当前位置:文档之家› 热梯度CVI工艺的数值模拟研究

热梯度CVI工艺的数值模拟研究

热梯度CVI工艺的数值模拟研究
热梯度CVI工艺的数值模拟研究

《计算材料学》课程设计

指导老师:江建军 教授

电子科学与技术系

2004年6月

热梯度CVI工艺的数值模拟研究

电子0109班第1课题组

摘要:TCVI(Thermal-Gradient Chemical Vapor Infiltration) 是一种能在较短的时

间内制备出密度均匀性较高的复合材料的工艺.

本文通过对TCVI传质过程,传热过程,预制体致密化过程进行分析,并结合C/C复合材

料预制体的结构特点和传质传热理论,建立了TCVI制备C/C复合材料的动力学模型和几何模型。通过一定的假设和近似,获得简化的模型,在此基础上,通过计算机进行模拟,获得孔

隙率与半径的关系以及预制体各圆柱体单元沉积过程的动态模型。由此证明,由TCVI工艺

获得的制体密度均匀性较高,且不易形成壳层。模拟结果为合理选择TCVI工艺的参数提供

了理论基础,而且有助于工艺的优化设计。

并且,本文就TCVI用于梯度功能材料(FGM)的制备,做了理论上的探讨。

关键词: 热梯度化学气相渗透(TCVI);C/C复合材料;数值模拟;梯度功能材料(FGM)

NUMERICAL SIMULATION OF THERMAL

GRADIENT CVI PROCESS

Abstract: TCVI(Thermal-Gradient CVI) process is a very potential process for composite ,by which composite products with well-distributed density can be manufactured in relatively shorter time .

In this paper ,the dynamic model and geometrical model of the process we reestablished by analyzing on the basis of process of heat , mass transfer and the compacting of model ,and combining theory of heat mass transfer and structure character of the perform .We acquire simple models through some hypothesis and approximation .On this basis ,we acquire relations of ε and dynamics imagines of model’s each cylinder unit deposited process through the simulation of computer .

It's testified by simulation that the perform is densified from interior to exterior during TCVI process s o the external pores in the perform will not be sealed too early .The result of simulation can lay the theoretical foundation for the parameters and affording some help for the optimum design of TCVI process.

And in the paper , the manufacture of FGM by TCVI is discussed in theories . Keywords:TCVI;C/C composite ;numerical simulation ; FGM

一 引言:

作为一种性能优异的耐高温材料,C/C复合材料在军事、航空航天等领域中有着广阔的应用前景。目前国内外C/C复合材料的制备普遍采用的是

等温化学气相渗透(ICVI)工艺。但该工艺有诸多缺点,如:沉积周期长;

制件密度均匀性不高;沉积过程中,制件表面易结壳,需要不断地采用机械

加工手段切削壳层,从而增加工艺的复杂性,提高了成本。为了解决这些问题,提出了热梯度(Thermal-Gradient)CVI(以下简称TCVI)方法[2]。

TCVI工艺使预制体处于具有热梯度的温度场中,从而改善了前驱体气体(源气)在预制体内部的扩散情况,大大提高了制件的密度均匀性,缩

短了制备周期。利用该工艺还可制备常规ICVI工艺所不能制备的厚壁

C/C复合材料件。由于该工艺具有ICVI工艺所无法比拟的优点,它已成为

国内外碳基及陶瓷基复合材料工艺研究的热点之一。

然而,TCVI工艺对设备的要求较高,各种工艺参数对工艺过程的影响也要比ICVI工艺复杂得多,这都给该工艺的研究和探索带来了很大的困难。数值模拟技术则有助于更好地理解TCVI的工艺过程,预测系统的行为,检验新的设计思想,分析一些由于经济原因或试验条件所限而难以进行的试验过程。

并且,在理论上,TCVI用于某些梯度功能材料(FGM)的制备,是完全可行的,这也使TVCI工艺能应用于制备其它复合材料。

本文根据传热传质理论,建立了具有特殊结构的C/C复合材料预制体的TCVI过程模型,并在此模型的基础上对该工艺进行了理论分析,对工艺优化做了一定探讨.

二 模型的建立

1 TCVI原理

TCVI是化学气相沉积(CVD)的延伸。通常,预制体外部温度低,内部温度高,使预制体维持一个温度梯度。前驱体气体(源气)从预制体外部向内部渗透。外部温度低,当前驱体气体(源气)接触时不会发生分解,而内部温度则要高到可以使前驱体气体(源气)分解转化为陶瓷并沉积。

这样,沉积首先从工件的内部开始,随着高温区沉积产物增多,它的密度和导热率也随之增加,从而使高温区逐渐向低温区(即从内向外)转移,直至预制体中的孔隙全部被沉积物所填充。

图1为TCVI 原理图

2.几何模型

模型一 孔隙模型

预制体是由2D 碳布缠绕而成的空心圆柱体(如图1)。2D 碳布层,是

两方向的碳纤维编织而成的二维材料。根据2D 碳布的结构特点,抽象出“孔隙模型”,此模型将用于模型二的建立和动力学模型的简化中[4]。

图2为孔隙模型示意图。

该模型将碳布沿厚度方向均匀地划分为若干单元(单元的数量根据计

算精度要求而定,一般取碳布层数),单元上均匀分布着直径相等的圆柱形气孔,孔隙半径r0取纤维束平均间隙的一半(即20a r =)。

0:气孔的初始半径;

a :纤维束间孔隙宽度;

模型二 预制体模型

根据研究对象的结构特点(见图1),提出如下假设:

(1)假设预制体是由一层层的圆柱体单元组成,且各单元的厚度相等。

(2)假设圆柱体单元上均匀分布着孔隙,将孔隙近似为半径为碳布纤维束

平均间距一半的圆柱状。 (3)圆柱体单元单位面积上的孔隙数目不变为

200

0r n ?=πε (式1)。 0ε:预制体初始气孔率;

0r :气孔的初始半径;

0n :单位面积上的孔隙数目;

在以上假设下,建立模型:

预制体孔隙率为ε,20r n ??=πε;

沉积表面积为S ,002r n S ???=π;

随着TCVI 过程的进行,热解碳不断在各孔隙表面沉积,孔隙半径r 不断减小,从而预制体逐步致密化。假设经过时间t δ后,预制体单元中的孔隙半径由r 变为*

r ,则根据沉积速率可得出孔隙半径r 与反应气浓度i C 的关系式[4] i t

i i S n M S C K r r ρπδ???????=02* (式2)

s K :热解碳沉积速率常数;

i C :沉积炉反应气浓度;

i M :热解碳摩尔质量;

i :热解碳密度;

3. 动力学模型

由TCVI 的原理可知,TCVI 过程主要由传质、传热及预制体的致密化三个过程组成。随着TCVI 的进行,上述三个过程也在同时进行,并且相互作用,相互影响。因此根据三个过程的特点,可建立描述传热传质过程的动力学模型。

传质连续方程:

传质过程的假设:

(1)假设沉积过程中没有气体的流动,或气体的流动可忽略不计; (2)假设在沉积过程中,反应气体的扩散速率大于热解碳的沉积速率,则

前驱体气体浓度保持不变,即传质过程为稳态轴对称扩散过程;

建立以下模型:

根据传质理论及研究对象的特点,建立连续方程[2]如下: 0122=?????+?????

???????+i s i eff i eff eff C S K r C D r C r D D r (式3)

边界条件:

1r r =时,0

=??r C i ;2r r =时,0C C i =;

r :距离对称轴距离;

eff D :前驱体气体在预制体内部的有效扩散系数;

s K :热解碳的沉积速率; 其中:

k m k m eff D D D D k D +?=002εε;

0k :孔隙形状参数;

m D :Fick 扩散系数;

k D :Knudsen 扩散系数;

???????=RT E A K s exp 0

0A :Arrhenius 方程系数;

E ?:反应活化能;

R :理想气体常数;

T :沉积温度;

由于(式3)过于复杂,我们做了一定的近似处理:

1) 预制体所缠绕的碳布层数足够多,则在某一圆柱体单元的两侧,温度

变化很小。也就是说,我们将某一个圆柱体单元的传质过程看作是在等温条件下进行的;

2) 假设取圆柱体侧面一个很小的面元研究,该面元相对孔隙还是很大的,

这样,运用“孔隙模型”,将其简化为沿径向(即一维方向)的传质过程。

(式3)的简化,可将第一项忽略,得: 022=?????i S i eff C S K r C D (式4)

边界条件及参数含义和计量不变。

传热连续方程:

传热过程的假设:(1)同传质过程假设(1);

(2)温度梯度不是很大;

建立以下模型:

由传热学理论和本研究对象的传热特点(传热过程为无内热源的轴对称稳态导热过程),其可建立传热连续方程[2]如下:

0122=??+??????????+r t r t r r λλλ (式5)

边界条件:

当1r r =时,1t t =;当2r r =时,2t t =。

参数说明:

λ:导热系数,与温度和空隙率有关。

t :预制体的温度;

为了便于计算机模拟,我们对温度分布进行简化,假设预制体温度为线性梯度分布.其与预制体的空隙率无关.则有:

022=??r t λ

边界条件及参数含义和计量不变。

由简化的传质方程及热连续方程可以得出沉积炉内反应气平均浓度i

C 以及温度分布T 同轴心半径r 的关系。将其代入预制体几何模型则可以进一步得出空隙率ε与轴心半径r 关系。通过计算机模拟分析,则有以下图形。

三 模拟结果及分析:

1.TCVI 模拟结果

我们用VC 进行计算机编程模拟得到了以下结果。

TCVI 不同半径下膜层孔隙率与时间的关系如图(3)所示

图3 TCVI 孔隙率与半径的关系

ICVI不同半径下膜层孔隙率与时间的关系如图(4)所示

图4 ICVI孔隙率与半径的关系

对TCVI工艺下的模拟,可知斜率大,即曲线越陡,则沉积越快,结合图形知TCVI随轴心半径的增大,孔隙率随时间的变化趋于缓和,即预制体内部空隙率变化较快即沉积速度较快,而外部则较慢。因此沉积过程由内到外完成而不会在沉积过程中形成壳层,可以实现均匀膜层的制备。而常规ICVI则不同,在忽略壳层的阻碍作用后则可以看出不同的轴心半径的膜层沉积的速率相同,则在考虑外层沉积后对内层沉积的阻碍作用可以得知,其内部沉积将较外层缓慢,预制体外层孔隙将减小得较快,沉积是由外到内进行,当沉积到一定程度后,外层孔隙首先封闭,形成壳层阻碍气体向预制体内部扩散,预制体内部的孔隙无法被充分填充,最终导致制件密度的不均匀。因此,TCVI工艺可制备出密度很均匀的复合材料。

四 想法 TCVI在FGM制备中的应用

鉴于以上对TCVI工艺过程的分析,假设在沉积过程中反应气体采用混合气体,并在沉积过程中改变部分工艺参数,例如气体的混合浓度比例,则此工艺也可以用于制作梯度功能薄膜[7]。

若在沉积过程中前驱气体采用A,B的混合气体,其中气体A所占比例为α,则可求出此变化中沉积膜层中A所占的比例。由此在沉积中适时地

不断改变A,B气体的比例,并通过计算采用一定的工艺参数,则此法应可

用于梯度功能薄膜FGM的制备。

当然,运用此方法,要注意:

(1) 由于现在研究的多数FGM是陶瓷和金属两相混合,而且目前的TCVI多

用于陶瓷基和碳基,所以选陶瓷基或碳基做纤维骨架;

(2) 必须是化学反映能控制的;

(3) 作为陶瓷而言,多数是离子晶体,通过其组成元素来获得目标陶瓷要比

直接用目标瓷来得到产物,更有可行性。

五 结论

(1) 本文建立动力学模型和几何模型,较好地描述TCVI工艺过程,模拟了

TCVI工艺过程中膜层的变化。

(2) 模拟结果表明,在TCVI工艺条件下,预制体的致密化是由内向外进行的,

从而可以 避免ICVI工艺中外层孔隙过早封闭的现象,提高C/C复合材

料制件的密度均匀性。

(3) 通过与ICVI的工艺模拟对比可知TCVI的制备时间较短提高了制备效

率。

(4) 提出将TCVI法应用与某些梯度功能薄膜(FGM)的制备并讨论其应用(如

梯度指数光纤)。

参考文献:

[1] 姜开宇,李贺军,李克智等 . C/C复合材料热梯度CVI工艺的数值模拟研究 . 复

合材料学报 , 2000,17(4):84--87

[2] 姜开宇,李贺军,侯向辉等 . 轴对称C/C复合材料件等温CVI过程的数值模拟研

究 . 西北工业大学学报 ,2000,18(4):665--668

[3] 姜开宇,李贺军,李克智 . 2D碳碳复合材料CVI 过程的数值模拟研究 . 宇航学

报 ,1999,20(4):104--107

[4] 侯向辉,李贺军,刘应楼等 . 先进陶瓷基复合材料制备技术-CVI法现状及进

展 . 硅酸盐通报 , 1999,2:32--36

[5] 李臻熙,张同俊,李星国 . Al2O3-Ti系梯度功能材料残余热应力有限元分析 . 宇

航材料工艺 , 1998,1:11--16

[6] 金卓仁,毛样武,程继贵,夏永红等 . 梯度功能材料的优化设计及发展 . 合肥工

业大学学报(自然科学版) ,2001,24(1):60--63

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

流体力学数值模拟实验指导书

流体力学数值模拟 实验指导书 建筑环境与设备工程教研室 2008.3

实验一、圆管内层流流动的数值模拟 一、实验目的 1、了解计算流体力学(CFD)的基本理论,包括:数值求解流体力学问题的基本过程、区域离散化、控制容积积分法的基本概念、对流-扩散方程的离散格式、SIMPLE算法的计算步骤、边界条件处理等。 2、掌握对特定的流动问题的完整数学描述,包括:流动问题的控制方程、单值性条件(初始条件及边界条件)。 3、掌握GAMBIT、FLUENT软件的图形用户界面(GUI)的基本架构及基本操作步骤。 4、学会用FLUENT分析圆管内层流流动现象,并结合所学理论知识分析解释相关数值模拟结果。 二、实验装置 本实验均在计算机上完成,主要用到前处理网格生成软件GAMBIT和数值求解软件FLUENT。GAMBIT界面如下图1:

脚本窗口 视窗 命令窗口 图1 GAMBIT软件的GUI界面FLUENT软件GUI界面如下图2:

后处理相关面板 FLUENT绘图界面 FLUENT工作界面 图2 FLUENT软件的GUI界面 三、实验内容 图3 圆管内层流流动 考虑如上图3所示的通过横截面积一定的圆管的层流流动,管直径 为D=0.2 m,管长为L=8 m,管子入口速度为V in=1 m/ s,此管入口处沿横截面速度分布均为1 m/ s,流动最终流入大气压力为1 atm 的大气环境中,流体密度为ρ=1 kg/ m3,动力粘度为μ= 2 x 10-3

kg/(ms),基于管径的Re数为 ,分别在100X20、100X10、100X5的网格上,用FLUENT求解该问题,绘制管子中心线上的速度变化,出口处的速度分布。 四、实验步骤 1、在前处理网格生成软件GAMBIT中,绘制100X5的网格,保存并输出网格,退出GAMBIT软件。 2、打开FLUENT软件,将生成的100X5的网格导入FLUENT中,根据实验内容规定的相关要求进行基本流体参数设置、求解格式的选取、收敛标准的设定等,并开始迭代求解。 3、利用FLUENT内置的后处理面板按实验内容要求绘制管子中心线上的速度变化,出口处的速度分布,并保存绘图结果。 4、退出FLUENT,重新进入前处理网格生成软件GAMBIT中,分别绘制100X10、100X20网格,重复步骤2~3,并比较随着网格的加密对计算结果的影响。

绿色设计与绿色制造

1.简述绿色技术的历史、绿色设计与制造的研究内容及国内外发展现状和趋势。(10分) 答:绿色技术的发展经历了漫长的历史,也是科技发展的必然趋势。绿色技术的概念是在1992年联合国环境发展大会通过的《21世纪议程》里提出的。客观地讲,是公害事件和环境问题使科学家认识到绿色科技的重要性。为了解决环境问题,人类需要更为先进的技术来寻求一种新的技术体系,以实现人类的可持续发展。在此背景下,绿色技术应运而生。上世纪末,发达国家开发绿色技术已形成一股潮流,各国政府采取了一系列措施支持绿色技术的发展。美国1994年就发布了《面向可持续发展的未来技术报告》,并设立了“总统绿色化学挑战奖”。日本政府倡导以绿色技术推动绿色革命,并于2001年制定实施了《绿色采购法》,规定各级政府和机关单位有优先采购环境友好型产品的义务。2007年,欧盟出台了《用能产品生态设计框架指令》,要求对各种用能产品进行节能、延长寿命、降低环境影响的设计。 绿色设计是指在产品及其寿命周期全过程的设计中,要充分考虑对资源和环境的影响,在充分考虑产品的功能、质量、开发周期和成本的同时,更要优化各种相关因素,使产品及其制造过程中对环境的总体负影响减到最小,使产品的各项指标符合绿色环保的要求。其基本思想是:在设计阶段就将环境因素和预防污染的措施纳入产品设计之中,将环境性能作为产品的设计目标和出发点,力求使产品对环境的影响为最小。对工业设计而言,绿色设计的核心是“3R”,即Reduce,Recycle,Reuse,不仅要减少物质和能源的消耗,减少有害物质的排放,而且要使产品及零部件能够方便的分类回收并再生循环或重新利用。 绿色制造技术是指在保证产品的功能、质量、成本的前提下,综合考虑环境影响和资源效率的现代制造模式。它使产品从设计、制造、使用到报废整个产品生命周期中不产生环境污染或环境污染最小化,符合环境保护要求,对生态环境无害或危害极少,节约资源和能源,使资源利用率最高,能源消耗最低。 当前,世界上掀起一股“绿色浪潮”,环境问题已经成为世界各国关注的热点,国内一些高等院校和研究院所在国家科委、国家自然科学基金会和有关部门的支持下对绿色设计与制造技术进行了广泛的研究探索。如:机械科学研究院已完成了国家科委“九五”攻关项目--清洁生产技术选择与数据库的建立、机械工业基金项目--绿色设计技术发展趋势及对策研究。围绕机械工业中九个行业对绿色技术需求和绿色设计技术自身发展趋势进行了调研,在国内首次提出适合机械工业的绿色设计技术发展体系,同时还进行了车辆的拆卸和回收技术的研究。国外不少国家的政府部门已推出了以保护环境为主题的“绿色计划”。1991年日本推出了“绿色行业计划”,加拿大政府已开始实施环境保护“绿色计划”。美国、英国、德国也推出类似计划。目前,在一些发达国家,除政府采取一系列环境保护措施外,广大消费者已热衷于购买环境无害产品的绿色消费的新动向,促进了绿色制造的发展。国际经济专家分析认为,目前“绿色产品”比例大约为5-10%,再过10年,所有产品都将进入绿色设计家族,可回收、易拆卸,部件或整机可翻新和循环利用。也就是说,在未来10年内绿色产品有可能成为世界商品市场的主导产品。 2.简述传统产品设计的过程和主要不足。(10分)

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

第三章-数值模拟理论与方法

第三章 数值模拟理论与方法 §3.1 流体力学的基本方程 流体运动所遵循的规律是由物理学三大守恒定律规定的,即质量守恒定律,动量守恒定律和能量守恒定律[44]。 (一)连续方程 0)(=?+??v t ρρ (3.1) 式中 ρ-流体密度 u -流体速度分量 (二)动量方程(x 方向) 对于不可压流体(即0=?v ) x p f v u v x u x ??-+??=??+??ργρρρ)()()( (3.2) 式中 γ-运动粘性系数 p -压力 对于可压缩流体 ()()()()()x p f v x u u v x u x ??-+???+??=????ργργρρρ 31 (3.3) 式中等号后前两项是粘性力 y ,z 方向上的动量方程可类似推出。 (三)能量方程 ()()()v q T k e v e t ερρ++???=??+?? (3.4) 其中 T C e v = 式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项,第二、三项是源项。 所以,流体力学基本方程组为: ()0=?+??v t ρρ

()x p f u u v f t u x ??-+??=??+??ργρ)( ()()y p f v v v f t v y ??-+??=??+??ργρ (3.5) ()()w p f w w v f t w w ??-+??=??+??ρλρ ()()v q e c k e v f e t v ερ++??? ? ????=??+?? §3.2 紊流模式理论概况 §3.2.1 基本方程 在自然界中,真实的流体都具有粘性。粘性流体存在两种不同的运动方式和流态,即层流和紊流。而在自然界和工农业生产中所遇见的流体流动大部分都是紊流。 三维的N-S 方程是目前描述粘性流体运动较为理想的模型,其优点一是应用范围广,在空气、水流、传热等方面均用N-S 方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。 三维直角坐标下的N-S 方程[45],[46],即不可压缩粘性流体的动量方程式为: ?????????????+??+??+??-=??+??+??+??-=??+??+??+??-=)()()(222222222222222222z w y w x w z p F Dt Dw z v y v x v y p F Dt Dv z u y u x u x p F Dt Du z y x μρρμρρ μρρ (3.6) 不可压缩流体的连续性方程为: (3.7) 式(3.6)和(3.7)共有四个未知数(u 、v 、w 、p )和四个方程,加上边界条件,从理论上来讲其解是存在的。但是,要直接求解复杂而详细的粘性流体运动是十分复杂和困难的。其原因是:直接求解N-S 方程要求求解从反映消散运动的最小涡漩尺度到反映大尺度涡体的所有流动尺度,因而只有对简单情况下才有理论解。 0=??+??+??z w y v x u

生物育种知识总结及典型例题

生物育种知识归类 一、育种知识详解 根据高中阶段所学习遗传变异的内容,可归纳以下育种方法有:诱变育种、杂交育种、多倍体育种、单倍体育种、植物激素育种等。 1、杂交育种 (1)原理:基因重组 (2)方法:连续自交,不断选种。(不同个体间杂交产生后代,然后连续自交,筛选所需纯合子) (3)优点:使同种生物的不同优良性状集中于同一个个体,具有预见性。 (4)缺点:育种年限长,需连续自交才能选育出需要的优良性状。 例题:已知小麦的高秆(D)对矮秆(d)为显性,抗锈病(R)对易染锈病(r)为显性,两对性状独立遗传。现有高秆抗锈病、矮秆易染病两纯系品种。要求使用杂交育种的方法培育出具有优良性状的新品种。 操作方法:①让纯种的高秆抗锈病和矮秆易染锈病小麦杂交得F1 ;②让F1自交得F2 ; ③选F2中矮秆抗锈病小麦自交得F3;④留F3中未出现性状分离的矮秆抗病个体,对于F3中出现性状分离的再重复③④步骤 2、诱变育种 (1)原理:基因突变 (2)方法:用物理因素(如X射线、γ射线、紫外线、中子、激光、电离辐射等)或化学因素(如亚硝酸、碱基类似物、硫酸二乙脂、秋水仙素等各种化学药剂)或空间诱变育种(用宇宙强辐射、微重力等条件)来处理生物。(所处理的生物材料必须是正在进行细胞分裂的细胞、组织、器官或生物。) (3)优点:能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。 (4)缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。改良数量性状效果较差,具有盲目性。 (4)举例:青霉素高产菌株、太空椒、高产小麦、“彩色小麦”等。 3、多倍体育种 (1)原理:染色体变异(染色体加倍) (2)方法:秋水仙素处理萌发的种子或幼苗。 (3)优点:可培育出自然界中没有的新品种,且培育出的植物茎秆粗大,叶片、果实和种子较大,糖类、蛋白质营养含量高。 (4)缺点:结实率低,发育延迟。 (5)举例:三倍体无子西瓜、八倍体小黑麦 ①三倍体无子西瓜的培育: a.三倍体西瓜种子种下去后,为什么要授以二倍体西瓜的花粉? 西瓜三倍体植株是由于减数分裂过程中联会紊乱,未形成正常生殖细胞,因而不能形成种子。但在三倍体植株上授以二倍体西瓜花粉后,花粉在柱头上萌发的过程中,将自身的色氨酸转变为吲哚乙酸的酶体系分泌到西瓜三倍体植株的子房中去,引起子房合成大量的生长素;其次,二倍体西瓜花粉本身的少量生长素,在授粉后也可扩散到子房中去,这两种来源的生长素均能使子房发育成果实(三倍体无籽西瓜)。 b.如果用二倍体西瓜作母本、四倍体西瓜作父本,即进行反交,则会使珠被发育形成的种皮厚硬,从而影响无子西瓜的品质。 4、单倍体育种 (1)原理:染色体变异,组织培养 (2)方法:花药离体培养获得单倍体植株,再人工诱导染色体数目加倍。 (3)优点:自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。

绿色制造技术

绿色制造技术 自70年代以来,全球掀起了一场空前壮阔的绿色革命,它从经济到政治,从观念到行为,对整个世界和人类生活产生了巨大的冲击和影响。“建立一个可持续发展的社会”,正成为21世纪全球性社会改革浪潮的一个重要主题。1992年联合国在巴西里约热内卢召开的环境与发展会议发表了《21世纪议程》,提出了全球可持续发展的战略框架。随后,中国政府向全世界推出《中国21世纪议程》,把可持续发展战略列为国家发展战略。《21世纪议程》指出:“地球所面临的最严重的问题之一,就是不适当的消费和生产模式,导致环境恶化、贫困加剧和各国的发展失衡。若想达到合理的发展,则需要提高生产的效率并改变消费,以最高限度地利用资源和最低限度地产生废弃物。”可持续发展战略的提出,使我国企业界面临挑战和机遇并存的局面。它要求企业顺应可持续发展的全球性潮流。然而,对于制造业来讲,一方面,在工业发展史上,制造业以其绝对的优势奠定了其在工业上的基础地位。另一方面,在目前的技术水平及观念模式下,由制造业所带来的各种问题也日益显露。其中十分突出的一项就是对于环境的威胁,现代科学技术日新月异使人类逐步摆脱贫穷,同时亦使人类陷入日益恶劣的自然环境中。“回归自然”已成为人类的共同心声。在当今时代,绿色环境保护运动的兴起,浸染了现代科学技术,也蕴育了绿色制造技术。 众所周知,制造业是将可用资源(包括能源)通过制造过程,转化为可供人们使用和应用的工业品和生活消费品的产业。20世纪80年代,特别是80年代后期以来,世界制造业市场竞争不断加剧,给企业带来了越来越大的压力,迫使企业纷纷寻求有效方法:一方面加速技术进步的步伐,促使现代制造过程的组织发生重大的变化,其目的在于使企业能适应市场的需要和变化,以最快的速度设计和生产出高质量的产品,并以最低的成本和合理的价格参与市场竞争。另一方面,制造业在生存和竞争的同时,又不断消耗资源,产生废弃物,造成环境污染,使得环境问题日益恶化,并正在对人类的生存与发展造成严重威胁。制造业是环境污染的主要源头,因此,如何使制造业尽可能较少地产生环境污染是当前环境问题研究的一个重要方面。于是绿色制造(Green Manufacturing)这一全新的概念便产生了。 绿色制造技术的内容:绿色制造系统的特征目标是追求废弃物最少和环境污染最小,而决定此两个目标的根本因素是资源流。影响制造系统的资源流的因素是多种多样的,因而决定了实施绿色制造涉及的问题和途径是多方面的,归纳起来,绿色制造技术从内容上应包括“五绿”,即绿色设计、绿色材料、绿色工艺、绿色包装和绿色处理等五个方面。在绿色制造实施问题中,绿色设计是关键。比如,Boothroyd在Ford汽车公司发表的报告中指出,尽管设计费用仅占产品全部成本的5%左右,但却决定了80~90%的产品生命周期的全部消耗。 绿色设计是在产品及其寿命的全过程的设计中,充分考虑对资源和环境的影响,在充分考虑产品的性能、质量、开发周期和成本的同时,优化各有关设计因素,使得产品及其制造过程对环境的总体负影响减到最小。绿色设计又称为面向环境的设计DEE(Design for the Environment)。 面向环境的产品设计应包括的内容很广泛,像材料的选择、产品的包装方案设计等环节,考虑这些环节对资源消耗和环境的影响甚大,应把它们单独作为面向环境设计问题的一个子项加以考虑。其中,面向环境的产品方案设计一般是指涉及产品原理、方法、总体布局、产品类型、包装运输等方面的选择和设计。面向环境的产品结构设计的主要目标是采用尽可能合理和优化的结构(包括有利于包装运输和良好的人机工程的结构),以减少资源消耗和浪费,从而减少对环境的负面影响,面向环境的产品包装设计方案,就是要从环境保护的角度出发,优化产品的包装方案(从包装材料的选取、包装制品的制造到包装制品的回收处理及包装成本等的优化),使得资源消耗和环境负影响最小。 绿色制造技术的特点:绿色制造是一个综合考虑环境影响和资源效益的现代化制造模式,其.

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.doczj.com/doc/1316281354.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

植物细胞工程(四)育种方法的总结

高二生物选修三《现代生物科技专题》学案编号:5 第二节植物细胞工程(三)——育种方法的总结 编制:李绒审核:李绒审批________ . 班组姓名组评师评________ 【学习目标】 1、总结植物细胞工程的相关内容 2、总结育种方法(用对比的方法对杂交育种、诱变育种等从育种原理、过程等方面进行总结) 【使用说明】认真阅读教材相关内容完成自主学习,复习必修ⅡP46-47中单倍体育种和多倍体育种P79-81中诱变育种的相关内容完成育种方法的归纳总结。 【自主学习】 一、复习回顾 (一)细胞全能性 1、概念: 2、具有全能性的原因: 3、体现全能性的条件: 4、全能性的高低:、____________________________、 ________________________ (二)植物组织培养技术 1、植物组织培养的原理: 2、植物组织培养最常用的材料: 3、植物组织培养的过程 4、植物组织培养的应用_______________________________、_______________________、______(三)植物细胞培养 1、植物细胞培养原理: 2、植物细胞培养的应用、____________________________、 ________________________

勇敢的承认自己不知道的事情,才能学习并进步。 二、育种方法的归纳总结 三、跟踪训练 1、两个亲本的基因型分别为AAbb和aaBB,这两对基因按自由组合定律遗传,要培育出基因型为aabb的新品种,最简捷的方法是() A.单倍体育种 B.杂交育种 C.人工诱变育种 D.细胞工程育种 2、农业生产中植物生长素已被广泛使用。下列各项,与植物生长素应用无关的是() A.培育无籽番茄B.棉花保蕾、保铃C.延长种子寿命D.促进插枝生根 3、能够使植物体表达动物蛋白的育种方法是() A.单倍体育种B.杂交育种 C.基因工程育种D.多倍体育种 4、现有黑色短毛兔和白色长毛兔,要育出黑色长毛兔。理论上可采用的技术是()①杂交育种②基因工程③诱变育种④克隆技术 A.①②④ B.②③④ C.①③④ D.①②③ 5、甘薯品种是杂合体。块根、种子、叶片和茎均可用于繁殖,但为保持某甘薯品种的特性,下列不能用于繁殖的器官是() A.种子 B.块根 C.叶片 D.茎 6、桃的果实成熟时,果肉与果皮粘连的称为粘皮,不粘连的称为离皮;果肉与果核粘连的称为粘核,不粘连的称为离核。已知离皮(A)对粘皮(a)为显性,离核(B)对粘核(b)为显性。现将粘皮、离核的桃(甲)

绿色制造的发展现状及趋势

目录 摘要 (3) Abstract (4) 0文献综述 (5) 0.1 发展绿色制造的背景 (5) 0.2 绿色制造的内涵 (5) 0.3 绿色制造的特点 (6) 0.4 绿色制造发展现状及趋势 (7) 0.5 结语 (9) 1 引言 (9) 2 绿色制造的概念 (10) 3 绿色设计 (11) 3.1 绿色设计的概念 (11) 3.2 绿色设计的内容 (12) 3.3 绿色设计的方法 (12) 3.3.1 产品生命周期设计法 (12) 3.3.2 并行工程法 (13) 3.3.3 模块化设计法 (16) 3.4 绿色设计的研究现状 (17) 3.5 绿色设计理念在机械实践中的体现 (20) 4绿色材料 (22) 4.1 绿色材料的概念 (22) 4.2 绿色材料的分类 (23) 4.3 绿色材料的发展现状 (23) 4.4 绿色材料的发展趋势 (24) 5 绿色制造工艺技术 (25) 5.1 绿色制造工艺技术的概念 (25) 5.2 绿色制造工艺技术的具体内容及应用 (26)

5.2.1 干式加工 (26) 5.2.2 准干式加工 (29) 5.2.3 风冷却切削技术 (29) 5.3 绿色制造工艺技术的发展趋势 (30) 6 产品的绿色包装技术 (30) 6.1 概念阐述 (30) 6.2 绿色包装材料的种类 (31) 6.3 绿色包装的发展现状 (32) 6.4 发展绿色包装技术的意义 (33) 7 产品的可拆卸、可回收技术 (33) 7.1 产品回收利用概念 (33) 7.2 影响产品拆卸回收利用的因素 (34) 7.3 我国产品回收利用现状 (34) 8 绿色制造的研究方向 (35) 9 实施绿色制造的措施 (36) 9.1 加紧绿色制造关键技术的研究 (36) 9.2 提高公众和企业的环境意识 (38) 9.3 政府立法并加大执法力度 (38) 10 结论 (38) 参考文献 (39) 致谢 (40)

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

各大常用排序方法

//1. 希尔排序, 时间复杂度:O(nlogn)~ O(n^2) // 另称:缩小增量排序(Diminishing Increment Sort) void ShellSort(int v[],int n) { int gap, i, j, temp; for(gap=n/2; gap>0; gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap; i=0) && (v[j]>v[j+gap]); j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp = v[j]; v[j] = v[j+gap]; v[j+gap] = temp; } } } } //2. 二分插入, void HalfInsertSort(int a[], int len) { int i, j, temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */ { high = mid-1;

} else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间 */ for (j=i-1; j>high; j--)/* 元素后移 */ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入 */ } } //3. 插入排序 //3.1 直接插入排序, 时间复杂度:O(n^2) void StraightInsertionSort(int input[],int len) { int i, j, temp; for (i=1; i=0 && input[j]>temp; j--) /* 从当前元素的上一个元素开始查找合适的位置 */ { input[j+1] = input[j]; /* 一边找一边移动元素 */ input[j] = temp; } } } //3.2 带哨兵的直接排序, 时间复杂度:O(n^2) /* * 带哨兵的直接插入排序,数组的第一个元素不用于存储有效数据 * 将input[0]作为哨兵,可以避免判定input[j]中,数组是否越界 * 因为在j--的过程中,当j减小到0时,变成了input[0]与input[0] * 自身进行比较,很明显这个时候说明位置i之前的数字都比input[i]小

高中生物育种知识归纳总结

高中生物育种知识归纳总结 发表时间:2013-01-21T17:03:51.390Z 来源:《新校园》理论版2012年第9期供稿作者:高洪斌[导读] 生物育种是指人们按照自己的意愿,依据不同的育种原理,有目的、有计划地获得人们所需要的生物新品种。这实际就是要改变生物的表现型。 高洪斌(扎兰屯第一中学,内蒙古呼伦贝尔162650) 生物育种是指人们按照自己的意愿,依据不同的育种原理,有目的、有计划地获得人们所需要的生物新品种。这实际就是要改变生物的表现型。生物的表现型是由基因和环境所共同控制的。但是环境所改变的表现型是不能遗传的,所以要想得到新品种就必须想办法改变生物的基因。改变生物的基因可以通过基因突变、基因重组和染色体变异三种方法。因而生物育种可以依据这不同的原理划分为三类。 一、基因突变的育种方法 基因突变是生物变异的根本来源。自然界中的抗病、抗虫等性状归根结底都来源于基因突变。但在自然突变中,突变的频率很低,而且大多数都是有害的。为了能获得人们想要的性状,就要想办法提高突变的频率。可以用射线照射等方法提高突变频率,这样的育种方法叫做诱变育种。诱变育种可以得到从来没有的性状,因而可以大幅度地改良生物性状。但是突变是不定向的,并且大多数是有害的,所以为了得到人们想要的个体,就必须大量处理样本。 诱变育种中最常见的就是太空育种。太空育种即航天育种,也称空间诱变育种,是将作物种子或诱变材料搭乘返回式卫星或高空气球送到太空,利用太空特殊的环境诱变作用,使种子产生变异,再返回地面培育作物新品种的育种新技术。太空育种已得到一定程度的应用。通过太空育种,培育出了一批新的突变类型和具有优良性状的新品种。例如,水稻种子经卫星搭载,获得了植株高、分孽力强、穗型大籽粒饱满和生育期短的性状变异。太空椒的果实比在陆地上培育的果实要大得多,口味、重量和外形也发生了变化。 二、基因重组的育种方法 1.杂交育种 杂交育种是指指遗传性状不同的种、类型或品种间进行有性杂交产生杂种,继而对杂种加以选择培育,创造新品种的方法。 杂交育种可以得到杂合子,然后利用杂合子的杂种优势来获得高产、生存力强等性状。但由于杂种个体自交会发生性状分离,因此不能通过自交来持续获得此性状。根据杂种优势的原理,通过育种手段的改进和创新,可以使农(畜)产品获得显著增长。这方面以杂种玉米的应用为最早,成绩也最显著,一般可增产20%以上。 杂交育种还可以通过杂交使两个亲本的优良性状集中到一个个体上。比如使抗病低产和不抗病高产的两种亲本杂交,得到子一代就会同时具有两个亲本的性状,再通过自交、筛选等步骤,就可以获得纯合的抗病高产的个体。杂交育种优点是操作简单,缺点是育种周期太长。杂交育种最重要的应用就是袁隆平的杂交水稻和李振声小偃系列杂交小麦。 2.基因工程 基因工程又称基因拼接技术和DNA 重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA 分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。基因工程育种有优点是可以定向地改变基因,从而定向改变生物的性状,缺点是难操作,目的基因不好获得。运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物等。比如转入人胰岛素基因的大肠杆菌,就可以为人类生产胰岛素,这样就大大降低了胰岛素的成本。 三、染色体变异的育种方法 1.单倍体育种 单倍体育种是植物育种手段之一,是利用植物组织培养技术(如花药离体培养等)诱导产生单倍体植株,再通过某种手段使染色体组加倍(如用秋水仙素、低温诱导处理),从而使植物恢复正常染色体数。单倍体是具有体细胞染色体数为本物种配子染色体数的生物个体。单倍体植株经染色体加倍后,在一个世代中即可出现纯合的二倍体,从中选出的优良纯合系后代不分离,表现整齐一致。单倍体育种的优点是育种周期短,缺点是容易不育。中国首先应用单倍体育种法改良作物品种,已培育成了一些烟草、水稻、小麦等优良品种。 2.多倍体育种 多倍体育种利用人工诱变或自然变异等,通过细胞染色体组加倍获得多倍体育种材料,用以选育符合人们需要的优良品种。最常用、最有效的多倍体育种方法是用秋水仙素或低温诱导来处理萌发的种子或幼苗。秋水仙素能抑制细胞有丝分裂时形成纺锤体,但不影响染色体的复制,使细胞不能形成两个子细胞,而染色数目加倍。多倍体育种的优点是育种周期短,缺点是难操作。多倍体育种比较常见的例子就是无籽西瓜。 3.植物体细胞杂交 植物体细胞杂交又称原生质体融合是指将植物不同种、属,甚至科间的原生质体通过人工方法诱导融合,然后进行离体培养,使其再生杂种植株的技术。植物细胞具有细胞壁,未脱壁的两个细胞是很难融合的,植物细胞只有在脱去细胞壁成为原生质体后才能融合,所以植物的细胞融合也称为原生质体融合。植物体细胞杂交和杂交育种不同的是,它可以在亲缘关系较远的个体间进行,打破了生物间的生殖隔离。由于新个体得到了两个亲本的全部遗传物质,所以为异缘多倍体。但由于现在科学水平的限制,我们还不能控制新个体性状的表现。较常见的例子是“白菜—甘蓝”,同白菜相比,它具有生长期短、耐热性强和易储藏等优点。

机械工业绿色制造技术---现代制造技术试卷-答案

一、单选题【本题型共15道题】 1.以下不是资金申请报告必须的附件()。 A.项目备案或核准文件 B.项目环评批复文件 C.自有资金证明 D.新产品的鉴定或新产品用户使用意见 E.项目已开工的开工证明或已投入资金证明 用户答案:[D] 得分:3.00 2.以下哪些热处理工艺不属于高能束热处理()。 A.激光热处理 B.电子束热处理 C.离子束热处理 D.真空热处理 用户答案:[D] 得分:3.00 3.氮基气氛是以何种气体为基体并加入适量的添加剂制备而成的一种可控热处理气氛()。 A.氨气 B.氮气 C.氧气 D.氩气 用户答案:[B] 得分:3.00 4.以下哪个不是高能束热处理特点()。

A.加热速度快、生产效率高 B.工件变形小 C.控制精度高 D.硬化效果一般 用户答案:[D] 得分:3.00 5.在绿色制造实施过程中,绿色设计是关键,决定了()产品生命周期的全部消耗。 A.20~30% B.40~50% C.60~70% D.80~90% 用户答案:[D] 得分:3.00 6.下面关于刀具材料的要求,哪一项与干式切削加工的刀具要求不符?() A.高强度 B.高红硬性 C.耐热冲击性 D.自修复性 用户答案:[D] 得分:3.00 7.声波在传播过程中遇到障碍物时,在分界面处将处产生反射与投射,如果透射的声能与入射声能相比很低,则称该障碍物具有()性能。 A.吸声 B.隔声

C.消声 用户答案:[B] 得分:3.00 8.发达国家在报废汽车回收业已有几十年的发展历史,对报废汽车资源的再生利用和环境保护有明确的规定和要求,已形成了循环型的()。汽车的拆解技术成熟,工艺装备先进,机械化和自动化程度较高。 A.回收报废体系 B.回收利用体系 C.处理体系 D.利用体系 用户答案:[B] 得分:3.00 9.利用水的蒸发及空气和水的传热原理带走水中的热量、把循环水水温降低下来的设备,称为冷却构筑物,下列哪种构筑物应用最广:() A.水面冷却池 B.喷水冷却池 C.集水池 D.冷却塔 用户答案:[D] 得分:3.00 10.精密锻造技术主要应用领域,不包括()。 A.批量生产的零件,如汽车、摩托车、兵器、通用机械上的一些零件,特别复杂的零件 B.航空、航天工业的一些复杂形状零件,特别是一些难切削的复杂形状零件,难切削的高价材料零件 C.高性能、轻量化结构零件 D.批量生产的简单零件 用户答案:[D] 得分:3.00

《计算流体力学》结课作业解读

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

相关主题
相关文档 最新文档