当前位置:文档之家› 直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计
直流升压斩波电路课程设计

目录

1 绪论......................................................... - 1 -

1.1 课题背景与意义......................................... - 1 -

1.2 设计的主要内容......................................... - 1 -

2 直流升压斩波主电路设计....................................... - 2 -

2.1 总体设计方案........................................... - 2 -

2.2 电路参数计算........................................... - 2 -

3 驱动电路设计................................................. -

4 -

4 保护电路设计................................................. -

5 -

4.1 过电流保护电路.......................................... - 5 -

4.2 过电压保护电路.......................................... - 5 -

5 电路仿真..................................................... -

6 -

5.1 仿真模型的选择......................................... - 6 -

5.2 仿真结果及分析......................................... - 6 - 结束语.......................................................... - 8 - 参考文献........................................................ - 9 - 附录:元件清单................................................. - 10 -

1 绪论

1.1 课题背景与意义

直流升压斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压电路、升降压电路、复合电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

早期的直流装换电路,电路复杂、功率损耗、体积大,使用不方便。晶闸管的出现为这种电路的设计又提供了一种选择。晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。它电路简单体积小,便于集成;功率损耗少,符合当今社会生产的要求;所以在直流转换电路中使用晶闸管是一种很好的选择。

1.2 设计的主要内容

本设计主要内容为直流升压斩波电路,首先分析了直流升压斩波电路要求制定工作计划,确定了利用了全控型晶闸管IGBT设计为主电路,M57962L为驱动电路,采用快速熔断器为保护电路,对猪电路和保护电路进行了设计和计算。选择和校验了晶闸管、IGBT的参数与型号。最后使用MATLAB仿真模型并进行仿真,其仿真结果设计要求,满足设计参数。

设计第一章为绪论,介绍了本设计的背景意义及直流升压斩波电路的发展现状。第二章为直流升压斩波电路的电路设计,其中包含总体方案,主电路设计及元器件参数型号的选择。第三为辅助电路的设计,包括控制电路与保护电路。第四章为MATLAB系统仿真,内容有仿真波形与数据分析。

2 直流升压斩波主电路设计

2.1 总体设计方案

直流升压变流器用于需要提升直流电压的场合,其原理图如图1所示。

在电路中V 导通时,电流由E 经

升压电感L 和V 形成回路,电感

L 储能;当V 关断时,电感产生

的反电动势和直流电源电压方向

相同互相叠加,从而在负载侧得到 图1 直流升压斩波电路原理图 高于电源的电压,二极管的作用是阻断V 导通是,电容的放电回路。调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。

2.2 电路参数计算

假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0U 。设V 通的时间为on t ,此阶段L 上积蓄的能量为E 1I on t 。

V 断时,E 和L 共同向C 充电并向负载R 供电。设V 断的时间为off t ,则此期间电感L 释放能量为:

off t 10E)I -(U (1)

稳态时,一个周期T 中L 积蓄能量与释放能量相等

off on t I E U t 101)(EI -= (2)

化简得:

E t T E t t off off off on =+=

t U 0 (3) 上式中1t T off ≥,输出电压高于电源电压,故称升压斩波电路。

T 比t ——升压比,调节其即可改变0U 。将升压比的倒数记作β。和导通占空比,有如下关系:

1=+βα (4)

因此,式(2)可表示为:

E -11E 1

U 0α

β== (5)

升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C 可将输出电压保持住。在以上分析中,认为V 处于通态期间因电容C 的作用使得输出电压Uo 不变,但实际上C 值不可能为无穷大,在此阶段其向负载放电,U 。必然会有所下降,故实际输出电压会略低于理论所得结果,不过,在电容C 值足够大时,误差很小,基本可以忽略。

由直流斩波电路的原理可知

E t T E t t off

off off

on =+=t U 0 (6) 又输入电压为输入直流电压范围:24V ~60V ,要求输出直流电压:340V 。所以只要根据输入的电压控制全控晶闸管IGBT 关断的时间和开通的时间比就可,即升压比就可得到所需电压。由计算得:

17

3856≤≤β (7) 又因为要求输出功率P=100W, 0U =340V

P R

U 2

0= (8) 得: R=Ω1156 (9)

3 驱动电路设计

升压电路所用全控型晶闸管IGBT 是电压型驱动器件。IGBT 的栅射极之间有数千皮法左右的极间电容,为快速建立驱动电压,要求驱动电路具有较小的输出电阻使IGBT 开通的栅射极间的驱动电压一般取15—20V 。同样,关断时施加一定幅值的负驱动电压(-5—-15V )有利于减小关断时间和关断损耗。在栅极串入一只低值电阻可以减小寄生振荡。

IGBT 的驱动多采用专用的混合驱动集成驱动器,本次采用M57962L 驱动器。如图2驱动电路图所示。又由产品信息知M57962L 驱动器内部具有退饱和和检测和保护环节,当发生过电流时能快速响应但慢速关断IGBT ,并向外部电路发出故障信号。 4700

100μF

100μF

3.1

M57962L 30V 8

1

5

46-10V +15V +5V u i 14

13

图2 直流升压斩波驱动电路

4 保护电路设计

4.1 过电流保护电路

电力电子电路运行不正常或者发生故障时,可能会发生过电流。过电流分为过载和短路两种情况。通常采用的保护措施有:快速熔断器、直流快速断路器和过电流继电器。一般电力电子装置均同时采用集中过流保护措施,以提高保护的可靠性和合理性。

综合本次设计电路的特点,采用快速熔断器,即给晶闸管串联一个保险丝实施电流保护。如图3电流保护电路所示。

图3 直流升压斩波电路过流保护电路

对于所选的保险丝,遵从t2I值小于晶闸管的允许t2I值。

4.2 过电压保护电路

电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的操作过程等外部原因。本设计主要用于室内,为了使用方便不考虑来自雷击的威胁。

操作过电压是由分闸、合闸的开关操作引起的过电压,电网侧的操作过电压会由供电变压器磁感应耦合,或由变压器绕组之间存在的分布电容静感应耦合过来。

根据以上产生过电压的的各种原因,设计相应的保护电路。如图2-4过压保护电路所示。其中:图中是利用一个电阻加电容进行电压抑制,当电压过高时,保护电路中的电容会阻碍其电压的上升,从而使得电力电子器件IGBT管因电压的的过高厄尔损坏。

图4中的电阻可以是1KΩ左右的电阻,而电容的值可以为100μF左右,这样形成一个保护电路。

图4 直流斩波电路过电压保护电路

5 电路仿真调试

5.1 仿真模型的选择

在本次的设计中,采用了Psim软件作为仿真工具来进行电路的模拟。首先

画出电路的结构图如下所示:

图6 直流升压斩波电路仿真电路模拟图

由上图中我们可以看到,在电路中,在IGBT的两端加了脉冲触发电压,控制开关的关断,以便得到升压的电压。

5.2 仿真结果及分析

在仿真过程中,我将取输入的直流电压为U

d

=24~60V之间的任意值,将电

感值取的尽可能的大,即L=500H,电阻值R=1000K,控制脉冲电压U

GE

的占空比

大小,即从示波器上观察输出电压U

o

大小,示波器上红线表示输出直流电压,蓝线表示输入电压,而橙色表示输出电流大小。

(1)当占空比为α=0.93,U

d =24V是,得到输出直流电压U

o

=343.5V。

图7 直流电压输出波形1

(2) 当占空比为α=0.90,U d =35V 是,得到输出直流电压U o =340.5V 。

图8 直流电压输出波形2

(3) 当占空比为α=0.87,U d =45V 是,得到输出直流电压U o =344.2V 。

图9 直流电压输出波形3

从上面的直流输出电压图中我们可以看出来,本次设计是成功的,理论与实际是相符的,我们得到了340V 的输出电压。

结束语

经过一个多星期的努力,本次课程设计总算顺利结束。可能还有很多不足的地方,这还请老师指出教导。

本次课程设计的内容囊括了本学期所学《电力电子技术》的大部分内容,还用到了以前所学的电路、模电的知识。在设计的过程中我遇到了诸多问题,这主要是所学知识的不牢固和欠缺造成的。通过再次认真翻看课本,查阅资料,向老师和同学请教终于把一个又一个的问题解决掉。通过这次课程设计我不仅进一步巩固了这门课程的知识还通过亲自操作,熟悉了Visio等相关软件的使用方法,这为以后的学习工作提供了便利。

通过这次设计,还发现课本上的理论知识和实践还是有一定的差别,理论知识要应用到实践中要经过仔细地思考和多次尝试,只有这要才能达到理论联系实践的效果。如果不是通过课程设计,我们的知识面可能一直停留在理论的层面。

最后我要感谢那些给予的帮助的老师和同学们,没有他们的耐心帮助,本次课程设计将很难完成。

参考文献

[1] 王大海.自动控制系统的设计与应用[J].电子工程师,2012 29(8):186-189

[2] 张志利,蔡伟.电力电子技术装置研究[J].电子与仪器仪表,2009 15(2):249-252

[3].王兆安、刘进军.电力电子技术[M].机械工业出版社,2009

[4].秋关源、罗先觉.电路[M].高等教育出版社,2006

[5]. 尹克宁.电力工程[M].北京:中国电力出版社,2008

[6]. 马建国.孟宪元.电子设计自动化技术基础[M].清华大学出版社,2004

[7]. 马建国.电子系统设计[M].北京:高等教育出版社,2004

[8] 王雷、钟爱琴.电力工程[M].北京航空航天大学,2004.5.

[9] 先锋工作室.单片机程序设计实例[M].清华大学出版社,2003.1.

[10] 王振宇,周孟然等.数字逻辑电路[M].合肥工业大学出版社,2005.12.

附录:元件清单

名称大小、型号数量(个)电感 1H 1

电容 100μF 2

电容 1F 2

1156各一个电阻 1KΩ、4.7KΩ、

二极管2AP9 2

发光二极管2EF1 2

全控型晶闸管 IGBT 1

稳压二极管HZ5 2

驱动芯片 M57962L 1

开关断路开关 2

保险丝 GP032 1

反相器 1

升压斩波电路设计..

电力电子技术课程设计报告题目:升压斩波电路设计 学院: 专业: 学号: 姓名: 指导教师: 完成日期:

升压斩波电路设计(一) 设计任务书

(二)设计说明书 目录一matlab仿真原理 1 升压斩波电路工作原理 1.1主电路工作原理 1.2 IGBT驱动电路选择 2 仿真实验 2.1仿真模型 2.2仿真实验结果及分析 2.3仿真实验结论 2.4 最优参数选择 二硬件实验 2.1 硬件电路 2.1.1整流电路 2.1.2斩波信号产生电路 2.1.3斩波电路 2.1.4总原理图 2.1.5元器件列表 2.2 PCB印刷电路板 2.3 制造输出——final 三课程设计总结 参考文献

摘要 本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。通过设置参数分析输出与电路参数和控制量的关系,最后进行了GUI编程,利用图形可视化界面的直观易懂的特点,使设计摒弃了繁琐难懂的单一波形和控制方式,从而具有友好界面,非常方便的就可进行控制参数输入,和输出图像显示。第二部分是电路板,它可以通过BluePrint、Kicad 、Protel等软件设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。本设计也采用Protel设计原理图,和进行PCB板布线。它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。 关键字升压斩波; SG3525;SIMULINK ; PWM;Protel

实验2 直流斩波电路的性能研究(六种典型线路)

实验二 直流斩波电路的性能研究 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。 三、实验线路及原理 1、主电路 ①、降压斩波电路(Buck Chopper) 降压斩波电路(Buck Chopper)的原理图及工作波形如图6-1所示。图中V 为全控型器件,选用IGBT 。D 为续流二极管。由图6-1b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D =U i 。当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。负载电压的平均值为: 式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空 比,简称占空比或导通比(α=t on /T)。由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。 (a)电路图 (b)波形图 图6-1 降压斩波电路的原理图及波形 ②、升压斩波电路(Boost Chopper) 升压斩波电路(Boost Chopper)的原理图及工作波形如图6-2所示。电路也使用一个全控型器件V 。由图6-2b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L 1充电,充电电流基本恒定为I 1,同时电容C 1上的电压向负载供电,因C 1值很大,基本保持输出电压U O 为恒值。设V 处于通态的时间为t on ,此阶段电感L 1上积蓄的能量为U i I 1t on 。当V 处于断态时U i 和L 1共同向电容C 1充电,并向负载提供能量。设V 处于断态的时间为t off ,则在此期间电感L 1释放的能量为(U O -U i ) I 1t on 。当电路工作于稳态时,一个周期T 内电感L 1积蓄的能量与释放的能量相等,即: i i on i off on on o aU U T t U t t t U ==+= U GE U D t t t U O t on t off T U i - +- + U

直流升压斩波电路课程设计

湖南工学院 课程设计说明书 课题名称:直流升压斩波电路的设计专业名称:自动化 学生班级:自本0903班 学生姓名:曾盛 学生学号: 09401040322 指导教师:桂友超

电力电子技术课程设计任务书 一、设计任务和要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。 (2)掌握基本电路的数据分析、处理;描绘波形并加以判断。 (3)能正确设计电路,画出线路图,分析电路原理。 (4)广泛收集相关资料。 (5)独立思考,刻苦专研,严禁抄袭。 (6)按时完成课程设计任务,认真、正确的书写课程设计报告。 二、设计内容 (1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。 (2)制定设计方案。 (3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。 (4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。 三、技术指标 斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

绪论 ........................................................... - 1 - 第1章直流升压斩波电路的设计思想 .............................. - 3 - 1.1直流升压斩波电路原理..................................... - 3 - 1.2参数计算................................................. - 4 - 第2章直流升压斩波电路驱动电路设计 ............................ - 5 - 第3章直流升压斩波电路保护电路设计 ............................ - 6 - 3.1过电流保护电路........................................... - 6 - 3.2过电压保护电路........................................... - 6 - 第4章直流升压斩波电路总电路的设计 ............................ - 7 - 第5章直流升压斩波电路仿真 .................................... - 8 - 5.1仿真模型的选择........................................... - 8 - 5.2仿真结果及分析........................................... - 8 - 第6章设计总结 ............................................... - 10 - 参考文献 ...................................................... - 11 - 附录:元件清单 ................................................ - 12 -

电力电子技术I-实验1-直流斩波电路

课程名称:电力电子技术指导老师:马皓成绩:__________________实验名称:直流斩波电路的研究实验类型:_________________同组学生姓名:___________一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 * 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉六种直流斩波电路(Buck、Boost、Buck-Boost、Cuk、Sepic、Zeta)的工作原理与 特点; 2、掌握六种直流斩波电路在负载电流连续工作时的工作状态以及负载波形。 二、实验内容 1、分别按照六种直流斩波电路的结构分别连接对应的试验电路; 2、分别观察六种不同直流斩波电路在电路不同占空比的PWN波时的工作情况,并记录负载 电压,与理论值进行比较,分析实验结果。 、 三、主要实验设备与仪器 1、MPE-I电力电子探究性实验平台 2、NMCL-22H直流斩波电路 3、NMCL-22H-CK直流斩波电路插卡

4、NMCL-50数字直流表 5、示波器 四、实验线路 1、Buck chopper降压斩波电路 (1)将PWN波形发生器的占空比调节电位器左旋到底(使占空比最小),输出端“VG-T”端接到斩波电路中IGBT管VT的”G“端,将PWN的”地“接到斩波电路中IGBT的”E“端,按照下图接成Buck chopper斩波器; (2)检查电路无误后,闭合电源开关,用示波器观察PWN输出波形,调节PWN触发器的电位器RP1,即改变触发脉冲的占空比记录占空比10%~80%实际负载电压,观察PWN占空比分别为10%、50%、80%下的负载电压波形。 ` 2、Boost chopper升压斩波电路 (1)按照下图接成Boost chopper电路,电感电容任选,负载电阻为R; (2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压; (3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。 3、Buck-Boost chopper升压斩波电路

直流升压斩波电路课程设计

直流升压斩波电路课程设 计 The Standardization Office was revised on the afternoon of December 13, 2020

湖南工学院课程设计说明书课题名称:直流升压斩波电路的设计专业名称:自动化 学生班级:自本0903班 学生姓名:曾盛 学生学号: 指导教师:桂友超

电力电子技术课程设计任务书 一、设计任务和要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。 (2)掌握基本电路的数据分析、处理;描绘波形并加以判断。 (3)能正确设计电路,画出线路图,分析电路原理。 (4)广泛收集相关资料。 (5)独立思考,刻苦专研,严禁抄袭。 (6)按时完成课程设计任务,认真、正确的书写课程设计报告。 二、设计内容 (1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。 (2)制定设计方案。 (3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。 (4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。 三、技术指标 斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

直流升压电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压电路、升降压电路、复合电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。 早期的直流装换电路,电路复杂、功率损耗、体积大,使用不方便。晶闸管的出现为这种电路的设计又提供了一种选择。晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。它电路简单体积小,便于集成;功率损耗少,符合当今社会生产的要求;所以在直流转换电路中使用晶闸管是一种很好的选择。 主要元件介绍 1 IGBT介绍 本设计基于《电力电子技术》课程,充分使用全控型晶闸管IGBT设计电路,实现直流升压。 IGBT绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 2 驱动电路M57962L简介 M57962L是由日本三菱电气公司为驱动IGBT而设计的厚膜集成电路(Hybrid Integrated Circuit For Driving IGBT Modules) 。在驱动模块内部装有2500V高隔离电压的光电耦合器,过流保护电路和过流保护输出端子,具有封闭性短路保护功能。M57962L是一种高速驱动电路,驱动信号延时tPLH 和tPHL最大为μs。可以驱动600V/400V 级的IGBT模块。M57962L工作程序:当电源接通后,首先自检,检测IGBT是否过载或短路。若过载或短路, IGBT 的集电极电位升高,经外接二极管流入检测电路的电流增加,栅极关断电路动作,切断

直流斩波电路设计与仿真

电力电子技术课程设计报告 姓名: 学号: 班级: 指导老师: 专业: 设计时间:

目录 .降压斩波电路............................................... ..6 .直流斩波电路工作原理及输出输入关系 (12) 三................................................................... 控制实现. (19) 四.直流斩波电路的建模与仿真 (29) 五.................................................. 课设体会与总结30 六................................................................... 参考文献 (31)

摘要 介绍了一种新颖的具有升降压功能的D(y DC变换器的设计与实现,具体地分析了该DQ7DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DQ7 DC变换器控制系统的原理和实现,最后给出了测试结果 关键词:DC/ DC变换器,降压斩波,升压斩波,储能电感,直流开关电源,PWM 直流脉宽调速 一.降压斩波电路 1.1降压斩波原理: U o t on E t on E I U 0 E M 1 0R 式中G为V处于通态的时间;t°ff为V处于断态的时间;T为开关周期;为导通 占空比,简称占空比火导通比。 根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式: 1) 保持开关周期T不变,调节开关导通时间t on不变,称为PWM 2) 保持开关导通时间t on不变,改变开关周期T,称为频率调制或调频型。 3) t on和T都可调,使占空比改变,称为混合型。 1.2工作原理 1) t=0时刻驱动V导通,电源E向负载供电,负载电压u o二E,负载电流i o 按 指数曲线上升 2) t=t 1时刻控制V关断,负载电流经二极管V□续流,负载电压u o近似为零, 负载电流呈指数曲线下降。为了使负载电流连续且脉动小通常使串接的电感L值较大基于分段线性”的思想,对降压斩波电路进行解析

直流斩波电路实验三

实验四 直流斩波电路的性能研究(六种典型线路) 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其专用PWM 控制芯片SG3525。 二、预习内容 (1)什么是斩波电路?其应用范围有哪些? (2)了解IGBT 的特性。 (3)了解直流斩波电路的工作原理。 三、实验设备及挂件 1)设备列表

四、实验电路原理示意图及流程图 1)实验线路原理示意图图X-1 图X-1实验线路原理示意图 2) 实验电路流程框图X-2 图X-2 实验电路流程图 五、实验内容 1、控制与驱动电路测试 2、六种典型电路测试 1)降压斩波电路(Buck Chopper) ; 2)升压斩波电路(Boost Chopper); 3)升降压斩波电路(Boost-Buck Chopper); 4)Cuk斩波电路; 5)Sepic斩波电路; 6) Zeta斩波电路;

六、注意事项 1)示波器测量时的共地问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,各探头接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。(建议测量主电路各点信号及U GE 时用一个探头) 2)每当做完一个电路时,必须关掉所有电源,方可拆掉线路和接新的实验电路。 3)注意电解电容的正负极性。 4)整流输出电压<45伏。 七、实验步骤与方法 1、控制与驱动电路的测试 1)不接主电路,把万用表放在电压档。用正极插在Ur 孔,负极插在地,示波器的地线和 万用表的地线夹在一起。 2)将DJKO1电源的钥匙打在开(不按启动开关),开启DJK20 控制电路电源开关。 3)调节PWM 脉宽调节电位器改变Ur ,用双踪示波器分别观测SG3525 的第11 脚与第14 脚的波形,观测输出PWM 信号的变化情况,记录占空比并填入表1中。PWM 与11 脚、14脚不共地。 4)用示波器分别观测A 、B 和PWM 信号的波形,记录其波形、频率和幅值,并填入。 5)用双踪示波器的两个探头同时观测11 脚和14 脚的输出波形,调节PWM 脉宽调节电位器,观测两路输出的PWM 信号有什麽不同?

湖南工程学院2014直流降压斩波电路课程设计

湖南工程学院应用技术学院课程设计 课程名称电力电子技术 课题名称DC-DC变换电路分析 专业电气工程 班级 学号 姓名 指导教师李祥来 2014 年月日

湖南工程学院 课程设计任务书 课程名称:电力电子技术 题目:DC-DC变换电路分析 专业班级:电气1184 学生姓名: 学号: 指导老师: 审批: 任务书下达日期2014年月日 设计完成日期2014年月日

前言 直流-直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路,直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或者可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此,也称为带隔离的直流-直流变流电路或直-交-直电路。习惯上,DC-DC变换器包括以上两种情况,且甚至更多地指后一种情况。 直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。 降压斩波电路(Buck Chopper)的设计与分析是接下来课程设计的主要任务。。

目录 一.降压斩波电路 (7) 1.1 降压斩波原理: (7) 1.2 工作原理 (8) 1.3 IGBT结构及原理 (8) 二.直流斩波电路的建模与仿真 (11) 2.1IGBT驱动电路的设计.................................... 错误!未定义书签。 2.2电路各元件的参数设定................................ 错误!未定义书签。 2.3元件型号选择 ............................................... 错误!未定义书签。 2.4仿真软件介绍 ............................................... 错误!未定义书签。 2.5仿真电路及其仿真结果................................ 错误!未定义书签。 2.6仿真结果分析 ............................................... 错误!未定义书签。三.课设体会与总结. (19) 四.附录(完整电路图) (19) 五.参考文献 (19) 六.课程设计成绩表 (19)

基于单片机的直流斩波电路的设计说明

基于单片机的直流斩波电路的设计 本文介绍了基于单片机的直流斩波电路的基本方法,直流斩波电路的相关知识以及用单片机产生PWM波的基本原理和实现方法。重点介绍了基于MCS 一51单片机的用软件产生PWM 信号以及信号占空比调节的方法。对于实现直流斩波提供了一种有效的途径。本次设计中以直流降压斩波电路为例。 关键词:单片机最小系统; PWM ;直流斩波: 直流降压斩波电路的原理 斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种 情况下负载中均会出现反电动势,如图3-1中Em 所示 工作原理,两个阶段 t=0时V 导通,E 向负载供电,uo=E ,io 按指数曲线上升 t=t1时V 关断,io 经VD 续流,uo 近似为零,io 呈指数曲线下降 为使io 连续且脉动小,通常使L 值较大 数量关系 电流连续时,负载电压平均值 E E T t E t t t U on off on on o α==+= a ——导通占空比,简称占空比或导通比 Uo 最大为E ,减小a ,Uo 随之减小——降压斩波电路。也称为Buck 变换器(Buck Converter )。 负载电流平均值 R E U I m o o -= (3-2) 电流断续时,uo 平均值会被抬高,一般不希望出现 斩波电路有三种控制方式: 1)保持开关周期T 不变,调节开关导通时间t on ,称为脉冲宽度调制或脉冲 调宽型: 2)保持导通时间不变,改变开关周期T ,成为频率调制或调频型; 3)导通时间和周期T 都可调,是占空比改变,称为混合型。

其原理图为: 图3-1降压斩波电路的原理图及波形 a)电路图b)电流连续时的波形c)电流断续时的波形

升压斩波电路设计

湖南工程学院 课程设计任务书 课程名称电力电子技术 题目升压斩波电源设计 专业班级电气工及其自动化 学生姓名王振林学号 0505 指导老师颜渐德 审批谢卫才 任务书下达日期 2010 年 5 月 17 日设计完成日期 2010 年 5 月 28 日

摘要 本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。 Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。通过设置参数分析输出与电路参数和控制量的关系。第二部分是电路板,它可以通过Protel设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。本设计也采用Protel设计原理图,和进行PCB板布线。它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。 引言 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。但以

升压斩波电路课程设计报告Word版

《电力电子技术课程设计》报告 设计题目:升压斩波电路的设计 英文题目:The Design of Boost Chopper 院系:电气工程与自动化 年级专业: 2011级电气工程及其自动化 姓名:) ) ) 2014年6月30日 目录 目录 (2) 1. 设计的题目 (3)

1.1引言 (3) 1.2升压斩波电路的应用 (4) 2.设计的任务: (4) 2.1 课程设计要求 (4) 2.2Boost电路技术参数及要求 (4) 3.设计的依据: (5) 3.1总体构思依据 (5) 3.2理论计算依据 (5) 4.设计的内容: (6) 4.1主电路的选择与计算过程 (6) 4.1.1直流斩波电路由直流电源、MOSFET、电感、电容、续流二极管以及负载组 成。具体原理电路图如下: (6) 4.1.2主电路的理论计算: (6) 4.1.3主电路的仿真 (7) 4.1.4主电路的仿真输出波形 (8) 4.2控制电路的选型与计算过程 (8) 4.2.1NE555的引脚图及引脚 (8) 4.2.2 NE555工作原理 (9) 4.2.3控制电路原理图 (9) 4.2.4控制电路理论计算过程 (10) 4.2.5控制电路的仿真与波形输出 (10) 4.3带tlp250光耦合器的驱动电路的选型 (11) 4.3.1 tlp250引脚图及引脚 (11) 4.3.2采用tlp250的原理 (11) 4.4绘制原理图和PCB (12) 4.4.1主电路原理图 (12) 4.4.2主电路PCB图 (13) 4.4.3 555电路图 (13) 4.4.4 光耦tlp250原理图 (13)

直流降压斩波电路的设计

直流降压斩波电路的设计 摘要: 本实验设计的是Buck降压斩波电路,采用全控型器件IGBT。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。 关键词:降压斩波,主电路、控制电路、驱动及保护电路。 引言:直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,是电力电子领域的一大热点。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。斩波器的工作方式有:脉宽调制方式,频率调制方式和混合型。脉宽调制方式较为通用。当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI 软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应得功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达 27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。 1设计目的 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,其中IGBT 降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与GTR的复合器件。它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

实验四 直流斩波电路实验

实验四直流斩波电路实验 一.实验目的 1.加深理解斩波器电路的工作原理 2.掌握斩波器的主电路,触发电路的调试步骤和方法。 3.熟悉斩波器各点的波形。 二.实验内容 1.触发电路调试 2.斩波器接电阻性负载。 3.斩波器接电阻—电感性负载。 三.实验线路与原理 本实验采用脉宽可调逆阻型斩波器。其中VT1为主晶闸管,当它导通后,电源电压就加在负载上。VT2为辅助晶闸管,由它控制输出电压的脉宽。C和L1为振荡电路,它们与VT2、VD1、L2组成VT1的换流关断电路。斩波器主电路如图4-14所示。接通电源时,C经VD1,负载充电至+Udo,VT1导通,电源加到负载上,过一段时间后VT2导通,C和L1产生振荡,C上电压由+Vdo变为-Vdo,C经VD1和VT1反向放电,使VT1、VT2关断。 从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽,从而达到调压的目的,VT1、VT2的脉冲间隔由触发电路决定。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。 4.MCL—06组件或MCL—37 5.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A) 6.双踪示波器 7.万用表

五.注意事项 1.斩波电路的直流电源由三相不控整流桥提供,整流桥的极性为下正上负,接至斩波电路时,极性不可接错。 2.实验时,每次合上主电源前,须把调压器退至零位,再缓慢提高电压。 3.实验时,若负载电流过大,容易造成逆变失败,所以调节负载电阻,电感时,需注意电流不可超过0.5A。 4.若逆变失败,需关断主电源,把调压器退至零位,再合上主电源。 5.实验时,先把MCL-18的给定调到0V,再根据需要调节。 六.实验方法 1.触发电路调试 打开MCL—06面板右下角的电源开关(或接人MCL—37低压电源)。 调节电位器RP,观察“2”端的锯齿波波形,锯齿波频率为100Hz左右。 调节“3”端比较电压(由MCL-18给定提供),观察“4”端方波能否由0.1T连续调至0.9T(T为斩波器触发电路的周期)。 用示波器观察“5”、“6”端脉冲波形,是否符合相位关系。 用示波器观察输出脉冲波形,测量触发电路输出脉冲的幅度和宽度。 2.斩波器带电阻性负载 按图2-14实验线路连好斩波器主电路,接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,并将触发电路的输出G1、K1、G2、K2分别接至VT1、VT2的门极和阴极。 三相调压器逆时针调到底,合上主电源,调节主控制屏U、V、W输出电压至线电压为110V。用示波器观察并记录触发电路“1”、“2”、“4”、“5”、“6”端及U G1K1、U G2K2的波形,同时观察并记录输出电压u d=f(t),输出电流id=f(t),电容电压u c=f (t)及晶闸管两端电压u VT1=f(t)的波形,并注意各波形间的相位关系。 调节“3”端电压,观察在不同τ(即U G1K1和U G2K2脉冲的间隔时间)时u d的波形,并记录U d和τ数值,从而画出U d=f(τ/T)的关系曲线。其中τ/T为占空比。 注意负载电阻不可以太小,否则电流太大容易造成斩波失败。 3.斩波器带电阻,电感性负载 断开电源,将负载改接成电阻电感。然后重复电阻性负载时同样的实验步骤。 六.实验报告 1.整理记录下的各波形,画出各种负载下U=f(τ/T)的关系曲线。 2.讨论分析实验中再现的各种现象。

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书 直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 完成时间: 6月

湖南工学院《电力电子技术》课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路. 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

ABSTRACT DC chopper as DC into another fixed voltage DC voltage or adjustable in DC converter, and DC - regenerative power transmission system, charging circuit, switch power, power electronics device and all sorts of electrical equipment transformation in ordinary application. Then appeared such as step-down chopper, booster chopper, lift pressure chopper composite chopper, etc.. the commutation circuit DC chopper technology has been widely used in switching power supply and DC driver, make its smooth acceleration control, and obtain the fast response, managing electric energy effect. All-controlling power electronics device IGBT in traction power transmission and transformation of power transmission and active filter etc widely application. Keywords: DC chopping; Buck chopper

直流斩波电路建模仿真

目录 一、降压式直流斩波电路(Buck) (1) 1 原理图 (1) 2 建立仿真模型 (1) 3 仿真波形 (5) 4 小结 (6) 二、升压式直流斩波电路(Boost) (7) 1 原理图 (7) 2建立仿真模型 (7) 3 仿真波形 (8) 4 小结 (9)

一、 降压式直流斩波电路(Buck ) 1 原理图 在控制开关IGBT 导通t on 期间,二极管VD 反偏,电源E 通过电感L 向负载R 供电,此间i L 增加,电感L 的储能也增加,导致在电感两端有一个正向电压Ul=E-u 0,左正右负,这个电压引起电感电流i L 的线性增加。 在控制开关IGBT 关断t off 期间,电感产生感应电势,左负右正,使续流二极管VD 导通,电流i L 经二极管VD 续流,u L =-u 0,电感L 向负载R 供电,电感的储能逐步消耗在R 上,电流i L 线性下降,如此周而复始周期变化。如图1-1。 + -U0E 图1 -1降压式直流斩波电路的电路原理图 2 建立仿真模型 根据原理图用MATLAB 软件画出正确的仿真电路图,如图2。

图1-2降压式直流斩波电路的MATLAB仿真模型 仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0.0结束时间2.0如图1-3。 图1-3 仿真时间参数 电源参数,电压100v,如图1-4。

图1-4 交流电源参数晶闸管参数,如图1-5。 图1-5 晶闸管参数电感参数,如图1-6。 图1-6 电感参数电阻参数,如图1-7。

图1-7 电阻参数二极管参数设置,如图1-8。 图1-8 二极管参数电容参数设置,如图1-9。 图1-9 电容参数

升压式直流斩波电路

升压式直流斩波电路 1.电路的结构与工作原理 1.1电路结构 U L R U0 +- + - 图1 升压式直流斩波电路的电路原理图 1.2 工作原理 假设电路输出端的滤波电容器足够大,以保证输出电压恒定,电感L 的值也很大。 1)当控制开关VT 导通时,电源E 向串联在回路中的电感L 充电储能,电感电压u L 左证右负;而负载电压u 0上正下负,此时在R 于L 之间的续流二极管VD 被反偏,VD 截止。由于电感L 的横流作用,此充电电流基本为恒定值I1.另外,VD 截止时C 向负载R 放电,由于正常工作C 已经被充电,且C 容量很大,所以负载电压基本保持为一恒定值,记为u 0。假设VT 的导通时间为t on ,则此阶段电感L 上的储能可以表示为EI 1t on 2)在控制开关VT 关断时,储能电感L 两端电势极性变成左负右正,续流二极管VD 转为正偏,储能电感L 与电源E 叠加共同向电容C 充电,向负载R 提供能量。如果VT 的关断时间为t off ,则此段时间内电感L 释放的能量可以表示为(U 0-E )I 1t off 。 1.3基本数量关系 a.一个周期内灯光L 储存的能量与释放的能量相等: 即 b.输出电流平均值 11()on o off EI t U E I t =-E t T E t t t U off off off on o =+=

2.建模 在MA TLAB 新建一个Model ,命名为jiangya ,同时模型建立如下图所示: 图 1 升压式直流斩波电路的MATLAB 仿真模型 2.1模型参数设置 a 电源参数,电压100v : b.同步脉冲信号发生器参数 振幅1V ,周期0.001,占空比20% R E R U I β1o o ==

直流斩波电路课设资料

电力电子技术课程设计说明书直流降压斩波电路的设计 院、部: 学生姓名: 指导教师:职称 专业: 班级: 完成时间:

摘要 直流降压斩波电路又称为Buck变换器,它对输入电压进行降压变换。通过控制电路的占空比即通过IGBT来控制降压斩波电路的输出电压。直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 首先分析了直流斩波主电路(即Buck变换器)的工作原理,计算了电路的电压电流和IGBT承受的正反向电压,按照留有裕量的选型原则,选择了IRG4PC40U型号的IGBT,并对其参数进行了介绍。利用PWM控制芯片SG3525作为触发电路的核心部件,最后利用MATLAB建立了仿真模型,设置了模型的参数,并进行了仿真。仿真结果证明了设计的正确性。 关键字:设计;仿真;直流降压斩波;Buck

目录 1 绪论 (1) 1.1 设计的背景与意义 (1) 1.2 直流斩波发展现状 (1) 1.3 本设计主要内容 (2) 2 直流斩波主电路的设计 (3) 2.1 设计原始参数 (3) 2.2 直流斩波电路原理 (3) 2.3 主电路的设计 (4) 2.3.1 直流降压斩波电路 (4) 2.3.2 直流降压斩波电路参数计算 (4) 2.3.3 主电路参数分析 (5) 3 控制电路设计 (7) 3.1 PWM控制芯片SG3525简介及特点 (7) 3.2 SG3525内部结构及工作特性 (7) 3.3 触发电路 (9) 4 仿真调试 (10) 4.1 仿真软件的介绍 (10) 4.2 仿真模型建立 (10) 4.3 仿真结果分析 (12) 结束语 (15) 参考文献 (16) 致谢 (17) 附录 (18) 附录A:元件清单 (18) 附录B:主电路CAD图 (19)

实验五-直流斩波电路的性能研究实验报告-第五组

实验五-直流斩波电路的性能研究实验报告-第五组

XXX学院实验报告 学院:专业:班级:成绩: 姓名:学号:组别:组员: 实验地点:实验日期:指导教师签名: 验(序号)项目名称:直流斩波电路的性能研究(六种典型线路) 实验五直流斩波电路的性能研究(六种典型线路) 一、实验目的 (1)熟悉直流斩波电路的工作原理。 (2)熟悉各种直流斩波电路的组成及其工作特点。 (3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控 制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK09单相调 压与可调负载 3 DJK20 直流斩 波电路 4 D42 三相可调 电阻 预习情况正常操作情况正常考勤情况正常数据处理情况正常

5 慢扫描示波器自备 6 万用表自备 三、实验线路及原理1、主电路 ①、降压斩波电路(Buck Chopper) 降压斩波电路(Buck Chopper)的原理图及工作波形如图 4-12 所示。图中V 为全控型器件,选 用IGBT。D 为续流二极管。由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源 U i 向负载供电,U D=U i。当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一 个周期T 结束,再驱动V 导通,重复上一周期的过程。负 载电压的平均值为: 式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比, 简称占空比或导通比(α=t on/T)。由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空 比α,则U O 随之减小,由于输出电压低于输入电压,故称 该电路为降压斩波电路。

boost斩波电路 升压斩波电路 电力电子技术课程设计

电力电子技术课程设计 任务书 课程名称:直流斩波电路的性能研究 学院:电气学院 专业班级:自动化10班 姓名:吴学号:31100800 张31100800 冯31100800 2013年1月

目录 摘要 ............................................................................................................................................. - 1 - 1 BOOST斩波电路工作原理.................................................................................................. - 2 - 1.1 主电路工作原理...................................................................................................... - 2 - 1.2 控制电路选择.......................................................................................................... - 2 - 2 硬件调试 ................................................................................................................................. - 4 - 2.1 电源电路设计.......................................................................................................... - 4 - 2.2 升压(boost)斩波电路主电路设计 ..................................................................... - 5 - 2.3 控制电路设计.......................................................................................................... - 6 - 2.4 驱动电路设计........................................................................................................ - 10 - 2.5 保护电路设计........................................................................................................ - 11 - 2.5.1 过压保护电路............................................................................................ - 11 - 2.5.2 过流保护电路............................................................................................ - 13 - 2.6 直流升压斩波电路总电路.................................................................................... - 13 - 3总结 ........................................................................................................................................ - 15 - 4参考文献 ................................................................................................................................ - 16 -

相关主题
文本预览
相关文档 最新文档