from a typical Montecarlo simulation(see Menci, Colafrancesco,&Biferale1993for details);γin is the initial value.The dotted line shows the result for a cross section scaling asΣ~M4/3,and the solid line that for Σ~M2/3.

-22-20-18-16-5-4-3-2-1

101214024681618202224d -1-0.500.5

-2.5

-2

-1.5

-1

-0.5

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

实验四 血涂片的制备与染色

实验四血涂片的制备与染色 【目的】掌握血涂片的制备和染色方法(preparation and staining of thin blood films)。 【原理】将一小滴血液均匀涂在玻片上,呈单层紧密分布,制成薄血片。用含天青B和伊红的Romannowsky类染料进行染色。细胞中的碱性物质如RBC中的血红蛋白及嗜酸性粒细胞胞质中的嗜酸性颗粒等与酸性染料伊红结合染成红色;细胞中的酸性物质如淋巴细胞胞质及嗜碱性粒细胞质中的嗜碱性颗粒等与碱性染料亚甲蓝结合染成蓝色;中性粒细胞的中性颗粒呈等电状态与伊红和美蓝均可结合,染成淡紫红色。 【器材】 1.载玻片使用前,必须仔细清洗,并用乙醇或软布清洁。 2.推片选择边缘光滑的载玻片,在两角分别作斜线标记,然后用玻璃切割刀裁去两角,制成约15mm 宽度的推片。 3.吸耳球。 4.显微镜。 5.酒精灯或Bunsen灯。 6.采血针。 7.注射器和针头。 【试剂】 1.瑞氏(Wright)染液 (1)Ⅰ液:包含瑞氏染料1.0g、纯甲醇(AR级以上)600ml、甘油15ml。将全部染料放入清洁干燥的乳钵中,先加少量甲醇慢慢地研磨(至少30min),以使染料充分溶解,再加一些甲醇混匀,然后将溶解的部分倒入洁净的棕色瓶内,乳钵内剩余的未溶解的染料,再加入少许甲醇细研,如此多次研磨,直至染料全部溶解,甲醇用完为止。再加15ml甘油密闭保存。 (2)Ⅱ液:磷酸盐缓冲液(pH6.4~6.8),包含磷酸二氢钾(KH2PO4)0.3g、磷酸氢二钠(Na2HPO4)0.2g、蒸馏水加至1000ml。配好后用磷酸盐溶液校正pH,塞紧瓶口贮存。如无缓冲液可用新鲜蒸馏水代替。 2.吉姆萨染液包含吉姆萨染料0.75g、甘油35ml、甲醇65ml。将吉姆萨染料、甘油和甲醇放入含玻璃珠的容器内,每天混匀3次,连续4天,最后过滤备用。 3.瑞-吉复合染液 (1)I液:包含瑞氏染料1g、吉姆萨染料0.3g、甲醇500ml、中性甘油10ml。将瑞氏染料和吉姆萨染料置洁净研钵中,加少量甲醇,研磨片刻,再吸出上液。如此连续几次,共用甲醇500ml。收集于棕色玻璃瓶中,每天早、晚各摇3min,共5d,以后存放1周即能使用。 (2)Ⅱ液:即磷酸盐缓冲液(pH6.4~6.8)。包含无水磷酸二氢钾6.64g、无水磷酸氢二钠2.56g,加少量蒸馏水溶解,用磷酸盐调整pH,加水至1000ml。 【标本】 EDTA抗凝静脉血或末梢血。 【操作】 1.采血 (1)静脉采血法:用EDTA·K2抗凝1~2h内的标本,使用玻棒、毛细管、注射针头等在距载玻片一端1cm处加1滴抗凝血,直径约4mm。 (2)皮肤采血法:选择第三、四手指,并先采红细胞、白细胞计数,再采血1滴置洁净玻片上用于血涂片制备。 2.制作涂片左手平执载玻片,或放在类似桌子等平坦地方,右手持推片从后方移动接近血滴,使血

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.doczj.com/doc/1617194488.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

吉姆萨染色液

吉姆萨染色液 【产品名称】 吉姆萨染色液 【包装规格】 货号:DM0002 单瓶包装规格分别为: A液吉姆萨染液:20ml、100ml、250ml、500ml;B液磷酸盐缓冲液:250ml、500ml、5000ml; 每套/盒包装规格分别为: A液20ml+B液250ml/盒、A液100ml+B液4×250ml/盒、 A液250ml+B液5×500ml/盒、A液500ml+B液5000ml/盒。 【预期用途】 用于组织细胞学染色从而鉴别骨髓和其他造血组织(淋巴结)中的白细胞,还可用于鉴定某些微生物。 【检验原理】 吉姆萨染色原理及结果与瑞氏染色基本相同,吉姆萨染色液(Giemsa stain,又称姬姆萨染色液)对胞浆着色力较强,能较好的显示胞浆的嗜碱性程度,特别是对血液和骨髓细胞中的嗜天青、嗜酸性、嗜碱性颗粒,着色清晰,但是对胞核着色偏深,核结构显色不佳,故吉姆萨染色常与瑞氏染色联合使用。嗜酸性颗粒为碱性蛋白质,与酸性染料伊红结合,染粉红色,称为嗜酸性物质;细胞核蛋白和淋巴细胞胞浆为酸性,与碱性染料美蓝或天青结合,染紫蓝色,称为嗜碱性物质;中性颗粒呈等电状态与伊红和美蓝均可结合,染淡紫色,称为中性物质。血细胞染色:吉姆萨染料中含有美蓝和伊红两种染料,前者为碱性,后者为酸性,它们与细胞内的各种物质具有不同的亲和力,从而使其呈现出不同的色调,以便于辨认。染色体染色:也称G显带,染色体上富舍A-T碱基对的DNA和组蛋白结合紧密,胰酶处理时不易高度抽提,和染料亲和力较强,呈深带;而富含G-C碱基对的区段结合的蛋白质被胰酶抽提,和染料亲和力降低,呈浅带。 【主要组成成分】 试剂组成主要成分 1、A液吉姆萨染液吉姆萨染料 2、B液磷酸盐缓冲液磷酸盐 【储存条件及有效期】 5℃~35℃环境保存,原包装未开封染色液的有效期为24个月,在有效期内的已开封染色液应在开封后6个月内使用完,每次用后应及时拧紧瓶盖,以免挥发或变质。 【样本要求】 血细胞:要求新鲜全血或EDTA.2K抗凝血。 染色体:中期染色体。 疟原虫:耳垂或指尖采血作薄血膜或厚血膜涂片。 【检验方法】 (一)疟原虫、血细咆染色: 1、血涂片晾干后用甲醇固定; 2、配制吉姆萨染色液:取适量的A1吉姆萨染液和A2磷酸盐缓冲液,按一定比例混合,即为吉姆萨染色液,即配即用; 3、将固定的血涂片置于吉姆萨染色液浸染;

常见染料品种的染色机理

常见染料品种的染色机理 摘要:本文通过查阅资料、归纳总结,收集了几种常见的染料品种的性能,及其它们的染色机理.为染料化学的初学者提供了几种常见染料品种的染色机理. 关键字:酸性染料、中性染料、直接染料、活性染料、分散染料、染色机理 染料是一类有色的有机化合物,能使纺织品染成各种颜色.染料必须是能溶解或分散于水中,或者能用化学方法使之溶解,对纤维具有染着力,并具有使用要求的坚牢度.各种类别的染料,使丝织物染色或印花的原理各不相同,下面就介绍几种常见的染料品种及其染色机理. 1、酸性染料 酸性染料都能溶解于水,因为这类染料最初需要在酸性染浴中进行染色,所以叫酸性染料。酸性染料能染毛、丝、锦纶等纤维,色泽鲜艳,色谱齐全。色牢度较好。在使用过程中,按染色性能和用酸的强弱,分为强酸性染料和弱酸性染料。用于蚕丝织物染色的主要是弱酸性染料。 1.1、强酸性染料的染色机理 强酸性染料染色时,染液的PH值必定小于蛋白质纤维的等电点①,此时染料和纤维是借助离子键而结合的。因为当染液的PH值小于蛋白质纤维的等电点时,蛋白质纤维带弱的正电荷,为了维持电中性,必须相当数量的阴离子。随氢离子进入纤维内部若加入醋酸调节染液的PH值,那么首先进入纤维内部的应该是较染料阴离子小得多 ①等电点:对于二性离子而言,如果改变二性离子溶液的PH值,二性离子在电场中既不向阴极移动,也不向阳极移动,及总电荷等于零(及不带电荷)。那么此状态称为等电状态,此时的PH值即为二性离子的等电点。

的醋酸根离子,但由于醋酸根离子对纤维没有亲和力,所以最后吸附在蛋白质纤维上的还是染料阴离子,整个过程反应可以用如下表达式表示: HAc→H++Ac- +H N—R—COO-②+H+→+H3N—R—COOH 3 +H N—R—COOH+ Ac-→Ac-?+H3N—R—COOH 3 Ac-?+H3N—R—COOH+DSO3-③→DSO3-?+H3N—R—COOH+Ac- 1.2、弱酸性染料的染色机理 弱酸性染料和强酸性燃料的染色条件不同。弱酸性染料由于分子结构较强酸性染料复杂,染料分子量大,所以就提高了染料分子和纤维之间的范德华引力,也相应的增加了染料与纤维之间的氢键数目,所以不必借助大量的离子键来完成燃料的上染。染液的PH值大都控制在4.5—7之间(蚕丝纤维的等电点以上),虽然在弱酸或中性条件下,也有一部分染料是通过离子键与纤维结合的,但是由于染液的PH值在丝素的等电点附近,或超过丝素等电点,故染浴中没有足够的氢离子足以使纤维带正电荷,这时纤维呈中性或者是使纤维带负电荷,在它们与染液的结合过程中,范德华力和氢键起到了重要作用。 2、中性染料 中性染料又称为2 :1金属络合染料,外观都是粉末,均可溶于水,染料分子量大,上色后金属与纤维素分子结合,各项坚牢度都较好,日晒与气候牢度更为良好。 ②+H3N—R—COO-表示蛋白质纤维分子。 ③DSO3-表示染料色素阴离子。

吉姆萨染色液Giemsa stain

吉姆萨/姬姆萨染色液(Giemsa stain,1:9) 产品简介: 吉姆萨染液由天青2与伊红混合而成。染色原理和结果与瑞氏染色法基本相同,姬姆萨染色液对胞浆着色力较强,能较好的显示胞浆的嗜碱性程度,特别是对血液和骨髓细胞中的嗜天青、嗜酸性、嗜碱性颗粒,着色清晰,但是对胞核着色偏深,核结构显色不佳,常与故姬姆萨染液常与瑞氏染液联合使用。 嗜酸性颗粒为碱性蛋白质,与酸性染料伊红结果,染粉红色,称为嗜酸性物质;细胞核蛋白和淋巴细胞胞浆为酸性,与碱性染料美蓝或天青结合,染紫蓝色,称为嗜碱性物质;中性颗粒呈等电状态与伊红和美蓝均可结合,染淡紫色,称为中性物质。 Leagene Giemsa stain以进口的吉姆萨/姬姆萨色素为主要原料,通过研磨配制而成,能呈现出清晰的细胞染色效果。经常用于组织切片、血液和细胞涂片、细菌、染色体显带、原生动物寄生虫等染色。 Giemsa stain(1:9)的特点在于,由Giemsa stain储存液(10×)和磷酸盐缓冲液组成,1:9混合成工作液后使用;亦可以分开使用,即先用Giemsa stain染色液染色,再经磷酸盐缓冲液处理,亦可以得到满意的染色效果。 产品组成: 主要成分: 试剂(A): 主要由吉姆萨色素、甲醇等组成。 试剂(B): 主要由磷酸盐等组成。 自备材料: 1、载玻片 2、蒸馏水或去离子水 3、甲醇 4、染色架 5、显微镜 6、0.1~0.5%的乙酸

操作步骤(仅供参考): (一)一步法涂片染色 1、Giemsa stain工作液的配制: 按试剂(A):试剂(B)=1:9混合,即取1份的Giemsa stain储存液(10×)加入到9份的磷酸盐缓冲液中充分混匀,即为Giemsa stain工作液。配制后Giemsastain的工作液为即用型试剂,不易保存,即用即配。 2、常规方法制备血液涂片或骨髓涂片,待涂片自然干燥后,用甲醇固定1~3min。 3、将血液涂片或骨髓涂片放置染色架上,滴加Giemsa stain工作液覆盖涂片,室温滴染 15~30min。 4、用自来水或蒸馏水缓慢从玻片一端冲洗。 5、干燥、镜检。 染色结果: 嗜酸性颗粒粉红色 嗜碱性颗粒紫蓝色 中性颗粒淡紫色 (二)两步法涂片染色 1、Giemsa stain工作液的配制: 按试剂(A):蒸馏水或去离子水=1:4配制Giemsa stain工作液,即取1份的Giemsa stain储存液(10×)加入到4份的蒸馏水或去离子水中充分混匀,即为Giemsa stain工作液。配制后Giemsa stain的工作液为即用型试剂,不易保存,即用即配。 2、常规方法制备血液涂片或骨髓涂片,待涂片自然干燥后,用甲醇固定1~3min。 3、将血液涂片或骨髓涂片放置染色架上,滴加Giemsa stain工作液覆盖涂片,室温滴染 10~15min。 4、加入等量磷酸盐缓冲液,轻轻晃动载玻片,室温静置5~10min。 5、用自来水或蒸馏水缓慢从玻片一端冲洗。 6、干燥、镜检。 染色结果: 嗜酸性颗粒粉红色 嗜碱性颗粒紫蓝色 中性颗粒淡紫色 (三)组织切片染色

高中生物常用的染色剂染色机理

普知--关于遗传物质被碱性染料染色~ 碱性液染色后能保持几年。洋红溶液出现浑浊时要过滤后再用1.2龙胆紫C笛HIN具有金属光泽的暗绿色粉末。能溶于水、三氯甲烷和醇;难溶于醚。加热至275℃分解。其1%一2%溶液俗称紫药水,是人们所熟悉的外用药。 2染色剂的配制 2.1配方1醋酸一洋红染液取100mL45%冰醋酸,煮沸后徐徐加入洋红1g,搅拌均匀后加入1颗锈铁钉,煮沸10min,冷却后过滤,贮存在棕色瓶内。 2.2配方2龙胆紫染液,取龙胆紫1~2g,溶解在100mL2%乙酸溶液中,直到溶液成深紫色为止(实验过程中视具体情况溶液可适当稀释)。保存在棕色瓶内。 3染料的作用机理 3.1碱性染料染色试剂的酸碱性与溶液的酸碱性不是一回事。染色试剂的酸碱性,其划分依据在于染料分子电离后的有色成分是阳离子还是阴离子,如果着色的基团是阳离子的为碱性染料,着色的基团是阴离子的为酸性染料 3_2染色机理龙胆紫能不能染DNA?还是只是把染色质上的蛋白质染色?或是DNA和蛋白质都被染色?上文提到,碱性染料的着色基团是阳离子,着色基团可以与细胞中的带负电荷部分牢固地结合。DNA是酸性物质,可电离出H,其余的部分就带上了负电荷。因此,带负电荷部分就能和碱性染料电离出的着色阳离子通过电荷问的引力作用牢固结合,而被染上颜色。有的染色作用随溶液中的pH值而变动。细胞的主要成分是蛋白质,它含有氨基和羧基,在酸性溶液中,当溶液的pH值小于该蛋白质的等电点时,则蛋白质带正电荷,易被酸性染料染色;在碱性溶液中,当溶液的DH值大于该蛋白质的等电点时,则蛋白质带负电荷。容易被碱性染料染色。所以,可以得出结论:碱性染料使染色体着色,使DNA和蛋白质都被染色。只不过这2种物质被染色的机理是不同的。 4碱性染料用酸配制的原因龙胆紫和洋红都溶于水和酒精。而做实验用的龙胆紫和洋红溶液。却都是用醋酸溶液配制的。这又是为什么呢?原因有2个:1)是为了染色物能方便地进入细胞内,又不会发生细胞膨胀。因为水和酒精这2种溶剂进入细胞的速度是很快的,容易引起细胞膨胀破裂。2)因为像洋红这种碱性染色剂溶于碱性溶液时,能使细胞质和细胞核都染色,只是细胞核较浓些,溶于酸性溶液(如醋酸)时,对染色质有高度的亲合力,对细胞质着色很浅。在煮沸的45%醋酸中加洋红使之饱和,再加入微量的铁离子,配制成的醋酸洋红溶液就能将核或染色体染成红色。如果用1%龙胆紫溶液对根尖进行染色,细胞核内都被

瑞氏-吉姆萨染液是什么

瑞氏-吉姆萨染色液说明书 【产品名称】 瑞氏-吉姆萨染色液 【包装规格】 货号:DM0007 单瓶包装规格分别为:100ml、250ml、500ml、5000ml; 每套/盒包装规格分别为:2×20ml/盒、 2×100ml/盒、2×250ml/盒、2×500ml/盒、2×5000ml/盒。【预期用途】 主要用于对血细胞进行染色 【检验原理】 瑞氏染料是酸性染料伊红(Eosin)和碱性染料亚甲蓝(Methylene Blue)组成的复合染料, 对原生质的染色有很好的区别作用;吉姆萨染料由天青Ⅱ与伊红混合而成,染色原理和结果与瑞氏染色基本相同,吉姆萨染色对胞浆着色力较强,能较好的显示胞浆的嗜碱性程度,特别对血液和骨髓细胞中的嗜天青、嗜酸性、嗜碱性颗粒,着色清晰,但是对胞核着色偏深,核结构显色不佳,常与瑞氏染色联合使用。 瑞氏-吉姆萨染色液是利用Romanowsky Stain技术原理改良而成的,细胞的着色过程是染料透入被染物并存留其内部的一种过程,此过程既有物理吸附作用,又有化学亲和作用,各种细胞及相关成分由于其化学性质不同,对瑞氏-吉姆萨染色液中的酸性染料(伊红)和碱性染料(亚甲蓝)的亲和力也不一样,标本涂片经瑞氏-吉姆萨染色后,相应各类细胞呈现不同的着色,从而达到辨别其形态特征的目的。 【主要组成成分】 试剂组成主要成分 1、瑞氏-吉姆萨染液瑞氏染料、吉姆萨染料、甲醇 2、磷酸盐缓冲液磷酸盐 【储存条件及有效期】 5℃~35℃环境保存,原包装未开封染色液的有效期为24个月,在有效期内的已开封染色液应在开封后6个月内使用完,每次用后应及时拧紧瓶盖,以免挥发或变质。 【样本要求】 1、血细胞涂片染色:要求新鲜全血或EDTA.2K抗凝血。 2、阴道分泌物(妇科白带)涂片染色:新鲜标本离开人体涂片后,需尽快以火焰或酒精固定,以避免细胞变形。 3、骨髓涂片染色:涂片制成后,应在空气中快速摇动或扇干,防止细胞皱缩变形或固空气潮湿而溶血,不能用高温或火烤干燥。 4、脱落细胞涂片:取样本并涂片,待检涂片固定可采用自然干燥法或湿片固定法(具体操作可根据不同检体及所采用的固定液所对应的规范操作要求进行);若采用湿片固定法,标本浸泡时间稍长些,效果会更佳;若采用湿片固定液固定标本,固定液用后需经常过滤,更换,防止细胞交叉污染。 【检验方法】 1、滴加瑞氏-吉姆萨染液于涂片上,并让染液覆盖整个标本涂片,染色; 2、将等量的磷酸盐缓冲液滴加于瑞氏-吉姆萨染液上面,以嘴或洗耳球使两液充分混合,染色; 3、水洗,冲洗时不能先倒掉染色液,可缓慢从玻片一端冲洗,以防有沉渣沉淀在标本上; 4、干燥、镜检。 【检验方法的局限性】 仅供形态学初检观察染色使用。 【注意事项】 1、血液涂片或骨髓涂片应厚薄均匀,必须充分干燥,否则在染色过程中容易脱落,以免影响染色效果。

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

高中生物 染色剂(精选.)

高中生物课本中(必修+选修)中的所有染色剂? 1、斐林试剂 配制:1)甲液质量浓度为0.1g/ml,取10gNaOH溶于蒸馏水,稀释至100ml 2)乙液质量浓度为0.05g/ml,取5gCuSO4溶于蒸馏水,稀释至100ml 临用时将甲、乙液等量混合 作用:鉴定还原性糖:C6H12O6、果糖、麦芽糖、乳糖等。 还原性糖与斐林试剂发生作用,生成砖红色沉淀。如用于鉴定组织液中有否还原性糖、糖尿病人尿成分分析、酶专一性探索等。 2、班氏尿糖定性试剂 配制:称取17.4克无水硫酸铜(CuSO4)溶解于100毫升热蒸馏水中,冷却后,稀释到150毫升。称取柠檬酸钠173克及无水碳酸钠(Na2CO3)100克,加蒸馏水600毫升,加热使之溶解,冷却后,稀释到850毫升。把硫酸铜溶液倾入柠檬酸钠及碳酸钠溶液中,搅匀后即为班氏尿糖定性试剂。用细口瓶贮存备用(为了防止氢氧化铜沉淀的生成,故加入柠檬酸钠。柠檬酸钠是一种亲水性掩蔽性络合物形成剂,它能与铜离子形成可溶性络盐)。使用方法同斐林试剂,所不同的是班氏试剂可长期使用。 3、双缩脲试剂 配制:A液:质量浓度为0.1g/ml,取10gNaOH溶于蒸馏水,稀释至100ml B液:质量浓度为0.01g/ml,取1gCuSO4溶于蒸馏水,稀释至100ml 使用时,先加A液,后加B液 作用:鉴定蛋白质,蛋白质与双缩脲试剂发生作用,可产生紫色反应。也可用于鉴定多肽。 4、苏丹Ⅲ 配制:取0.1g苏丹Ⅲ,溶解在20ml95%酒精中 作用:鉴定脂肪,脂肪可以被苏丹Ⅲ染成橘黄色(或被苏丹Ⅳ染成红色)。 5、质量分数为15%的盐酸和体积分数为95%的酒精溶液的混合液(1:1)。 作用:用于洋葱根尖的解离,即使组织中的细胞相互分离开来。能杀死细胞固定。 6、质量浓度为0.01g/mL的或0.02g/mL龙胆紫溶液(或醋酸洋红溶液) 配制:是将龙胆紫溶解在质量分阶段数为2%的醋酸溶液中配制而成 作用:使细胞核内的染色体着色,便于观察。 7、质量浓度为0.3g/ml的蔗糖溶液 作用:观察成熟植物细胞质分离时用。经此处理细胞仍具活性。 8、质量浓度为0.1mg/ml的亚甲基蓝溶液 配制:将亚甲基蓝溶于蒸馏水中配制而成 作用:(1)用于观察根对矿质元素离子的交换吸附观察; (2)用于检测水中细菌情况,根据亚甲基蓝褪色情况,判断水质被细菌污染情况。

高中生物实验所有染色剂及其性质详解(完整版)

1斐林试剂检测可溶性还原糖 原理:还原糖+斐林试剂→砖红色沉淀 注意:斐林试剂的甲液和乙液要等量混合均匀后方可使用,而且是现用现配,条件需要水浴加热. 应用:检验和检测某糖是否为还原糖;不同生物组织中含糖量高低的测定;在医学上进行疾病的诊断,如糖尿病、肾炎. 2 苏丹Ⅲ、苏丹Ⅳ检测脂肪 原理:苏丹Ⅲ+脂肪→橘黄色;苏丹Ⅳ+脂肪→红色 注意:脂肪的鉴定需要用显微镜观察. 应用:检测食品中营养成分是否含有脂肪. 3 双缩脲试剂检测蛋白质 原理:蛋白质+双缩脲试剂→紫色 注意:双缩脲试剂在使用时,先加A液再加B液,反应条件为常温(不需要加热). 应用:鉴定某些消化液中含有蛋白质;用于劣质奶粉的鉴定. 4 碘液检测淀粉 原理:淀粉+碘液→蓝色 注意:这里的碘是单质碘,而不是离子碘. 应用:检测食品中营养成分是否含有淀粉 5 DNA的染色与鉴定 染色原理:DNA+甲基绿→绿色 应用:可以显示DNA在细胞中的分布. 鉴定原理:DNA+二苯胺→蓝色

应用:用于DNA粗提取实验的鉴定试剂. 6 吡罗红使RNA呈现红色 原理:RNA+吡罗红→红色 应用:可以显示RNA在细胞中的分布. 注意:在观察DNA和RNA在细胞中的分布时用的是甲基绿和吡罗红混合染色剂,而不是单独染色. 7 台盼蓝使死细胞染成蓝色 原理:正常的活细胞,细胞膜结构完整具有选择透过性能够排斥台盼蓝,使之不能够进入胞内;死细胞或细胞膜不完整的细胞,胞膜的通透性增加,可被台盼蓝染成蓝色. 应用:区分活细胞和死细胞;检测细胞膜的完整性. 8 线粒体的染色 原理:健那绿染液是专一性染线粒体的活细胞染料,可以使活细胞中的线粒体呈现蓝绿色,而细胞质接近无色. 应用:可以用高倍镜观察细胞中线粒体的存在. 9 酒精的检测 原理:橙色的重铬酸钾溶液在酸性条件下与酒精发生化学反应,变成灰绿色. 应用:探究酵母菌细胞呼吸的方式;制作果酒时检验是否产生了酒精;检查司机是否酒后驾驶. 10 CO2的检测 原理:CO2可以使澄清的石灰水变混浊,也可使溴麝香草酚蓝水溶液由蓝变绿在变黄.

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

EB的染色原理及其相关讨论#(精选.)

基因分子生物学实验——EB的染色原理 溴化乙锭(EtBr,EB)为芳香族荧光化合物,是一种高度灵敏的嵌入性荧光染色剂,用于观察琼脂糖和聚丙烯酰胺凝胶中的核酸。是一种核酸染料,常在琼脂糖凝胶电泳中用于核酸染色;是一种强的诱变剂,可能也是一种致癌物或致畸剂。 EB与核酸的作用原理: 这种扁平分子可以嵌入核酸双链的配对的碱基之间,在紫外线激发下,未与核酸结合的溴化乙锭可被激发出橙红色萤光。在与DNA或双股RNA结合时,萤光强度会增强20倍,使得核酸电泳后的胶片可以辨识核酸的相对位置。在核酸分子中,EB分子插入到两层碱基对之间,发出红色荧光。在凝胶中加入终浓度为0.5μg/ml的EB,可以在电泳过程中随时观察核酸的迁移情况,这种方法使用于一般性的核酸检测。 问题讨论 1、溴化乙锭EB在琼脂糖凝胶电泳中先加与后加的区别? 先加EB,染色与电泳同时进行: a. 加在胶里总体积小,所以比较方便节省; b. 会导致胶的整体背景稍微高些,比较暗; c. 长时间、长距离的电泳先加EB的话,信号强度会相应下降; d. 不宜用于核酸分子大小的确定和定量。 原因分析: EB带正电荷,中和核酸分子的负电荷,同时由于的他的嵌入增加了核酸分子的刚性,使迁移速率减慢,故不宜用于凝胶电泳测定核酸分子的大小。另外,由于在凝胶中,游离的EB分子向负极泳动,会使样品中前后各带染色不均匀,影响定量。 后加EB,染色在电泳完成后: a.可以减少污染,无背景色,图较漂亮; b. 相对浪费时间。 2、EB废物的如何处理? EB废物的处理如下: (1) 对于EB含量大于0.5mg/ml的溶液,可如下处理: a. 将EB溶液用水稀释至浓度低于0.5mg/ml; b. 加入一倍体积的0.5mol/L KMnO4,混匀,再加入等量的25

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

吉姆萨染色鉴定细胞凋亡实验方法

吉姆萨检测细胞凋亡实验方案 1 材料及器具 吉姆萨染料(粉剂)、甘油、甲醇、KH2 PO4、Na2 HPO4、蒸馏水、封闭型棕色瓶 2 试剂配制 吉姆萨母液:吉姆萨染料粉剂0.75g 甘油50ml 甲醇50ml 将粉剂放于甘油内搅匀,放入60℃温箱24h,经常摇匀,取出待冷再加甲醇混匀,配成母液,封闭棕色瓶保存。 吉姆萨工作液:使用时以原液10ml加入pH为6.4-6.8的磷酸盐缓冲液100ml稀释成工作液。 磷酸盐缓冲液:A液Na2HPO4 0.946g,蒸馏水100ml B液KH2PO4 0.907g,蒸馏水100ml 临用时取A液40ml,B液60ml混合,pH值约为6.64。 3 染色步骤 (1)常规脱蜡至水; (2)蒸馏水洗; (3)在37℃温箱中吉姆萨染色30min; (4)蒸馏水洗2min; (5)PBS分色适度; (6)将切片从PBS中拿出,甩掉切片上的水分,放在空气中略干燥,以肉眼观察组织上的水分消失为度; (7)入100%酒精中30s至1min; (8)二甲苯透明5min; (9)中性树胶封片。 4 预期结果 背景淡蓝色,核为深蓝色,凋亡细胞为深蓝色。 5 体会

在染色中第6步是关键,不经过此步骤直接入100%酒精脱水,脱色会很严重,无法控制,使染色失败;在第6步后入95%的酒精中脱水,脱色也非常快;若将切片从PBS中拿出,甩掉切片上的水分,放在空气中略干燥,以肉眼观察组织上的水分消失后再入100%酒精脱水,效果良好。因此,用吉姆萨染料染料检测细胞凋亡操作简便、色彩鲜艳、对比度好、细胞核和凋亡细胞着色清晰,能够长期保存、不褪色,为一种值得推广的方法。 参考文献:《吉姆萨染色法对大脑组织凋亡细胞的染色》-徐广有,2005年

塑料着色原理

塑料着色原理 塑料着色就是利用加入着色剂对日光的减色混合而使制品着色。亦即通过改变光的吸收和反射而获得不同的颜色,如吸收所有的光时呈现黑色,如果只吸收一部分光(某一波长的光),并且散射光的数量很小,那么塑料变成有色透明,而形成的颜色取决于反射光的波长;若全部反射则塑料呈白色。如未被吸收的光全部反射,那么塑料则变成“有色不透明”的,其颜色也取决于未被吸收光的波长。反射光表现为实色,散射光则为明色。通常将纯度较好,明度较大的红、黄、蓝三色称为原色,三原色中的任意两种相互调合,可以得到的各种不同颜色称为间色(二次色),一种原色一种间色调合而成的颜色为再问色(三次色),每个间色把合成它的二原色以外的原色称为干扰色,在配色时应防止干扰色的引入,否则使原有色光变得暗钝,影响颜色的明亮度。 用于塑料的着色物质有染料或颜料,染料一般能均匀溶于水中或特殊溶液中,或借助于适当化学药品而成可溶物,以达到着色的目的,它不单能使塑料表面着色,而且内部亦被浸入,颜料需调和于展色剂(油或树脂)中制成油墨、油漆等,涂于制品表面使其着色,也可将极细微的颗粒或膏状物等混于塑料内进行内外着色。 一、塑料的染色原理 塑料的染色与塑料的原液着色有很大区别,后者产生的颜色十分单调,不宜小批量多品种加工,尤其是对日用品如钮扣、发夹、玩具、装饰挂件以及机械配件等。塑料染色对色泽要求敏感的加工件无疑十分有用,并且大部分塑料都有染色官能团,可以用相应染料过仃染色而且其染色实际上是一种表面着色。 聚酯塑料的染色是靠温度或载体使结构紧密的聚酯链段出现“空隙”,让疏水性分散染料吸附-扩散-固着在被染基质内部,这种被染基质(固体)吸收的染料(固体)完全是处于溶解状态的。 聚酰胺用分散染料染色机理是依靠末端氨基和酰氨基对染料产生氢键和范德华力结合,上染率不受聚酰胺末端氨基的限制,加之染色时染浴的pH值适应范围较广,所以分散染料对聚酰胺有良好的覆盖性。再从大分子末端含有氨基的羧基看,还有类似羊毛的染色性质,可应用阴离子染料(酸性、直接、活性等染

抽屉原理

网易新闻 微博 邮箱 闪电邮 相册 有道 手机邮 印像派 梦幻人生 更多博客博客首页 博客话题 热点专题 博客油菜地 找朋友 博客圈子 博客风格 手机博客 短信写博 邮件写博 博客复制摄影摄影展区 每日专题搜博文搜博客随便看看关注此博客选风格不再艰难搬家送Lomo卡片注册登录显示下一条| 关闭86012747lktd的博客andrsw@https://www.doczj.com/doc/1617194488.html, QQ:86012747 导航 首页日志相册音乐收藏博友关于我日志86012747 加博友关注他 最新日志 倒推法解题数的整除奇数、偶数质数、合数小学数学思维训练5-5.组合图小学数学思维训练5-6.公约数博主推荐 相关日志 随机阅读 7大细节破译男人是否来电?破解《黎明之前》口碑形成之谜收租婆的忧伤谁人知?禁看湖南卫视引发的大哭与大笑独家:超闪亮水晶配饰BlingBling惹人爱Selina剃头俞灏明植皮偶像明星也难做首页推荐 毛利:烂人完美标本游资为什么炒作农产品?美国人忙着捡便宜兽兽亮相车展遭围攻洗澡时发现婆婆是双性恋为何有些物种要变性更多>> 抽屉原理抽屉原理习题(初一) 抽屉原理习题默认分类2008-04-17 16:03:44 阅读217 评论0 字号:大中小订阅

简单 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。 11.证明:在任意的37人中,至少有四人的属相相同。

吉姆萨染色的原理

吉姆萨染色的原理 吉姆萨(Giemsa)染色法:吉姆萨染液由天青,伊红组成。染色原理和结果与瑞特染色法基本相同。 嗜酸性颗粒为碱性蛋白质,与酸性染料伊红结果,染粉红色,称为嗜酸性物质;细胞核蛋白和淋巴细胞胞浆为酸性,与碱性染料美蓝或天青结合,染紫蓝色,称为嗜碱性物质;中性颗粒呈等电状态与伊红和美蓝均可结合,染淡紫色,称为中性物质。 PH对细胞染色有影响。细胞各种成分均不蛋白质,由于蛋白质系两性电解质,所带电荷随溶液PH而定,在偏酸性环境中下在电荷增多,易与伊红结合,染色偏红;在偏三性环境中负电荷增多,易与美蓝或天青结合,染色偏蓝。因此细胞染色对氢离子浓度十分敏感,染色用正经片必须清洁,无酸碱污染。配制顼特液必须用优质甲醇,稀释染色必须用缓冲液,冲洗用水应近中性,否则可导致各种细胞染色反应异常,以致识别困难,甚至造成错误。 一般性操作技术血涂片制备;细胞染色;显微检查;血液病诊断;染色不良;瑞特(Wright)染色法;酸性染料;伊红;碱性染料;亚甲蓝;吸附作用;PH对细胞染色的影响;甲醇;吉姆(Giemsa)染色法春天要常用润肤剂,它含有松香油脂酸和丰富维生素a,常用可加快皮肤血液循环,剌激面部细胞分泌,有效改善皮肤生理环境,减少气候对皮肤的危害。 第二节血涂片的制备和细胞染色 血涂片的显微检查是血液细胞学检查的基本方法,临床上应用极为广泛,特别是对于各种血液病的诊断具有重要的价值,近年来血细胞分析仪的广泛应用,血涂片的观察也可作为判断仪器结果的简易方法。比台观察10个高倍视野血涂片中白细胞和血小板数大致估计血内这些细胞的数量,借以作为仪器结果分析后质控的参考。 但积压涂片制备和染色不良,常使细胞鉴别发生困难,甚至导致错误结论。例如,血膜过厚细胞重叠缩小,血膜太薄白细胞多集中于边缘,细胞分布不匀;染色偏酸或偏碱均可使细胞染色反应异常。因皮制备厚薄适宜,分布均匀,染色良好的血涂片是血液学检查的重要革本技术之一。 血涂片制备方法及注意事项将在实习指导中详细介绍。 1.瑞特(Wright)染色法:为发观察细胞内部结构,识别各种细胞及其异常变化,血涂片必须嘲行染色。血涂片的各种染色方法大多是罗氏染色法衍变来的。目前常用瑞特染色法。

相关主题
文本预览
相关文档 最新文档