当前位置:文档之家› 液压与气压传动 滑动水口液压系统设计

液压与气压传动 滑动水口液压系统设计

液压与气压传动 滑动水口液压系统设计
液压与气压传动 滑动水口液压系统设计

液压与气压传动

三级项目报告

项目名称:滑动水口液压系统设计姓名:

指导教师:

日期:

摘要

滑动水口(Sliding Nozzle,简称SN)系统是冶炼中不可缺少的部分。它是连铸机浇铸过程中钢水的控制装置,能够精确地调节从钢包到连铸中间包的水流量,使流入和流出的钢水达到平衡,从而使连铸操作更容易控制。滑动水口系统因其可控性好,能提高炼钢生产效率而得到了迅速发展。现在,在钢包、中间包上国内外普遍使用了滑动水口系统。

大包滑动水口液压回路控制大包滑动水口的开闭,而大包滑动水口是连铸的关键设备之一,该文简要阐述了大包滑动水口的组成及工作原理,并详细介绍了根据工艺要求来设计的液压回路。主要包括系统的设计与计算以及元件的选型,该系统要使滑动水口在一定负载下按给定速度打开与闭合,并能实现点动,以控制水口开度的大小,从而控制钢水流下的速度,同时考虑到突然停电的情况,系统中设置了蓄能器,使系统在泵停止工作时,滑动水口仍能开关两到三次,从而防止钢水在钢包中冷却凝固。关键字:滑动水口液压系统

目录

摘要----------------------------------------------------------------------------------------- 2

一、前言 ------------------------------------------------------------------------------------ 5

1.1滑动水口------------------------------------------------------------------------- 5

1.1.1滑动水口的工作原理 ----------------------------------------------- 5

1.1.2滑动水口的组成------------------------------------------------------ 6

1.1.3滑动水口分类--------------------------------------------------------- 6

1.2液压传动与液压系统概述 ------------------------------------------------- 8

1.2.1液压系统工作原理 ------------------------------------------------- 9

1.2.2液压系统的结构 ---------------------------------------------------- 9

二、系统设计及参数计算----------------------------------------------------------- 10

2.1.1计算工作负荷------------------------------------------------------- 10

2.1.2摩擦及惯性负荷---------------------------------------------------- 10

2.1.3运动时间 ------------------------------------------------------------- 10

2.1.4各工况负载 ---------------------------------------------------------- 11

2.2确定液压缸基本参数------------------------------------------------------- 11

2.2.1初选系统压力------------------------------------------------------- 11

2.2.2计算液压缸主要尺寸 --------------------------------------------- 12

2.3拟定液压系统图 ------------------------------------------------------------- 14

2.3.1选择基本回路------------------------------------------------------- 14

2.3.1.1调速回路---------------------------------------------------- 14

2.3.1.2油源形式的确定 ------------------------------------------ 16

2.3.1.3锁止回路的确定 ------------------------------------------ 16

2.3.1.4系统图的最终确定 --------------------------------------- 18

2.3.1.5液压系统原理图分析 ------------------------------------------ 22

2.4液压辅件的选择 ------------------------------------------------------------- 25

2.4.1选择液压泵及驱动电机 ------------------------------------------ 25

2.4.1.1确定液压泵最大工作压力------------------------------ 25

故:

MP

P

P

P

p

5.5

5.0

5

1

=

+

=

?

+

=

-------------------------------------- 25

2.4.1.2确定液压泵的流量 --------------------------------------- 25

2.4.1.3选择液压泵型号 ------------------------------------------ 26

2.4.1.4确定驱动液压泵的功率 --------------------------------- 26

2.4.2控制阀的选择------------------------------------------------------- 26

2.4.2.1先导式溢流阀---------------------------------------------- 26

2.4.2.2换向阀------------------------------------------------------- 26

2.4.2.3调速阀及液控单向阀 ------------------------------------ 27

2.4.4管道的选择 ---------------------------------------------------------- 27

2.4.4.1管道内径的计算 ------------------------------------------ 27

2.4.4.2管道的选择------------------------------------------------- 29

2.5确定油箱容量 ---------------------------------------------------------------- 29

2.6过滤系统的设计 ------------------------------------------------------------- 30

2.6.1过滤器的位置设置------------------------------------------------- 30

2.6.2过滤器精度的选择------------------------------------------------- 30

2.6.3过滤器尺寸的确定------------------------------------------------- 30

2.7液压油的选用 ---------------------------------------------------------------- 31

2.8液压系统的性能验算------------------------------------------------------- 31

三、结论 ---------------------------------------------------------------------------------- 31

3.1项目的主要工作 ------------------------------------------------------------- 32

3.2主要结果----------------------------------------------------------------------- 32

3.3未来规划----------------------------------------------------------------------- 32

3.4心得感受----------------------------------------------------------------------- 33

一、前言

1.1滑动水口

滑动水口的设计早在1884年就由美国人D. Lewis提出构思并申请了专利,后来也有不少类似的专利,但均因材质不过关而未能实现。直到1964年,西德本特勒钢铁公司在22T钢包上,采用滑动水口装置代替塞棒系统进行浇钢,首次获得成功,并迅速推广到许多国家。

随着快速、高效连铸和二次精炼技术及工艺的发展,滑动水口(Sliding Nozzle,简称SN)系统在现代钢铁冶炼过程中变得越来越重要,成为冶炼中不可缺少的部分。它是连铸机浇铸过程中钢水的控制装置,能够精确地调节从钢包到连铸中间包的水流量,使流入和流出的钢水达到平衡,从而使连铸操作更容易控制。滑动水口系统因其可控性好,能提高炼钢生产效率而得到了迅速发展。现在,在钢包、中间包上国内外普遍使用了滑动水口系统。

1.1.1滑动水口的工作原理

所谓滑动水口,就是利用安装在钢包底部铁壳外面的两块用耐火材料制成的平板(上面的称上滑板,下面的称下滑板),并依靠机械的力量把两块板靠紧,达到近乎没有间隙的程度。通过外下滑板注孔连接下水口砖。当上、下注口在移动中重合时,钢包内钢水,可通过上水口砖、上滑板、下滑板、下水口砖流出进行浇注作业。当上、下注孔错开时,则注口关闭,浇注作业停止。由于滑板的移动是和水口连接在一起进行的,所以称之为滑动水口。

滑动水口的驱动方式可分为:人力驱动、液压驱动、电动缸

驱动、风动缸驱动。钢水包滑动水口液压系统设计来源于某工厂的实际工程,鉴于钢包的高温和恶劣的工作环境以及随着钢包的不断增大,使人为控制滑动水口越来越困难,从而诞生了液压驱动的滑动水口机构。该系统的诞生与应用提高了生产效率,方便了工人操作,调高了钢厂自动化水平。在实际生产中,滑动水口开度需经常调整,动作比较频繁,如果压力不足,水口无法打开或关闭,除无法浇铸生产外,更严重的是,在浇铸中因事故停浇时,大包水口若不能关闭,将使中间包溢钢而烧毁设备,甚至会造成人身伤亡事故发生。因此,设计合理可靠的大包滑动水口液压系统非常重要。

1.1.2滑动水口的组成

滑动水口一般由驱动装置、机械部分和耐火材料部分(即上下滑板、下水口)组成,耐火材料由座砖、上水口座、上滑板、下滑板、下水口砖组成。

1.1.3滑动水口分类

(1)按滑板移动方式分为:

①往复式(我国滑动水口都是这种形式)它又可分为:

(1)单水口往复式:上下滑板直线、往复平行移动。

(2)双水口往复式:即下滑板上安装两个不同口径的注口,轮换使用,我国马鞍山钢厂也曾使用和开发过此种水口,只是使用的气压弹簧和国外不同。

(3)单水口、双面往复式:有效利用滑板,延长了滑板使用时间。

(4)三滑板往复式:用于连铸中间包,上、下滑板不动,只动中间滑板。

②旋转式滑动水口

上下滑板圆弧形、旋转移动,分别在钢包、中间包(定径多水口)、出钢口及特殊用途 (主要用于有色金属精密配料上,作为流量控制,其直接安装在炉壁内衬中)上使用。

(2)按施加面压的方法分

①弹性机构,弹性机构是利用弹簧的力量,对上、下滑板施加面压。

(1)美国弗洛康式:弹簧安装在下水口周围下滑板下面。

(2)瑞士英特斯特普式:用 4个带弹簧的螺栓与开闭框架连接,压紧滑板。

(3)瑞士的梅塔肯式:整体组装螺栓上有加压弹簧。

(4)日本 N KK旋转式:靠安装在开闭框架上的弹簧螺栓与开闭框架相连。

(5)日本呙川三菱一梅塔肯式系列:利用固定框架上加压螺栓与开闭框架相连。

(6)日本新日铁和黑崎密业开发的 YP系列滑动水口:有螺栓加压杠杆加压、风动板手加压、油缸预加压和挂钩后加压并用等。

②刚性机构

我国因弹簧生产始终不能满足安全需要,因此国内使用的大多是刚性结构,但刚性结构,弊病较多,大都是用大螺母加压,加一些微调。逐渐处于淘汰状态。

(3)按驱动方式分

①人力驱动:我国有些中小钢厂滑动水口仍用人力驱动。

②液压驱动:利用液压站,通过液压油缸进行驱动,在国内和国外应用较为普遍。

③电动缸驱动:利用电动缸在钢包上驱动,电源由吊车送下插头

和钢包上电动缸相接通即可驱动,宝钢目前用此方法。电动缸驱动为国内今后的发展方向,这是因为我国液压密封件质量不过关,不能保证长时间的安全使用。

④风动缸驱动:利用压缩空气连在钢包的气动缸上,就可以驱动,现只在停电时偶尔驱动。

1.2液压传动与液压系统概述

液压由于其传动力量大,易于传递及配置,在工业、民用行业应用广泛。在各部件制造中,对密封性、耐久性有很高的技术要求,目前在液压部件制造中已广泛采用——滚压工艺,很好的解决了圆度、粗糙度的问题。特别是液压缸制造中广泛应用。液压工具可以解决液压制造各种问题。当前,液压技术在实现高压、高速、大功率、高效率、低噪声,经久耐用,高度集成化等各项要求方面都取得了重大的发展,在完善比例控制,伺服控制,数字控制等技术上也有许多新成就。此外,在液压元件和液压系统的计算机辅助设计,计算机仿真和优化等开发性工作方面,日益显示出显著的成绩。

今天,为了和最新技术的发展保持同步,液压技术必须不断创新,不断地提高和改进元件和系统的性能,以满足日益变化的市场需求。

液压工业在国民经济中的作用实在是很大的,它常常可以用来作为衡量一个国家工业水平的重要标志之一。与世界上主要的工业国家相比,我国的液压工业还是相当落后的,标准化的工作有待于继续做好,优质化的工作须形成声势,智能化的工作则刚

刚在准备起步,为此必须奋起直追,才能迎头赶上。

1.2.1液压系统工作原理

液压系统最基本的原理就是液体内部压强处处相等。利用油泵产生一定内部压力的液态油,通过液压管路传送到液压执行元件,比如液压油缸,高压油作用在活塞上,使得活塞两端压力不平衡,于是活塞运动做功,高压油也可以作用在周向布置的叶片上,带动叶片轴旋转,这就是油马达。液压系统就是传送压强的装置,液压油是压强传送的载体,具有一定压强的液体作用在一定大小的面积而产生作用力,该作用力驱动零件运动。

1.2.2液压系统的结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。

液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。

图1.1液压系统结构

二、系统设计及参数计算 主要参数如下:

负载力 KN 负载质量 Kg 静摩擦力 N 动摩擦力 N 往返加减速时间s 前进速

度 mm/s 回程速

度 mm/s 行程

mm

主缸 20 500 4000 2000 0.2 20 30 200

2.1负荷与运动分析

2.1.1计算工作负荷

工作负载:F R =20KN

2.1.2摩擦及惯性负荷

惯性负载:N m t v

F m 25050010050

==??

=

静摩擦力:N F 4000=静

动摩擦力:N F 2000=动

2.1.3运动时间

工进时间: s t 1020

200==

退回时间: s t 67.630200== 2.1.4各工况负载

液压缸在各工作阶段的负载 工况 计算公式

液压缸负载

F/N 液压缸推力

N F m /η

起动

静F 4000 4444 加速

m F F +动 2250 2500 快进

动F 2000 2222 工进

动F F R + 22000 24444 反向起动

静F 4000 4444 加速

m F F +动 2250 2500 快退

动F 2000 2222 制动 m F F -动

1750 1944

2.2确定液压缸基本参数

2.2.1初选系统压力

系统压力选定得是否合理,直接关系到整个系统设计的合理程度。在液压系统功率一定的情况下,若系统压力选得过低,则液

压元、辅件的尺寸和重量就增加,系统造价也相应增加;若系统压力选得较高,则液压设备的重量、尺寸会相应降低。 表2-1 按载荷选择工作压力 载荷

/KN < 5 5~10 10~20 20~30 30~50 > 50 工作压力/MPa < 0.8~1 1.5~

2 2.5~

3 3~

4 4~

5 ≥5

由于液压缸的最大推力为24444N ,初选液压缸的工作压力Mpa P 51= 2.2.2计算液压缸主要尺寸

在回油路上要装有节流调速回路,初选背压。

(1)液压缸背压选取

表2-2背压经验数据

回路特点 背压(MPa )

回路特点 背压(MPa ) 回路上设有节流阀 0.2-0.4 采用补油泵的闭式回路

1-1.5 回路上有背压阀或调速阀 0.4-1.5

初选背压: MP P 12=

(2)液压缸杆径比的选取

表2-3按工作压力选取/d/D

工作压力/MPa ≤5.0

5.0~7.0 ≥7.0 d/D 0.5~0.55 0.62~0.70 0.7

表2-4按速比要求确定/d/D 21/v v

1.15 1.25 1.33 1.46 1.61 2 D d / 0.3 0.4 0.5 0.55 0.62 0.71

1v -无杆腔进油时活塞运动速度,2v -有杆腔进油时活塞运动速度。根据表2-3和表2-4,选择杆径比:55.0/=D d ,故d=0.55D F A P A P m =?-η)(2221

22252111060.010)2/1050(9.024444)

2/(m m P P F A m -?=?-?=-=η mm A D 87106.0442

1=??=-ππ 表2-5液压缸内径系列(单位:mm )

8 10 12 16

20 25 32 40

50 63 80 100

125 160 200 250

320 400 500

表2-6 活塞杆直径系列 (单位:mm)

4 18 4

5 110 280

5 20 50 125 320

6 22 56 140 360

8 25 63 160 400

10 28 70 180

12 32 80 200

14 36 90 220

16 40 100 250

按标准取D=100mm ,则d=0.55D=55mm,圆整为d=56mm.液压缸无杆腔和有杆腔的实际有效工作面积1A 、2A 分别为:

222217941004cm mm D A =?==

ππ 222222254)56100(4

)(4cm mm d D A =-=-=π

π

反过来计算液压缸的工作压力1P 为:

MPa A A P F P m 12.410

109.710104.510109.0/24444/636

351221=??????+=+=--η

2.3拟定液压系统图

2.3.1选择基本回路

2.3.1.1调速回路

(1)进口节流调速回路:

图2.7回油节流调速回路

这种调速回路是将节流阀安放在定量泵和液压缸之间,如图

2.7所示。在相

应与泵出口压力为溢流阀的调定压力时,调整节流口面积的大小,能使液压缸从全速到接近零速之间实现无极调速(最低可调速度取决于最小稳定流量)。这种形式调速范围较宽,调速比可达100以上。存在的主要问题是:在调速阶段泵的出口压力过高,节流和溢流损失的能量较多,尤其实在轻载低速情况下更为明显,造成系统发热和效率降低,节流的热油直接进入执行元件使内漏增加;外负载的变化影响主油路和旁油路流阻相对平衡,故速度调节的稳定性差;进口节流调速不宜与负载较重、速度较高和负载变化较大场合,且液压缸五背压,不能承受负值载荷,运动不平稳,易产生振动和爬行,应用较小。

(2)回油节流调速回路:

图2.8回油节流调速回路

这种调速回路是将节流阀放在回油路上,用它来控制从液压缸流回油腔流出流量,从而也就控制了进入液压缸的流量,从而也就控制了流入液压缸的流量,从而也就控制了液压缸的速度,如图2.5所示。回油节流调速回路与进口节流调速比较有以下优点:可承受负向载荷(即和运动方向相同的负载),缸有背压,空气不易渗入,运动平稳;油液通过节流阀发热后直接流回油箱冷却,温升较小,可减少对系统泄漏的影响。缺点是回油腔压力高,能量损失大,而且系统高压区的范围扩大,因此对液压缸,管路强度及防泄漏要求都较高,尤其在承受负值载荷的情况下,背压2P 有可能大于1P 值甚至超过系统调定压力。这就需要提高背压区的结构强度和密封性能,此外,速度调节的稳定性亦受外负载变化的影响,波动较大。与进油节流调速一样,一般适用于小功率,负载变化不大的液压系统。但由于运动较进油节流调速平稳,应用亦较之多。

2.3.1.2油源形式的确定

压系统油路循环形式有开式和闭式两种。这主要取决于系统的调速方式:节流调速、容积节流调速只能采用开式系统,容积调速回路多采用闭式系统。故本系统采用开式系统。在一个工作循环过程中,系统只有一小部分时间处于高压小流量下工作,故可选用单向定量油泵即可满足使用要求。

2.3.1.3锁止回路的确定

锁紧回路可使液压缸活塞在任意位置停止,并可防止其停止后窜动。三位四通换向阀中位0型或M 型滑阀机能可以使活塞杆

在形成范围内任何位置停止,但由于滑阀的泄漏,能保持停止位置不动的性能不高,而本系统涉及安全问题,对锁紧要求较高,因而用泄漏较小的座阀结构液控单向阀作为锁紧元件。在液压缸两侧油路上串接液控单向阀,换向阀中位时活塞可以在行程的任何位置锁紧。

采用换向阀可以使执行元件换向,三位换向阀有中位,不同的中位滑阀机能可使液压系统获得不同的性能。本系统采用三位换向阀实现液压缸的换向,并采用Y型中位机能,因为换向阀中位时希望液控单向阀的控制油路立即失压,单向阀才能关闭,定位锁紧精度高。如图2.9所示。

图2.9 用液控单向阀的锁紧回路

(5)蓄能器回路的确定:

考虑到突然停电的情况,系统中设置了蓄能器,使系统在泵停止工作时,滑动水口仍能开关两到三次,从而防止钢水在钢包中冷却凝固。蓄能器作为辅助液压源使用。换向阀、单向阀、蓄能器组成的蓄能器回路如下所示。

图2.10 蓄能器回路

2.3.1.4系统图的最终确定

CAXA绘图

图纸与明细表:

钢包滑动水口操作规程

仅供参考[整理] 安全管理文书 钢包滑动水口操作规程 日期:__________________ 单位:__________________ 第1 页共4 页

钢包滑动水口操作规程 1、火泥使用前需密封困料大于一小时,要求火泥塑性及软硬度适中,搅拌均匀,无杂质掺入。 2、安装上水口时,座砖内腔内杂物要清理干净,试装合适后用火泥将上水口柱体周围涂抹均匀、厚度适中,用专用工具将上水口平端,放入座砖内腔,要求周围间隙均匀,装入到位,端面应比底座滑板腔底平面低1-2mm。 3、对于新上线的钢包,无需烘烤3-4小时后方可安装上水口及透气砖;对于正常周转的钢包,无需烘烤,等火泥干燥上水口固定后,在安装滑板,在保证泥缝饱满的情况下,上滑板与上水口间火泥尽量少,以避免出现上水口受压向内移动。 4、要求滑板板面光洁、无污物,严禁上、下滑板混用错装。 5、清理上水口及滑板腔内的泥料残渣要认真,力度适中,避免因用力过度而损坏上水口断面,确保残泥清理干净,机构腔内杂物要清理干净。 6、保持上水口子口端面完整、仔细观察上水口使用情况、根据使用情况适当增加泥料量且泥料硬度适中。 7、先将下滑板放入滑盒腔内,将涂好泥料的上滑板轻置入机构底座腔内、扶正并用力拍孔径周围,确保子母口配合紧密,推出连杆,迅速滑动小车抬起,拉倒开浇位置,插上安全销。 8、用钢带将上水口与上滑板间残泥压平刮干净后方可安装下水口。 9、横端水口套,将抹好泥的下水口一并用力旋入,套上专用工具打紧,注意下水口安装位置端正。 10、清理孔内泥料时,严禁直接开气吹,以免高压气流将接缝处火 第 2 页共 4 页

泥吹走,尤其是上水口在使用到中后期。 11、采用包体支座,严禁钢包体后端下倾,易造成滑板组装时,上滑板与上水口分离,泥料进而偏离脱落,造成事故隐患。 12、更换上水口时,严禁损坏座砖。 13、每次操作时须观察机构,注意以下问题:框架与底座应紧密结合,调节压板,使弹簧始终处于正常工作压力,正常组装后框架与底座平面间隙为7-9mm,不符合时,拆后重新装配。 14、机构各部件及时检测,及时更换。 第 3 页共 4 页

钢包滑动水口操作规程(通用版)

钢包滑动水口操作规程(通用 版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0408

钢包滑动水口操作规程(通用版) 1、火泥使用前需密封困料大于一小时,要求火泥塑性及软硬度适中,搅拌均匀,无杂质掺入。 2、安装上水口时,座砖内腔内杂物要清理干净,试装合适后用火泥将上水口柱体周围涂抹均匀、厚度适中,用专用工具将上水口平端,放入座砖内腔,要求周围间隙均匀,装入到位,端面应比底座滑板腔底平面低1-2mm。 3、对于新上线的钢包,无需烘烤3-4小时后方可安装上水口及透气砖;对于正常周转的钢包,无需烘烤,等火泥干燥上水口固定后,在安装滑板,在保证泥缝饱满的情况下,上滑板与上水口间火泥尽量少,以避免出现上水口受压向内移动。 4、要求滑板板面光洁、无污物,严禁上、下滑板混用错装。 5、清理上水口及滑板腔内的泥料残渣要认真,力度适中,避免

因用力过度而损坏上水口断面,确保残泥清理干净,机构腔内杂物要清理干净。 6、保持上水口子口端面完整、仔细观察上水口使用情况、根据使用情况适当增加泥料量且泥料硬度适中。 7、先将下滑板放入滑盒腔内,将涂好泥料的上滑板轻置入机构底座腔内、扶正并用力拍孔径周围,确保子母口配合紧密,推出连杆,迅速滑动小车抬起,拉倒开浇位置,插上安全销。 8、用钢带将上水口与上滑板间残泥压平刮干净后方可安装下水口。 9、横端水口套,将抹好泥的下水口一并用力旋入,套上专用工具打紧,注意下水口安装位置端正。 10、清理孔内泥料时,严禁直接开气吹,以免高压气流将接缝处火泥吹走,尤其是上水口在使用到中后期。 11、采用包体支座,严禁钢包体后端下倾,易造成滑板组装时,上滑板与上水口分离,泥料进而偏离脱落,造成事故隐患。 12、更换上水口时,严禁损坏座砖。

钢包滑动水口

钢包滑动水口- 前言 钢包滑动水口是控制钢包中钢水流量的一个重要系统,如果该系统在使用过程中发生穿钢事故,将导致铸机断拉,烧坏连铸机设备等恶性生产事故,制约了生产的稳定顺行,严重威胁了人身和设备的安全。随着炼钢节奏的进一步加快,对加快钢包周转,减少生产事故提出了更高的要求,而保证滑动水口的安全运行是前提条件。一般小钢包滑动水口漏钢的次数较多,减少或杜绝滑动水口漏钢事故,对于生产节奏越来越快的炼钢厂来说具有十分重要的意义。 钢包滑动水口- 钢包滑动水口的组成及使用条件 钢包滑动水口一般由驱动装置、机械部分和耐火材料部分组成。滑动水口的工作原理(见图1)是通过滑动机构使上下滑板砖错动,从而带动流钢孔的开闭来调节钢水流量大小的。一般滑动水口漏钢主要发生在滑动水口耐火砖的接缝处,也有在单个砖体中间的,2005年该厂钢包滑动水口各部位的漏钢情况如表1所示: 滑动水口的工作原理表1 2005年钢包滑动水口各部位的漏钢情况滑动水口漏钢部位座砖与上水口砖之间上水口砖与上滑板砖之间上下滑板砖之间 下滑板砖与下水口砖之间下水口砖中间滑动水口漏钢次数 1 2 5 3 3 安钢第二炼钢厂浇注钢种主要为Q235B、HRB335、HRB400、船板钢等,浇注温度为1550℃~1630℃,2005年钢产量为218万t。钢包公称容量为25t,在线周转钢包15个,滑动机构为B-50型,驱动装置为手动,滑动水口铸口直径为φ50mm,自动开浇率91%左右。 钢包滑动水口- 钢包滑动水口漏钢原因分析 滑动水口机械部分对漏钢的影响 1)上下滑板不平行或在使用过程中变形,导致两滑板砖之间的面压不均,一侧受力较大,一侧受力较小,当钢水的压力超过两滑板之间的面压时,钢水便会钻入两滑板之间,造成滑板夹钢或漏钢。 2)滑板有微细裂纹,在使用前没有检查到,开浇时,滑板受驱动装置拉力作用和热应力的影响,突然断裂,滑板砖的一侧面压突然消失,在包内钢水静压力的作用下,滑板砖之间产生缝隙,钢水便会立即从两滑板砖中间穿出。 3)滑板的加工尺寸偏差大,滑板中固定滑板砖的凹槽深度大于滑板砖的尺寸,滑板与滑板砖不能有效配合,导致两滑板砖之间有缝隙,钢水钻入两滑板砖之间,造成滑板夹钢或漏钢,另外,还会影响到下滑板砖与下水口砖之间的面压,造成该部位渗钢或漏钢。 滑动水口耐火材料对漏钢的影响 滑动水口的耐火材料部分是滑动水口的核心部分,是直接接触、控制钢水的关键部件,其物理、化学性能是决定滑动水口能否正常使用的关键因素。滑动水口耐火材料部分的结构如图2所示: 图2 钢包滑动水口耐火材料部分示意图 1)水口座砖高温强度低,在用风镐热换钢包上水口砖时,风镐头经常会打坏座砖,使座砖扩径,座砖与上水口砖之间缝隙大,钢水浇注时,钢水在座砖部位形成涡流,受钢水冲刷作用的影响,钢水易渗入缝隙,发生上水口砖周围漏钢事故。 2)钢包上水口砖的热稳定性差,上水口砖在使用过程中,随着钢包的周转,浇钢和空包热修之间温度差别较大,受急冷急热的影响,使用

【精品】液压传动系统设计计算

液压传动系统设计计算 液压系统的设计步骤与设计要求 液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行.着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1.1设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1.2明确设计要求

设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、转换精度等性能方面的要求; 6)自动化程序、操作控制方式的要求; 7)对防尘、防爆、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 制定基本方案和绘制液压系统图 3。1制定基本方案 (1)制定调速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题.

方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。 速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现.相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。 节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

液压系统的课程设计

《现代机械工程基础实验1》(机电)之 机械工程控制基础综合实验 指导书 指导教师:董明晓逄波 山东建筑大学 机电工程学院 2013.7.4 一、过山车项目 1、过山车(Roller coaster,或又称为云霄飞车),是一种机动游乐设施,常见于游乐园和主题乐园中。过山车通常采用液压弹射器提速。弹射系统由高速液压缸、活塞式蓄能器以及大流量高速开关阀等三部分组成液压系统原理图如下:

2、过山车机械结构设计方案图 3、该方案的应用坦克仿真驾驶平台的起伏效果、混凝土搅拌机、塔式起重机、车辆驱动传动系统,液压起升平台 4过山车液压节能回收装置。液压系统设计中的节能问题主要是降低系统的功率损失,液压系统的功率损失会使系统的总效率下降、油温升高、油液变质,导致液压设备发生故障。因此,设计液压系统时必须多途径的考虑怎样降低系统的功率损失。其设计如图所示。

二.坦克系统 1、如何驱动庞然大物-坦克,主要依靠液压系统的驱动,导向,制动。机械液压双工 率流向机构,使得来自发动机的动力分两路,流向驱动轮的两侧。其行走系统 液压原理图 2、由于军事工业的需要,为了使坦克更好的适应作战环境(沟壑,险滩等路面凹凸 不平,)有时为了需要不得不从空中运输,从空中迫降,显而易见,处理好减 震已经迫在眉睫。坦克液压减震系统原理图

3、液压式减震器的结构同吸入式泵基本相似,。当履带遇到凸起的路面受到冲击时, 缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。液压减震系统机械结构图 4、设计一个减震系统,使得生鸡蛋从5米高的地方下落能够完好

钢包滑动水口1

一、滑动水口工作原理 滑动水口是通过安装在包底的滑动机构连接、装配在一起的两块开孔的耐火砖相对错位的大小来控制钢流的机构。 上水口和上滑板是固定在机构里,下滑板和下水口安装在拖板里,可以左右移动,上、下滑板内孔重合时,水口开度最大,不重合时,水口关闭。滑动水口拖板借助于液压缸左右移动,下滑板与上滑板用弹簧压紧,使移动过程中滑板间不产生间隙,防止发生滑板漏钢。 滑动水口的优点是改善劳动条件,加快钢包周转,节省耐火材料,减少漏包事故,提高钢水质量,便于炉外精炼。 二、滑动水口结构形式 滑动水口结构形式包括:机械装置部分;驱动部分(手动与液压);其运动方式有两种: (1)直线往复式当滑板作直线往复运动时,调节滑动板与固定板之间的流钢孔来控制钢流。 (2)回转式滑动板作旋转运动,以调节流钢孔大小和控制钢水流量。三、滑板水口用耐火材料 滑动水口是由上、下滑板和上、下水口4块耐火砖组成。每包钢水的浇注都要通过上、下滑板和上、下水口,因此对它们要求非常严格,首先要求在高温下有足够的强度,以承受钢液的静压力,其次要求上、下滑板的滑面要十分光滑,平整度要高,确保接触严密,保证在浇注过程中不漏出钢水,而且还要耐冲刷、耐侵蚀和有良好的热稳定性,以便能承受温度的急变,钢水的冲刷和熔渣的侵蚀。 1、滑板它是决定滑板水口功能的关键部分。 由于滑板反复接触高温钢水(特别是铸孔部位),蚀损严重,使用条件苛刻。要求滑板具有高强度、耐侵蚀、抗剥落等到良好性能。在浇注过程中保证滑板间不能漏钢水,滑板必须具有以下性能: (1)滑动面应平滑、平整度≤0.05mm; (2)机械强度高; (3)耐钢水和熔渣的侵蚀能力强; (4)不易附着钢水。 过去使用较普遍的是高铝质并以莫来石结合的滑板,它用沥青浸渍后,再轻烧处理,获得高强度、结构均匀致密的滑板砖。在高铝滑板配料中添加磷酸

液压系统的设计步骤与设计要求

液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)计算和选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境(温度、湿度、振动冲击)、总体布局(及液压传动装置的位置和空间尺寸的要求)等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、换向定位精度等性能方面的要求; 6)自动化程度、操作控制方式的要求; 7)对防尘、防爆、防腐、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 主机的工况分析

通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 主机工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t) ,速度循环图(v— t) ,或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L —t 液压机的液压缸位移循环图纵坐标L 表示活塞位移,横坐标t 表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v —t(或v —L) 工程中液压缸的运动特点可归纳为三种类型。 图为三种类型液压缸的v —t 图,第一种如图中实线所示,液压缸开始作匀加速运动,然后匀速运动,最后匀减速运动到终点;第二种,如图中虚线所示,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v —t 图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。 位移循环图速度循环图 动力分析 动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。 1.液压缸的负载及负载循环图 (1)液压缸的负载力计算。 工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

钢包滑动水口2

九、滑动水口故障分析及处理 钢包滑动水口故障主要有以下几种情况: 1、滑动水口不能自开,即当滑动水口打开时仅有引流砂流出而钢流没有跟随下来,需要操作工先点燃吹氧管,此时将氧流量调小,然后将点燃的吹氧管从下水口孔内向上插入,并开大氧流,将钢水引下。滑动水口烧氧时要特别注意操作人员的安全,烧氧管要有足够的长度,使操作人员能离开水口一定的距离。在操作时应穿带全劳动防护用品。 2、滑动水口打开后不能关闭。有几种情况会造成这一故障:液压系统故障;滑板之间粘连;机械设备卡死;滑板侵蚀严重;关闭后仍留有通道等。对上述故障钢包浇钢工先要观察钢流过大是否会造成中间包钢水溢出,对一些有溢流口的中间包,在钢水溢流时维护好溢流通道,让其流入事故容器中;如果中间包没有溢流口,则要先拆下钢包的液压缸,待中间包浇满时迅速将钢包移动到事故包位,让钢流流入事故包内即可。 3、滑动水口滑板窜钢事故。由于耐材质量或滑动水口安装操作不当,在浇铸过程中钢水从水口以外部分窜漏出来。操作人员一旦发现这种情况,应迅速将钢包转移到事故包位,如用钢包回转台则转台转出后,迅速用吊车将钢包吊离钢包转台,避免因窜漏事故扩大后损坏转台设备。 4、其它机械设备故障,如液压系统故障、油缸泄漏等造成滑动水口不能动作,应该从加强设备开浇前检查及确认制度等管理上给予解决,从预防上彻底避免这类故障的产生。 第二节 钢包精炼 一、炉外精炼 炉外精炼是把转炉、平炉或电炉中所炼的钢水移到另一个容器中(主要是钢包)进行精炼的过程。主要是在真空、惰性气氛或可控气氛下进行脱氧、脱硫、去除夹杂、夹杂物变性、微调成分、控制钢水温度等。 炉外精炼的主要方式有电磁搅拌或吹入惰性气体搅拌、真空处理、

钢包滑动水口机构维护规程

编号:CZ-GC-03591 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 钢包滑动水口机构维护规程Maintenance regulation of ladle sliding nozzle mechanism

钢包滑动水口机构维护规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 1、滑动水口机构的安装 1.1、钢包地步的滑动水口机构安装板必须平整无变形,根据钢包浇注孔的位置、滑动水口机构的安装尺寸及炼钢工艺要求确定地脚螺栓的位置,保证滑动水口机构顺利安装、使用。 1.2、根据底座四个底地脚安装孔的尺寸,在钢包底部滑动水口安装板上焊好四条安装螺栓。 1.3、将液压缸托座根据滑动水口机构在包底的安装位置用螺栓连接到底座上安装上四条拉紧弹簧螺栓、两条定位销。 1.4、将组好的底座安装安装到钢包上、拧紧紧固螺母。 1.5、将支架安装到底座上,把12只确认能够使用的弹簧装入支架的弹簧室内、装好2条压板并用压紧螺帽拧紧。压紧程度掌握到压板刚压住弹簧为止,此时,底座与支架应紧密接住无间隙,否则,应重新安装。

1.6、将滑动小车装入支架内。 1.7、把连杆装入液压缸托座内并插上安全栓。 2、机构在没个包役结束后进行清理检查: 2.1、检查各个部件有无碰损、变形、粘钢、裂纹等,如部件有裂纹、碰损严重者,变形超过2mm,粘钢清理不掉必须更换。 2.2、清除护板上的钢渣。 2.3、检查轨道是否有粘钢,如有清理掉即可。 2.4、检查轨道划痕是否严重,如划痕深度超过0.5mm或轨道厚度磨损超过1mm(厚度由16mm变为15mm)须更换新轨道。 2.5、检查轨道轮转动是否灵活,与轮轴间隙是否过大,如与楼赵间隙超过2mm,需更换轨道或轮轴。 2.6、检查弹簧挡圈是否脱落。 2.7、检查底座紧固螺母是否松动。 3、每个包役结束后检查弹簧,检查每只弹簧,如有损坏、自由高度变形量超过2mm(自由高度低于79mm)的应更换。 4、定期检查更换零部件

液压传动系统的设计与计算

液压传动系统的设计与计算 [原创2006-04-09 12:49:44 ] 发表者: yzc741229 液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析

主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动, 图9-2 速度循环图 最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。 二、动力分析 动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。 1.液压缸的负载及负载循环图 (1)液压缸的负载力计算。工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成: F=F c+F f+F i+F G+F m+F b (9-1) 式中:F c为切削阻力;F f为摩擦阻力;F i为惯性阻力;F G为重力;F m为密封阻力;F b为排油阻力。 图9-3导轨形式 ①切削阻力F c:为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。 ②摩擦阻力F f:

液压传动系统的设计和计算word文档

10 液压传动系统的设计和计算 本章提要:本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤:①明确设计要求,进行工况分析;②拟定液压系统原理图;③计算和选择液压元件;④发热及系统压力损失的验算;⑤绘制工作图,编写技术文件。上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。 教学内容: 本章介绍了液压传动系统设计的内容、基本步骤和方法。 教学重点: 1.液压元件的计算和选择; 2.液压系统技术性能的验算。 教学难点: 1.泵和阀以及辅件的计算和选择; 2.液压系统技术性能的验算。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示设计的步骤及方法。 教学要求: 初步掌握液压传动系统设计的内容、基本步骤和方法。

10.1 液压传动系统的设计步骤 液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全可靠,效率高,经济性好,使用维护方便等条件。液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。下面对液压系统的设计步骤予以介绍。 10.1.1 明确设计要求、工作环境,进行工况分析 10.1.1.1 明确设计要求及工作环境 液压系统的动作和性能要求主要有:运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。 10.1.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的变化规律,通常是求出一个工作循环内各阶段的速度和负载值。必要时还应作出速度、负载随时间或位移变化的曲线图。下面以液压缸为例,液压马达可作类似处理。 就液压缸而言,承受的负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载,现简述如下。 (1)工作负载w F 不同的机器有不同的工作负载,对于起重设备来说,为起吊重物的重量;对液压机来说,压制工件的轴向变形力为工作负载。工作负载与液压缸运动方向相反时为正值,方向相同时为负值。工作负载既可以为定值,也可以为变量,其大小及性质要根据具体情况加以分析。

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

滑动水口教程

第一节滑动水口工作特点 一、滑动水口工作原理 滑动水口是通过安装在包底的滑动机构连接、装配在一起的两块开孔的耐火砖相对错位的大小来控制钢流的机构。 上水口和上滑板是固定在机构里,下滑板和下水口安装在拖板里,可以左右移动,上、下滑板内孔重合时,水口开度最大,不重合时,水口关闭。滑动水口拖板借助于液压缸左右移动,下滑板与上滑板用弹簧压紧,使移动过程中滑板间不产生间隙,防止发生滑板漏钢。 滑动水口的优点是改善劳动条件,加快钢包周转,节省耐火材料,减少漏包事故,提高钢水质量,便于炉外精炼。 二、滑动水口结构形式 滑动水口结构形式包括:机械装置部分;驱动部分(手动与液压);其运动方式有两种: (1)直线往复式当滑板作直线往复运动时,调节滑动板与固定板之间的流钢孔来控制钢流。 (2)回转式滑动板作旋转运动,以调节流钢孔大小和控制钢水流量。三、滑板水口用耐火材料 滑动水口是由上、下滑板和上、下水口4块耐火砖组成。每包钢水的浇注都要通过上、下滑板和上、下水口,因此对它们要求非常严格,首先要求在高温下有足够的强度,以承受钢液的静压力,其次要求上、下滑板的滑面要十分光滑,平整度要高,确保接触严密,保证在浇注过程中不漏出钢水,而且还要耐冲刷、耐侵蚀和有良好的热稳定性,以便能承受温度的急变,钢水的冲刷和熔渣的侵蚀。 1、滑板它是决定滑板水口功能的关键部分。 由于滑板反复接触高温钢水(特别是铸孔部位),蚀损严重,使用条件苛刻。要求滑板具有高强度、耐侵蚀、抗剥落等到良好性能。在浇注过程中保证滑板间不能漏钢水,滑板必须具有以下性能: (1)滑动面应平滑、平整度≤0.05mm; (2)机械强度高; (3)耐钢水和熔渣的侵蚀能力强; (4)不易附着钢水。 过去使用较普遍的是高铝质并以莫来石结合的滑板,它用沥青浸渍后,再

液压系统的设计计算

液压系统的设计计算2 题目:一台加工铸铁变速箱箱体的多轴钻孔组合机床,动力滑台的动作顺序为快速趋进工件→Ⅰ工进→Ⅱ工进→加工结束块退→原位停止。滑台移动部件的总重量为5000N ,加减速时间为0.2S 。采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。快进行程为200MM ,快进与快退速度相等均为min /5.3m 。Ⅰ工进行程为100mm ,工进速度为min /100~80mm ,轴向工作负载为1400N 。Ⅱ工进行程为0.5mm ,工进速度为min /50~30mm ,轴向工作负载为800N 。工作性能要求运动平稳,试设计动力滑台的液压系统。 解: 一 工况分析 工作循环各阶段外载荷与运动时间的计算结果列于表1 液压缸的速度、负载循环图见图1

二 液压缸主要参数的确定 采用大、小腔活塞面积相差一倍(即A 1=2A 2)单杆式液压缸差动联接来达到快 速进退速度相等的目的。为了使工作运动平稳,采用回油路节流调速阀调速回路。液压缸主要参数的计算结果见表2。 按最低公进速度验算液压缸尺寸 故能达到所需低速 2 7.163 1005.06.253 min min 2 2cm v Q cm A =?=>= 三 液压缸压力与流量的确定

因为退时的管道压力损失比快进时大,故只需对工进与快退两个阶段进行计算。计算结果见表3 四液压系统原理图的拟定 (一)选择液压回路 1.调速回路与油压源 前已确定采用回油路节流调速阀调速回路。为了减少溢流损失与简化油路,故采用限压式变量叶片泵 2.快速运动回路 采用液压缸差动联接与变量泵输出最大流量来实现 3.速度换接回路 用两个调速阀串联来联接二次工进速度,以防止工作台前冲(二)组成液压系统图(见图2)

液压系统经典毕业设计.

序号(学生学号):201140110225 液压课程设计 设计题目:上料机液压系统设计 班级:2011级本机制(2)班 学号:201140110225 设计者:汤特 指导老师:黄磊肖新华黄松林 2014年3月

一.序言 1.设计的目的 2设计的要求 二.工况分析 1. 动力分析(负载分析) 2. 运动分析(速度分析) 3.绘制负载图和速度图 三.确定液压缸 1.液压缸的工作压力 2.液压缸主要尺寸 3.计算最大流量 4.确定液压缸的结构 5. 工况图的绘制 四.拟定液压原理图 1.速度回路的选择比较 2.压力回路的选择比较 3. 换向回路的选择比较 4. 泵的供油方式 5. 确定总的液压原理图(说明清楚各个动作的进油路和回油路的路线) 五.液压元件的选择 1. 泵的选择 2.电动机的选择 3.液压阀的选择 4.辅助原件 六.验算液压系统的性能 1.压力损失验算 2. 温升的验算 七. 总结

一.序言 1、课程设计目的 通过本次设计,让我很好的锻炼了理论联系实际,与具体项目、课题相结合开发、设计产品的能力。既让我们懂得了怎样把理论应用于实际,又让我们懂得了在实践中遇到的问题怎样用理论去解决。在本次设计中,我们还需要大量的以前没有学到过的知识,于是图书馆和INTERNET成了我们很好的助手。在查阅资料的过程中,我们要判断优劣、取舍相关知识,不知不觉中我们查阅资料的能力也得到了很好的锻炼。我们学习的知识是有限的,在以后的工作中我们肯定会遇到许多未知的领域,这方面的能力便会使我们受益非浅。 在设计过程中,总是遇到这样或那样的问题。有时发现一个问题的时候,需要做大量的工作,花大量的时间才能解决。自然而然,我的耐心便在其中建立起来了。为以后的工作积累了经验,增强了信心。同时为毕业设计和今后工作中进行液压系统结构设计打下基础。 2、设计步骤和内容 设计步骤如下: 液压系统的设计步骤和内容大致如下: (1) 明确设计要求,进行工况分析,绘制工况图; (2) 确定液压系统的主要性能参数; (3) 拟订液压系统原理图; (4) 计算液压系统,选择标准液压元件; (5) 液压缸设计,绘制液压缸装配图; (6) 绘制工作图,编写技术文件,如果有些同学能力好,时间宽裕的话并提出电气控制系统控制液压元件的设计。 以上步骤中各项工作内容有时是互相穿插、交叉进行的。对某些复杂的问题,需要进行多次反复才能最后确定。在设计某些较简单的液压系统时,有些步骤可合并和简化处理。 3、题目:上料机液压系统设计 工作循环:快速上升——慢速上升(可调速)——快速下降——

液压传动——液压传动系统设计与计算

第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

钢包滑动水口机构维护规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 钢包滑动水口机构维护规 程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2101-49 钢包滑动水口机构维护规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、滑动水口机构的安装 1.1、钢包地步的滑动水口机构安装板必须平整无变形,根据钢包浇注孔的位置、滑动水口机构的安装尺寸及炼钢工艺要求确定地脚螺栓的位置,保证滑动水口机构顺利安装、使用。 1.2、根据底座四个底地脚安装孔的尺寸,在钢包底部滑动水口安装板上焊好四条安装螺栓。 1.3、将液压缸托座根据滑动水口机构在包底的安装位置用螺栓连接到底座上安装上四条拉紧弹簧螺栓、两条定位销。 1.4、将组好的底座安装安装到钢包上、拧紧紧固螺母。 1.5、将支架安装到底座上,把12只确认能够使用的弹簧装入支架的弹簧室内、装好2条压板并用压

紧螺帽拧紧。压紧程度掌握到压板刚压住弹簧为止,此时,底座与支架应紧密接住无间隙,否则,应重新安装。 1.6、将滑动小车装入支架内。 1.7、把连杆装入液压缸托座内并插上安全栓。 2、机构在没个包役结束后进行清理检查: 2.1、检查各个部件有无碰损、变形、粘钢、裂纹等,如部件有裂纹、碰损严重者,变形超过2mm,粘钢清理不掉必须更换。 2.2、清除护板上的钢渣。 2.3、检查轨道是否有粘钢,如有清理掉即可。 2.4、检查轨道划痕是否严重,如划痕深度超过0.5mm或轨道厚度磨损超过1mm(厚度由16mm变为15mm)须更换新轨道。 2.5、检查轨道轮转动是否灵活,与轮轴间隙是否过大,如与楼赵间隙超过2mm,需更换轨道或轮轴。 2.6、检查弹簧挡圈是否脱落。 2.7、检查底座紧固螺母是否松动。

钢包滑动水口操作规程示范文本

钢包滑动水口操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

钢包滑动水口操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、火泥使用前需密封困料大于一小时,要求火泥塑 性及软硬度适中,搅拌均匀,无杂质掺入。 2、安装上水口时,座砖内腔内杂物要清理干净,试 装合适后用火泥将上水口柱体周围涂抹均匀、厚度适中, 用专用工具将上水口平端,放入座砖内腔,要求周围间隙 均匀,装入到位,端面应比底座滑板腔底平面低1-2mm。 3、对于新上线的钢包,无需烘烤3-4小时后方可安 装上水口及透气砖;对于正常周转的钢包,无需烘烤,等 火泥干燥上水口固定后,在安装滑板,在保证泥缝饱满的 情况下,上滑板与上水口间火泥尽量少,以避免出现上水 口受压向内移动。 4、要求滑板板面光洁、无污物,严禁上、下滑板混

用错装。 5、清理上水口及滑板腔内的泥料残渣要认真,力度适中,避免因用力过度而损坏上水口断面,确保残泥清理干净,机构腔内杂物要清理干净。 6、保持上水口子口端面完整、仔细观察上水口使用情况、根据使用情况适当增加泥料量且泥料硬度适中。 7、先将下滑板放入滑盒腔内,将涂好泥料的上滑板轻置入机构底座腔内、扶正并用力拍孔径周围,确保子母口配合紧密,推出连杆,迅速滑动小车抬起,拉倒开浇位置,插上安全销。 8、用钢带将上水口与上滑板间残泥压平刮干净后方可安装下水口。 9、横端水口套,将抹好泥的下水口一并用力旋入,套上专用工具打紧,注意下水口安装位置端正。 10、清理孔内泥料时,严禁直接开气吹,以免高压气

相关主题
文本预览
相关文档 最新文档