当前位置:文档之家› 基于单片机的SPWM逆变器的控制技术的研究

基于单片机的SPWM逆变器的控制技术的研究

基于单片机的SPWM逆变器的控制技术的研究

基于单片机spwm逆变器的实现——硬件部分

毕业设计(论文)开题报告 题目:基于单片机SPWM逆变器的实现——硬件部分 院(系)电信学院 专业电气工程及其自动化 班级080411班 姓名谢韵遥 学号080411122 导师张立广 2012年02月27日

1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况) 在20世纪90年代,随着电力电子技术及电力半导体器件的飞速发展,国外发达国家大量推广采用用了逆变技术的电源。由此推动了各种工业技术的发展,也促进了逆变式电源的发展。在传统的逆变电源采用模拟控制无法克服固有缺点的情况下,人们越来越多地求助于数字化方案来减小控制电路的复杂程度,提高电源设计和制造的灵活性,同时采用更先进的控制方法来提高逆变电源系统的输出波形的质量和可靠性。因此,由模拟控制向数字控制的转变是逆变电源的发展趋势。 逆变器按激励方式可分为自激式振荡逆变和他激式振荡逆变,按输出波形可分为方波逆变器、阶梯波逆变器和正弦波逆变器等。正弦波逆变器输出的交流电压波形为正弦波,具有输出波形好、失真度低、对收音机及通讯设备干扰小、噪声低、保护功能齐全、整机效率高等优点,是国内外逆变器行业的研究重点。该类项目的研究已具有了较高的技术水平并已设计出相关产品,如基于各种系列单片机或DSP控制的SPWM逆变器等。从控制方法上来说,研究比较多的主要有:多环反馈控制、无差拍控制、状态反馈控制、重复控制、滑模变结构控制、模糊控制、神经网络控制等。 正弦波脉宽调制技术(SPWM)通过按一定的规律控制开关元件的通断,从而获得一组等幅而不等宽的矩形脉冲波形,用来近似正弦电压波。脉宽调制技术在逆变器中的应用,对现代电力电子技术、现代调速系统的发展起到了极大的促进作用。本设计是基于SA8281和80C51的逆变系统,具有电路简单、功能齐全、性能价格比高、可靠性好等优点。SA8281是MITEL公司推出的一种专用于三相SPWM波发生和控制的集成芯片,该SPWM波形发生器与微处理器接口方便,内置波形ROM及相应的控制逻辑,设置完成后可独立产生三相SPWM波形,只有当输出频率或幅值等需要改变时,才需微处理器的干预,微处理器只用很少的时机去控制它,因而有能力进行整个系统的检测、保护、控制等。

《单片机控制技术》实验指导书.docx

《单片机控制技术》实验指导书 实验一流水灯实验(左移右移方式) 一. 实验项目卡编号:59010115-01 二. 实验目的 通过此实验,让大家初步掌握左移位、右移位指令的使用。 三. 实验设备 1.S51E单片机学习开发板一块 2.PC微机一台 四. 实验步骤 1.打开编译软件伟煌MCS51开发系统。 2.编写源程序并进行调试。要求:小灯先向左依次移动8次,再向右依次移动7次,随后循环 前血的工作。 3.将S51E开发板连接到PC机上。 对应的89S51与LED引脚的连线为 4.打开开发板电源,用软件将调试好的程序下载至单片机屮,观察实验现象。 五. 实验参考稈序 ORG 0000H START: MOV A, #OFFH CLR C MOV R2, #08H LOOP: RLC A MOV Pl, A LCAI1 DELAY DJNZ R2, LOOP MOV R2, #07H L00P1: RRC A MOV Pl, A LCALL DELAY DJNZ R2, L00P1 JMP START DELAY: MOV R4, #200 DI: MOV R5, #248

DJNZ R5, $ DJNZ R4, DI RET END

实验二流水灯实验(利用查表方式) 一. 实验项目卡编号:59010115-02 二. 实验目的 通过此实验,让同学们掌握杏表指令的使用。 三. 实验设备 1.S51E单片机学习开发板一块 2.PC微机一台 四. 实验步骤 1?打开编译软件伟煌MCS51开发系统。 2.编写源程序并进行调试。要求:学习利用杏表方式,使小灯做舞台灯效果的变化,左移3 次,右移3次,闪烁3次,廷时时问为200毫秒。 3.将S51E开发板连接到PC机上。 对丿卫的89S51与LED引脚的连线为 4.打开开发板电源,用软件将调试好的程序下载至单片机屮,观察实验现象。 五. 实验参考程序 ORG 0000H MOV Pl, #00H MOV A, #00H START:MOV DPTR, STABLE LOOP: CLR A MOVC A, @A+DPTR CJNE A, #01H, L00P1 JMP START L00P1:MOV Pl, A MOV R3,#20 LCALL DELAY JMP LOOP DELAY:MOV R4,#20 DI: MOV R5,#248 DJNZ R5, $ DJNZ R4,D1 DJNZ R3, DELAY RET TABLE:DB OFEH, OFDH, OFBH, 0F7H DB OEFII, ODFII, OBFII, 07FII DB OFEH, OFDH, OFBH, 0F7H

逆变电源控制算法哪几种

https://www.doczj.com/doc/1315796247.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.doczj.com/doc/1315796247.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

基于DSP的SPWM控制法

第二节正弦波脉宽调制SPWM控制法 1.2.1 正弦波脉宽调制SPWM 逆变器结构 典型的交流-直流-交流逆变器的结构如图2-1-3所示。 图2-1-3:变压变频器主电路结构图 图2-1-3中,单相交流或三相交流供电经非控全波整流,变成单极性直流电压;该直流电压经有源或无源功率因素校正电路PFC(Power Factor Correct)得到直流母线电压 Udc,某些情况下功率因素校正电路可以省略。逆变器的核心电路是由六个功率开关器件Q1-Q6构成的三相逆变桥,每个桥有上下两个桥臂;上桥臂上端接直流母线电压正端(DC+),下桥臂下端接直流母线参考端(DC-);对于交流异步电机的驱动,为防止直通,上、下桥臂通常设置为互补工作方式:上桥臂导通时,下桥臂截止;下桥臂导通时,上桥臂截止。三桥臂中间输出接至负载:三相感应电机的UVW输入端。 功率开关器件Q1-Q6可以是晶闸管GTO,双极性功率晶体管BJT,金属氧化膜功率场效应管MOSFET,绝缘栅型双极性功率晶体管IGBT。 IGBT具有开关速度快、承载电流大、耐压高、管耗小等特点,在电源逆变器中得到最为广泛的应用。 对于感性负载(电机),为了保护IGBT,常需加续流二极管D1-D6,用以在开关管关断时形成电流回路。IGBT通常已与续流二极管封装在一起。 电容C用于能量缓冲,可保持直流母线电压Udc相对稳定。

为了在电机的UVW端线上输入三相平衡的交流电,通常做法是依一定规则用PWM信号PWM1L-PWM3H去控制逆变器的六个开关管的开关状态。 所谓的正弦波SPWM(Sinusoidally PWM)技术,就是用正弦波去调制PWM信号的脉宽,即:功率管的输出为一系列等幅不等宽的矩形脉冲波形,其宽度依正弦波规律变化;对交流输出波形的幅度对称性及相位要求不是非常苛刻的应用来说,PWM信号的频率通常保持不变。这种控制策略也叫异步控制法,即载波信号的频率独立于调制波频率。见图2-1-4。 SPWM也叫SWPWM(Sinusoidally Weighted PWM)。 图2-1-4 SPWM波形 图中:Udc --直溜母线电压; Um -- 正弦波基波的峰值,一般情况下,随t2比例变化; T,通常为一固定值; t1 -- PWM信号的周期 pwm t2 --正弦波基波的周期。 SPWM控制法的实现 SPWM控制法实现起来相对较为简单。 先产生一个在时间与幅度上都离散的单位正弦序列,也叫正弦表,90°,180°,360°皆可,并存储在程序空间里。这部分工作可借助于其他工具来完成,如Office Excel。 正弦表的角度分辨率由实际应用确定;对于一个完整的电周期(360°), 1024个点能满足大部分应用的需求。正弦波生成时,有效样本点越多,电压电流谐波越小,效果越好。

基于单片机控制的三相逆变电源

摘要 逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得的交流输出。随着电力电子技术的发展,逆变电源的应用越来越广泛,它横跨电力、电子、微处理器及自动控制等多学科领域,是目前电力电子产业和科研的热点之一。与此同时应用系统对逆变电源的输出电压波形特性也随之提出了越来越高的要求,因为电源的输出波形质量直接关系到整个系统的安全和可靠性指标。 随着数字信号处理技术的发展,以SPWM控制方式设计的逆变电源越来越受到青睐。本论文叙述的就是一种基于51系列单片机设计的SPWM逆变电源。给出了系统总体构成和主电路设计,介绍了SPWM产生器SA8282的结构特性和工作原理,SA8282全数字操作、工作方式灵活、频率范围宽、精度高功能强,可实现系统的智能化设计。文中详细介绍了采用单片机8051和SPWM产生器SA8282组成系统控制器的软硬件设计,实现了逆变电源输出电压闭环控制。实验表明,由SA8282为控制芯片的逆变电源结构简单、输出波形好、性能稳定可靠,适合于中、小功率的应用场合。 关键词:正弦脉宽调制(SPWM);SA8282;逆变电源;单片机

Abstract Inverter is a kind of using power electronic technology for electric power transformation device, it from ac or dc Input voltage of exchange obtained constant frequency output. With the development of the power electronic technology, the application of inverter power supply is more and more extensive, it across the electric power, electron, microprocessor and automatic control multi-disciplinary field, is one of the hotspots of the power electronics industry and scientific research. Meanwhile application system subsequently put the output voltage waveform characteristics of inverter power supply forward more and higher demand, because the power output waveform quality directly relates to the whole system safety and reliability index. Along with the digital signal processing technology development, the control mode design with SPWM inverter power supply more and more be favored,This article describes a SPWM inverter power supply based on the 51 series microcontroller,The three phase inverter of full digital control based on MCU 8051 and SPWM generator IC SA8282 is introduced in this paper,the system construction and main circuit design of inverter are given, the function feature and operation principle of SPWM generation IC SA8282 is described. the hardware and software design of controller implemented closed-loop of voltage by using AT89C51 and SA8282 is discussed in detail,experimental results shown the three phase output voltage waveform is quit good,the performance meets the demand. Keywords:SPWM;SA8282;inverter power supply;MCU

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

SPWM控制的变频调速

《交流调速》课程设计 -—SPWM变频调速系统 姓名 学号:1204010323 专业:电气工程 班级:电气五班

SPWM变频调速系统 摘要:变频调速是交流调速中的发展方向。异步电动机的调速原理是研究控制算法的基石,因文首先介绍了异步电动机的调速特性,从而展开介绍SPWM变频调速的理论基础.包括变频调速控制思想的由来,控制方法的可行性。变频调速的控制算法也有许多,目前大部分通用变频器所采用的控制算法——恒压频比控制,给出了完整的硬件电路设计和软件程序流程设计。本文采用了HEF4752波形控制电路产生SPWM信号具有电路简单、控制性能优良及高可靠性等特点。 关键词:变频器;恒压频比控制;正弦波脉宽调制:HEF4752控制电路。

目录 一概述------------------------------------------------------------- 1 1.1 SPWM变频调速系统概述---------------------------------------- 1 1.2变频调速的优点----------------------------------------------- 1 1.3 SPWM变频调速的优点------------------------------------------ 1 二 SPWM变频调速系统基本原理---------------------------------------- 2 2.1交流电动机变频调速原理--------------------------------------- 2 2.2 SPWM变频调速系统基本原理------------------------------------ 2 2.2.1单极性SPWM法------------------------------------------ 3 2.2.2双极性SPWM法------------------------------------------ 4 2.3 系统设计总方案的确定---------------------------------------- 6 三主电路设计------------------------------------------------------- 7 3.1主电路功能说明----------------------------------------------- 7 3.2 主电路设计-------------------------------------------------- 8 3.3 主电路电路图------------------------------------------------ 9 四控制电路设计----------------------------------------------------- 9 4.1 控制电路设计总思路------------------------------------------ 9 4.2 SPWM波形产生电路-------------------------------------------- 9 4.2.1 HEF4752芯片介绍--------------------------------------- 9 4.2.2 SPWM波形产生电路设计--------------------------------- 10 4.3 电压电流检测电路------------------------------------------- 11 4.4调节器设计-------------------------------------------------- 12 4.5 速度检测电路----------------------------------------------- 12 4.6保护电路设计------------------------------------------------ 12 4.6.1 过电流保护-------------------------------------------- 12 4.6.2 IGBT开关过程中的过电压保护--------------------------- 13 4.6.3 启动限流保护------------------------------------------ 13 五 SPWM变频调速系统总设计图--------------------------------------- 14

单片机控制的机器人

军第一航空学院张宏,王德合 引言 随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。这种技术促使机器人技术也有了突飞猛进的发展,目前人们已经完全可以设计并制造出具有某些特殊功能的简易智能机器人。 1 设计思想与总体方案 1.1 简易智能机器人的设计思想 本机器人能在任意区域内沿引导线行走,自动绕障,在有光源引导的条件下能沿光源行走。同时,能检测埋在地下的金属片,发出声光指示信息,并能实时存储、显示检测到的断点数目以及各断点至起跑线间的距离,最后能停在指定地点,显示出整个运行过程的时间。 1.2 总体设计方案和框图 本设计以AT89C5l单片机作为检测和控制核心。采用红外光电传感器检测路面黑线及障碍物,使用金属传感器检测路面下金属铁片,应用光电码盘测距,用光敏电阻检测、判断车库位置,利用PWM(脉宽调制)技术动态控制电动机的转动方向和转速。通过软件编程实现机器人行进、绕障、停止的精确控制以及检测数据的存储、显示。通过对电路的优化组合,可以最大限度地利用51单片机的全部资源。

P0口用于数码管显示,P1口用于电动机的PWM驱动控制,P2,P3口用于传感器的数据采集与中断控制。这样做的优点是:充分利用了单片机的内部资源,降低了总体设计的成本。该方案总体方案见图1。 2 系统的硬件组成及设计原理 此系统的硬件部分由单片机单元、传感器单元、电源单元、声光报警单元、键盘输入单元、电机控制单元和显示单元组成,如图2所示。 2.1 单片机单元 本系统采用AT89C51单片机作为中央处理器。其主要任务是扫描键盘输入的信号启动机器人,在机器人行走过程中不断读取传感器采集到的数据,将得到的数据进行处理后,根据不同的情况产生占空比不同的PWM脉冲来控制电机,同时将相关数据送显示单元动态显示,产生声光报警信号。其中,P0用于数码管动态显示,P1.0一P1.5控制2个电机,P1.6、P1.7为独立式键盘接口,P2接传感器,P3.2接计里程的光电码盘,P3.7接声光报警单元,P3.4、P3.5、P3.6接用于显示断点数目的发光二极管。

SPWM脉宽调制控制系统设计

SPWM脉宽调制控制系统设计 一、作品名称:SPWM脉宽调制控制系统设计 二、原理:脉宽控制技术(PWM)是非常重要的电力电子控制技术,对提高电力电子装置的性能,促进电力电子技术的发展有着巨大的推动作用。其中,正弦脉宽调制技术(SPWM)是应用最广泛的PWM 技术。 SPWM(Sinusoidal PWM)在高性能电机驱动、步进电机细分控制、变频电源、电力电子逆变控制等方面有重要的应用。特别是随着FPGA技术进入这一行业,使SPWM技术的应用更有了长足的进步,使其得到了更高效、更深入和更广泛的应用。 相对于空间矢量PWM、随机采样PWM、电流滞环PWM、自然采样PWM、等面积采样PWM或规则采样等方式的PWM,正弦采样的PWM在逆变控制等技术应用中,产生的谐波含量最小,因此应用也最广泛。数字方式产生SPWM 波的原理如图1-1所示,其中等腰三角波是载波,正弦波是调制波,当这两路信号经过一个数字比较器后输出图1-1下方的脉冲波形,即SPWM波。当正弦波大于三角波时,比较器输出1,反之输出0。三角波与正弦波的频率比称为载波比;它们的频率如果等比例增减则为同步调制方式,否则就是异步调制方式。载波频率通常为数十KHz,载波比为数百。图1-6是基于5E+系统的SPWM波发生器的基本电路图。其中PLL20输出两路时钟,一路C0,输出3.6MHz,为三角波信号发生器提供载波时钟;另一路C1输出200kHz,为正弦波调制信号提供时钟。CNT10B是10位计数器,其一为三角波发生模块TRANG提供递增数据。另一CNT10B是正弦波数据ROM的地址发生器。ROM10模块的数据可用生成的mif 生成器产生,深度是1024,数据宽度是10位。当下载图1-6的设计于5E+系统后,利用逻辑分析仪进行分析,看SignalTap II实测的波形与图1-1的波形是否有很好的对应关系。 图1-1 SPWM波生成原理图 三、步骤

逆变器的下垂控制

下垂控制的原理是什么。? 下垂控制是并网逆变器的常用控制原理,但是具体下垂控制的深层原理和物理含义是什么啊?查到的几乎所有的文献对此都是基于下垂控制XXXX、仿照同步发电机下垂特性XXXX,却没有一个真正说清楚仿照哪了,电机书上对同步发电机的下垂特性也没讲清楚其物理原理。向各位知乎大神求教,我看网上也有很多问这个的却没有一个回答说清楚的。 添加评论 分享 简单来说,所谓下垂控制就是选择与传统发电机相似的频率一次下垂特性曲线(Droop Character)作为微源的控制方式,即分别通过P/f下垂控制和Q/V下垂控制来获取稳定的频率和电压,这种控制方法对微源输出的有功功率和无功功率分别进行控制,无需机组间的通信协调,实现了微源即插即用和对等控制的目标,保证了孤岛下微电网内电力平衡和频率的统一,具有简单可靠的特点。—————————————————————————————————————————— 补充说一说。 学过电机学都知道,发电机有个功角特性曲线,其中凸极同步发电机的 无功功率表达式是: 有功 功率表达式: 我们可以看出,通过控制U和功角来控制有功功率P和无功功率Q。那么反过来, 可以通过控制有功功率P和无功功率Q来控制U和功角 所以, 微电网中的常规下垂控制是通过模拟传统发电机的下垂特性,实现微电网中微电源的并联运行。其实质为:各逆变单元检测自身输出功率,通过下垂特性得到输出电压频率和幅值的指令值,然后各自反相微调其输出电压幅值和频率以达到系统有功和无功功率的合理分配。 逆变器输出电压频率和幅值的下垂特性为:

其中w0,U0分别为逆变器输出的额定角频率,额定电压。kp,kq为逆变器下垂系数。P,Q 分别为逆变器实际输出的有功功率和无功功率。P0,Q0分别为逆变器额定有功和无功功率。 由上式我们可以得到三相逆变器常规的P-f 和Q-U 下垂控制框图。 注:常规下垂控制是在系统并联逆变器的输出端等效阻抗为大电感的条件下推导得到的。然而不同电压等级的连接线路对应不同的阻感比。 在电压等级较低的线路中,阻感比相对较高。 加之每个逆变器到交流母线的距离不同,线路越长,线路电阻越大,可能会导致线路电阻相对线路感抗较大,常规下垂控制已经不能满足低压微电网控制的需求。 所以就有了一种改进型功率耦合下垂控制策略。 因为低压微电网中线路阻抗的影响已经不能完全忽视,有功功率和无功功率对电压和频率的调节存在耦合关系。 逆变电源输出的有功功率P和无功功率Q可以写为: 单台逆变器到交流母线的功率传输示意图:

基于单片机的小功率逆变器的设计与实现

基于单片机的小功率逆变器的设计与实现 作者:朱立为蒋品群廖志贤 来源:《现代电子技术》2012年第04期 摘要:为了提高逆变器的整体性能,以STC12C5A60S单片机为核心,设计并实现了一个小功率逆变器。通过单片机直接产生脉宽调制波,控制功率开关器件组成的桥电路实现逆变。根据单片机对外部电位器上电压的采样值对输出电压的幅值进行控制,使得输出电压幅度可调。采用数/模电路结合设计,使得逆变器的体积大大减小。硬件上的功能模块化设计,使整个系统的检测性和操控性大大加强。该逆变器电路简单,工作稳定可靠,且易于升级,具有较大的推广应用价值。 关键词:逆变器;单片机;脉宽调制;功率开关器 中图分类号:; TM464文献标识码:A文章编号: (College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China) Abstract: ed and implemented. The SCM directly produces sinusoidal pulse width modulation (SPWM) wave to control the bridge circuit composed of power switching device to realize inverse transform. It can regulate the amplitude of the output voltage according to the voltage sampling value of the external potentiometer. A digilogue circuit was adopted in the design to make the size of the inverter reduced greatly. The modular design of hardware makes the whole system easy to test and manipulate. The inverter is simple, reliable and easy to upgrade. It has a popularization and application value. Keywords: inverter; SCM; SPWM; power switch 收稿日期: 基金项目:广西高校重点建设实验室项目(200912);广西研究生教育创新计划资助项目(2011106020809M50)0引言 逆变器是将直流电能变换成交流电能的电气装置,通常用大功率高反压电力电子器件来实现[1]。太阳能发电中,光电池阵列所发出的电为直流电。但是,大多数用电设备的供电为交流电,所以电力系统中常需要将直流电变换成交流电的逆变器。此外,逆变器在工业控制、

逆变器控制技术中国专利现状分析

逆变器控制技术中国专利现状分析 发表时间:2019-07-08T09:45:52.650Z 来源:《电力设备》2019年第4期作者:魏小凤郑植1 [导读] 摘要:可再生能源发电并网逆变器技术是近年来的发展热点,而逆变器技术中,其控制尤为重要,包括最大功率跟踪(MPPT)、能量变换、无功补偿与谐波抑制、故障穿越、孤岛等,因此,为了更全面了解我国逆变器控制技术的发展,本文针对可再生能源发电并网逆变器技术的国内专利进行了检索,并针对其控制技术进行系统分析,以期获得相关关键技术的发展现状,进而助力我国新能源的发展。 (国家知识产权局专利局专利审查协作天津中心天津 300300)摘要:可再生能源发电并网逆变器技术是近年来的发展热点,而逆变器技术中,其控制尤为重要,包括最大功率跟踪(MPPT)、能量变换、无功补偿与谐波抑制、故障穿越、孤岛等,因此,为了更全面了解我国逆变器控制技术的发展,本文针对可再生能源发电并网逆变器技术的国内专利进行了检索,并针对其控制技术进行系统分析,以期获得相关关键技术的发展现状,进而助力我国新能源的发展。 关键词:可再生能源发电;并网逆变器;控制引言 在当今能源紧缺的严峻形式下,光伏风力等可再生能源并网发电技术已经成为不少国家大力发展的一项技术,而逆变器是其中的关键技术[1-2],分析逆变器控制技术的发展现状非常有必要。 本文针对可再生能源发电并网逆变器技术的国内外专利进行了检索,本次检索在德温特世界专利索引数据库(DWPI)中进行,检索截止日期为2018年8月21日,得到3655篇关于逆变器技术的专利申请。按照技术原创国将在华专利申请分为中国专利申请和国外来华专利申请,从控制技术方面对中国发明专利申请和国外来华专利申请进行了标引,分别从各技术分支占比以及申请趋势两方面对中国专利申请和国外来华专利申请进行对比分析,以期根据二者的差异性,得到相关的结论。 1各技术分支占比图1、2分别示出了中国专利申请和国外来华专利申请的逆变器控制分支占比。根据图1、2可以看出,二者的重点均放在MPPT、能量变换控制以及无功补偿与谐波抑制三个分支上,且国外来华专利申请中,MPPT占比稍大,而中国专利申请中,能量变换控制占比稍大,无功补偿与谐波抑制占比二者相当。其次,关于故障穿越以及孤岛检测技术方面,二者均占比较小。 2各技术分支申请趋势图3、4分别示出了中国专利申请和国外来华专利申请的逆变器控制分支专利申请趋势,由图3、4可知,中国的专利申请的各控制技术分支申请量从2011年开始到2014年为增长趋势,到2015年各分支申请量均大幅降低,从2015至2017年呈上升且波动变化;而国外来华专利申请中各拓扑技术分支从2009年到2011年为增长趋势,自2011年以后为下降波动趋势。可见,单从趋势上来看,国外关于逆变器各控制分支相关技术早于中国。而在具体到各控制技术分支中时,MPPT、能量变换控制以及无功补偿与谐波抑制是三个最受关注的研究分支。MPPT注重于发出能量的最大化,能量变换控制侧重于能量转化的效率,而无功补偿与谐波抑制则是可再生能源发出的电能能够并网到大电网系统中的基础性的关键技术,只有通过有效的无功补偿控制并滤除谐波才能将稳定性相对很差的可再生能源发出的电能馈送到电网系统当中,因此,无论是国内还是国外的申请人都在无功补偿与谐波抑制方面给予了相当的重视,国内申请人的申请量在近几年的攀升势头更是十分强劲。

单片机控制技术

单片机控制技术 单片机控制技术随着材料科学、工艺技术、计算机技术的发展与进步,电路系统向着集成度极高的方向发展。CPU的生产制造技术,也朝着综合性、技术性、实用性发展。如CPU的运算位数从4位、8位…到32位机的发展,运算速度从8 MHz、32 MHz…到1.6GHz。可以说是日新月异的发展着。其中单片机在控制系统中的应用是越来越普遍了。单片机控制系统是以单片机(CPU)为核心部件,扩展一些外部接口和设备,组成单片机工业控制机,主要用于工业过程控制。要进行单片机系统设计首先必须具有一定的硬件基础知识;其次,需要具有一定的软件设计能力,能够根据系统的要求,灵活地设计出所需要的程序;第三,具有综合运用知识的能力。最后,还必须掌握生产过程的工艺性能及被测参数的测量方法,以及被控对象的动、静态特性,有时甚至要求给出被控对象的数学模型。 单片机系统设计主要包括以下几个方面的内容:控制系统总体方案设计,包括系统的要求、控制方案的选择,以及工艺参数的测量范围等;选择各参数检测元件及变送器;建立数学模型及确定控制算法;选择单片机,并决定是自行设计还是购买成套设备;系统硬件设计〔1〕,包括接口电路,逻辑电路及操作面板;系统软件设计,包括管理、监控程序以及应用程序的设计,应用系统设计包含有硬件设计与软件设计两部分〔2〕;系统的调试与试验。 1单片机控制系统总体方案的设计 确定单片机控制系统总体方案,是进行系统设计最重要、最关键的一步。总体方案的好坏,直接影响整个控制系统的性能及实施细则。总体方案的设计主要是根据被控对象的任务及工艺要求而确定的。设计方法大致如下:根据系统的要求,首先确定出系统是采用开环系统还是闭环系统,或者是数据处理系统。选择检测元件,在确定总体方案时,必须首先选择好被测参数的测量元件,它是影响控制系统精度的重要因素之一。选择执行机构,执行机构是微型机控制系统的重要组成部件之一。执行机构的选择一方面要与控制算法匹配,另一方面要根据被控对象的实际情况确定。选择输入/输出通道及外围设备。选择时应考虑以下几个问题:被控对象参数的数量;各输入/输出通道是串行操作还是并行操作;各通道数据的传递速率;各通道数据的字长及选择位数;对显示、打印有何要求;画出整个系统原理图。 单片机控制系统中控制算法的选用一般有: (1) 直接数字控制 当被控对象的数学模型能够确定时,可采用直接数字控制。所谓数学模型就是系统动态特性的数学表达式,它表示系统输入输出及其内部状态之间的关系。一般多用实验的方法测出系统的特性曲线,然后再由此曲线确定出其数学模型。现在经常采用的方法是计算机仿真及计算机辅助设计,由计算机确定出系统的数学模型,因而加快了系统模型的建立。当系统模型建立后,即可选定上述某一种算法,设计数字控制器,并求出差分方程。计算机的主要任务就是按此差分方程计算并输出控制量,进而实现控制。

单片机控制技术实训计划_1603电气技术

“单片机控制技术实训”计划 一、实训时间及地点 时间:2017年12月25日----12月29日(1周25课时) 地点:实训楼A407 二、实训班级及人数 实训班级:1603电气技术 班级人数:29人 三、实训目的 本实训是基于单片机开发工具及开发板的综合能力实训,通过3个实训项目的学习、分析、设计和制作,达到能够掌握单片机应用的一般方法和步骤,掌握单片机开发工具的应用,提高单片机C语言的应用能力,培养单片机应用设计和制作所需要的知识、职业技能和职业素养,培养单片机应用的方案设计能力、硬件电路和应用软件设计能力、调试检测能力,为学生进行毕业设计、专业实习作好准备。 四、实训内容 1. 一路模拟电压检测器设计 任务主要内容: 采用AT89S51单片机的I/O口,选用PCF8591串行模数转换器,采用C语言编程,设计一路模拟电压检测器,显示班级和学号。 工作学习过程要求: 1.单片机并口共用、LED数码管动态显示及AD转换器知识和案例学习,画出电路图,编写源程序。 2.运行验证:加载程序运行演示。 2. 1602液晶显示器设计 任务主要内容: 采用AT89S51单片机的I/O口,选用1602液晶显示器,采用C语言编程,设计字符型液晶显示器,显示班级、姓名和学号,并能移动显示。 工作学习过程要求: 1.单片机控制1602字符型液晶显示器案例学习,画出电路图,编写源程序。 2.运行验证:加载程序运行演示。 3. 液晶显示数字电压表设计 任务主要内容: 采用AT89S51单片机的I/O口,选用PCF8591串行模数转换器及液晶显示器,采用C 语言编程,设计数字电压表,显示电压、班级和学号。 工作学习过程要求: 1.单片机并口共用、液晶显示及AD转换器知识和案例学习,画出电路图,编写源程序。 2.运行验证:加载程序运行演示。

基于MCU控制的逆变电源的设计与实现

苏州大学 硕士学位论文 基于MCU控制的逆变电源的设计与实现 姓名:冯建卿 申请学位级别:硕士 专业:电子与通信工程 指导教师:王加俊 2010-12

基于MCU控制的逆变电源的设计与实现中文摘要基于MCU控制的逆变电源的设计与实现 中文摘要 随着我国经济水平的不断提高,汽车已经走进了千家万户,有车一族在户外需要使用的电子产品越来越多,最常见的就是手机、笔记本电脑、MP3播放器等等。因此一种新颖的车载电器——车载逆变器开始迅速走红,在欧美国家,车载逆变器已经成为每辆汽车的必备品。据统计,国内配备逆变器的车辆还不足20%,因而车载逆变器在国内有很大的市场前景。 本文设计了一种基于MCU控制的车载逆变电源,具有数码显示功能,产品出现的一些典型故障都可以读出,使得用户可以有针对性的去排除故障,保护车内的蓄电池不受到损坏,确保汽车可以正常地启动,该电路使用功率开关把输入的直流电压转变成脉宽调制的交流电压,然后利用推挽拓扑结构电路和高频变压器把交流电压升高,再用全波整流把交流电压转换成直流,最后由全桥变换器把高压直流逆变成所需的交流电。出于对产品安全性的考虑在设计的过程中增加了输入欠压、过压保护,输入反接保护,输出过功率,输出短路保护,过温保护。经过反复的调试以及对其优化设计,电源基本达到各项设计指标,达到转换效率高、噪音小、体积小,能提供稳定、可靠的电源。但是还有一些不足,有待进一步优化设计,例如输出波形有待优化为标准正弦波,使其适用的负载更加广泛。 关键词:逆变电源PWM高频变压器 作者:冯建卿 指导教师:王加俊

Abstract Design of Power Inverter based on MCU Control Design of Power Inverter based on MCU Control Abstract With the continuous improvement of our economy,cars have came in the house,car owners need to use more and more electronic products in outdoor,the most products are the cell phones、laptops、MP3players and so on.Therefore,a novel electric car board--power Inverter became popular,In European and the America country,power inverter has become a necessity part in the car.According to statistics,less than20%car owners using the power inverter in china,so car inverter have great market prospects in the China. This paper designs a based on MCU control car inverter power supply with digital display,the product can read some typical breakdown,so users can troubleshoot targeted to protect the car's battery cannot be damaged,ensure that the car can start,power switch transfer the input DC voltage to pulse width modulation AC voltage,then use push-pull circuit topology with high-frequency transformer increase the AC voltage,then with full-wave rectifier to convert AC voltage into DC voltage,and finally converter the high DC voltage to AC voltage by the full bridge converter.To avoidthe safety issue,during the design progress,several protection circuits are added like the input under voltage、over voltage protection,polarity protection,output over power protection、short circuit protection、over temperature protection.After much debugging and optimization of the design,the power inverter can achieve the design specifications,achieve high efficiency, low noise,small size,can provide stable,reliable power supply.But this power inverter also has some deficiencies,need to do further research,for example,the output wave need to be optimized to standard sine wave so that the load can be applied more widely. Keywords:Power Inverter PWM High-frequency transformer Written by:Feng Jianqing Supervised by:Wang Jiajun

相关主题
文本预览
相关文档 最新文档