当前位置:文档之家› 量测基准网布设

量测基准网布设

量测基准网布设
量测基准网布设

量测基准网布设

1、 高程基准网

本工程地面沉降监测高程基准网,以1985国家高程基准为基础建立。根据本工程监测对象的分布情况,高程基准网由高程基准点和工作基点组成,布设成局部的独立网,同观测点一起布设成闭合环、或形成由附合路线构成的结点网。

图4.2-1 水准点埋设图(岩石地层) 图4.2-2 水准点埋设图(土层中) 水准基点标石根据现场情况,选用深埋双金属管水准基点标石、深埋钢管水准基点标石或混凝土基本水准标石(图4.2-1,图4.2-2);工作基点的标石可以采用浅埋钢管水准基点标石或混凝土普通水准标石或墙角、墙上水准标志。

基点应埋设在沉降影响范围以外的稳定区域内;且尽量埋设在视野开阔的地方,以利于观测。基点的埋设要牢固可靠。应经现场踏勘,并结合地质地层实际情况,确定埋设深度。采用现浇与预埋两种方式。同时应至少埋设两个基点,以便互相校核;基点应和附近原始水准点多次联测,确定原始高程。根据现场情况,为方便工作开展,可以将整个标段划分为几段,每段各自布设水准基点和工作基点,构成独立水准网,并尽量利用附近已知的水准基点。标石、标志埋设后,应达到稳定后方可开始观测,稳定期不少于15天。

(1)基辅分划读数差≤0.3mm ,基本分划与辅助分划所测高差之差≤0.4mm ,往返较差及附合或环线闭合差≤0.3n (n 为测站数)。

(2)视线长度≤30m 、前后视距差≤0.5m ,前后视距累积差≤1.5m 、视线高度(下丝读数)≥0.5m 。在施测时,测点之间必须是偶数站,往返测量的测站数均为偶数站。

野外观测完后,应认真检查观测成果,确保观测成果的可靠性。并对每条水准路线按附

合路线和闭合路线计算高差闭合差。每千米水准测量高差全中误差,应按下列公式计算:

钢质预制件

) 1 ( ][1L

WW N M w

式中,MW 为高差全中误差(mm ),W 为闭合差(mm ),L 为计算各W 时相应的路线长度(km ),N 为附合路线或闭合路线环的个数。若计算的MW 不满足规范要求,应查明原因,并进行重测。

同时,按水准路线往返测段高差较差计算,每千米水准测量的高差偶然中误差,应按下列公式计算:

式中,M ?为高差偶然中误差(mm ),?为水准路线往

返测段高差不符值(mm ),L 为水准测段长度(km ),n 为

往返测的水准路线测段数。若计算的M ?不满足规范要求,

应查明原因,并进行重测。

监测基准网的计算按最小二乘原理,采用间接平差

进行网平差计算,并进行精度评定。利用商用水准网平

差软件,进行水准网平差计算,并进行精度评定,求出

每千米高差中误差及每点的高程和精度。其软件界面如

图4.2-3所示。

为了确保变形观测成果的可靠性,必须定期或不定期地对基准网和工作基点网进行复测。控制网复测周期根据控制点稳定情况和变形观测的精度需要来确定。原则上规定:在基准网建成后,应在工程施工后3月进行第一次复测,此后每隔6月复测一次;工作基点的复测周期原则上应为每月至少一次。实施过程中根据控制点的稳定性调整复测周期,也可根据实际需要仅进行局部复测,而非全面复测,以便减小复测的工作量。

2 、平面基准网

本工程水平位移监测基准网以施工坐标系为基准建立,采用附合或闭合导线形式,起始并闭合于附近工程精密导线点上。水平位移监测基准网由水平位移基准点和工作基点组成,点位应根据场地围挡条件及基坑位置合理分布,同监测点一起组成监测网。

(1)水平位移监测基准点、工作基点埋设及技术要求

水平位移监测基准点埋设专门观测标石,标石埋设形式及规格参见高程基准点埋设方法。

(2)水平位移监测点布置

水平位移监测点埋设时先用冲击钻钻出深约10cm 的孔,再把强制归心监测标志放入孔 (2) ][41L

n M ??=?图 4.2-3 水准网平差软件

内,缝隙用锚固剂填充,测点标志埋设时应注意保证与工作基点间的通视,测点埋设完毕后,应进行必要的保护和防锈处理,做好清晰标记,方便保存。监测点埋设形式如图4.2-4。

(3)水平位移监测方法及数据采集

水平位移基准点观测使用全站仪(测角精度为0.5″、

测距精度为1mm+1.5ppm ),采用导线测量方法观测。

监测点水平位移监测使用SET05全站仪,根据现场条件,

可采用如下方法进行:①测定特定方向的水平位移宜采用小

角法、激光准直法、方向线偏移法、视准线法等;②测定

监测点任意方向的水平位移可视监测点的分布情况,采用

前方交会、自由设站、导线测量、极坐标等方法;③当基准点距测点较远时,宜采用三角、三边、边角测量与基准线法相结合的综合测量方法;④采用视准线法时,测点应采用特殊定制的标志,标志物顶部应划宽度不超过0.5mm 的十字丝,测量用的钢尺端点对准标志中心,并须保持钢尺水平。监测点埋设时用全站仪定位,测点距视准线距离不超过100mm 。

控制网观测按《城市轨道交通工程测量规范》GB 50308-2008Ⅱ等水平位移监测网技术要求观测,其主要技术要求见表4.2-1。

表4.2-1 水平位移监测控制网主要技术要求

监测点观测按《城市轨道交通工程测量规范》GB 50308-2008Ⅱ等水平位移监测的主要技术要求和监测方法进行,其主要技术要求见该表4.2-2。

表4.2-2 水平位移监测的主要技术要求

观测注意事项如下:一是对使用的全站仪、觇牌应在项目开始前和结束后进行检验,项目进行中也应定期进行检验,尤其是照准部水准管及电子气泡补偿的检验与校正。二是观测应做到“三固定”,即固定人员、固定仪器、固定测站;三是仪器、觇牌应安置稳固严格图4.2-4 监测点实景图

对中整平;四是在目标成像清晰稳定的条件下进行观测;五是仪器温度与外界温度一致时才能开始观测;六是应尽量避免受外界干扰影响观测精度,严格按精度要求控制各项限差。

(4)数据处理及分析

1)数据传输及平差计算

观测记录采用全站仪测量记录程序进行,观测时可完成各项限差指标控制,观测完成后形成电子原始观测文件,通过数据传输处理软件传输至计算机,使用控制网平差软件进行严密平差,得出各点坐标。

平差计算要求如下:①平差前对控制点稳定性进行检验,对各期相邻控制点间的夹角、距离进行比较,确保起算数据的可靠;②使用专业平差按严密平差的方法进行计算;③平差后数据取位应精确到0.1mm。④定期对控制点进行检测,以确保基准点的稳定性。复测频率同高程基准网复测频率。

通过各期变形观测点二维平面坐标值,计算投影至垂直于隧道中线方向的矢量位移,并计算各期阶段变形量、阶段变形速率、累计变形量等数据。

2)变形数据分析:观测点稳定性分析同地面沉降监测相关内容。

平面控制网的布设形式

场地平整就是将天然地面改造成工程上所要求的设计平面,由于场地平整时全场地兼有挖和填,而挖和填的体形常常不规则,所以一般采用方格网方法分块计算解决,平整场地前应先做好各项准备工作,如清除场地内所有地上、地下障碍物;排除地面积水;铺筑临时道路等 平面控制网的布设形式,应根据建筑总平面图、建筑场地的大小和地形、施工方案等因素来确定。 对于地形起伏较大的山区或丘陵地区,常用三角网或三边网; 对于地形平坦而通视较困难的地区或建筑物布置不很规则时,可采用导线网; 对于地势平坦的、建筑物众多且布置比较规则和密集的工业场地或住宅小区,一般采用建筑方格网; 对于地面平坦的小型施工场地,常布置一条或几条建筑基线,组成简单的图形。 平面控制网,应根据等级控制点进行定位、定向和起算,其等级和精度应符合下列规定: ①建筑场地面积大于或重要工业区,宜建立相当于一级导线精度的平面控制网; ②建筑场地小于或一般性建筑区,可根据需要建立相当于二、三级导线精度的平面控制网; ③当原有控制网作为场区控制网时,应进行复测检查。 高程控制网应布设成闭合水准路线、附合水准路线或结点水准网形。高程测量的精度,一般不宜低于三等水准测量的精度要求。 8.2建筑基线 8.2.1 建筑基线的布设方法 在面积不大、地势较平坦的建筑场地上,根据建筑物的分布、场地地形等因素,布设一条或几条轴线,以作为施工控制测量的基准线,简称建筑基线。 建筑基线的布设形式有三点“一”字形、三点“L”字形,四点“T”字形及五点“十”字形等形式。布设时要求做到: 建筑基线应平行或垂直于主要建筑物的轴线,以便用直角坐标法进行测设; 建筑基线相邻点间应互相通视,且点位不受施工影响; 为了能长期保存,各点位要埋设永久性的混凝土桩; 基线点应不少于三个,以便检测建筑基线点有无变动。 8.2.2 建筑基线的测设方法 根据建筑红线测设 在城市建设区,建筑用地的边界线(建筑红线)是由城市规划部门选定并由测绘部门现场测设的,可作为建筑基线放样的依据。 一般情况下,建筑基线与建筑红线平行或垂直,故可根据建筑红线用平行线推移法测设建筑基线。 如图,AB、AC是建筑红线,从A点沿AB方向量取d2定Ⅰ′点,沿AC方向量取d1定Ⅰ″点。 2.根据建筑控制点测设 对于新建筑区,在建筑场地上没有建筑红线作为依据时,可根据建筑基线点的设计坐标和附近已有控制点的关系,按前所述测设方法算出放样数据,然后放样。 如图所示,Ⅰ、Ⅱ、Ⅲ为设计选定的建筑基线点,A、B为其附近的已知控制点。首先根据已知控制点和待测设基线点的坐标关系反算出测设数据,然后用极坐标法测设Ⅰ、Ⅱ、Ⅲ点。由于存在测量误差,测设的基线点往往不在同一直线上,因而,精确地检测出∠Ⅰ′Ⅱ′Ⅲ′。若此角值与180o之差超过限差±10″,则应对点位进行调整。调整值δ按下列公式计算: 3建筑方格网 在建筑物比较密集或大型、高层建筑的施工场地上,由正方形或矩形格网组成的施工控制网,

全球Argo实时海洋观测网建设及应用进展-中国Argo实时资料中心

全球A rgo实时海洋观测网建设及应用进展 朱伯康1,许建平1,2 (11国家海洋局第二海洋研究所,浙江杭州 310012; 21卫星海洋环境动力学国家重点实验室,浙江杭州 310012) 摘 要:为了使各国政府、部门管理人员和科技工作者了解国际A rgo计划的实施进展,以及帮助广大民众认识实施A rgo计划的重要性和已经取得的初步成果,国际A rgo信息中心、国际A rgo科学组和国际A rgo资料管理组联合编写了一本科普宣传册,题为“A rgo,一个观测实时海洋的剖面浮标网”,经翻译、整理成文,以帮助国内读者深入了解和认识这一新世纪的重大国际观测计划。 文章从陈述开展海洋观测的重要性和实施A rgo计划的必要性着手,系统介绍了全球A rgo实时海洋观测网建设的现状和A rgo资料应用研究所取得的初步成果,以及A rgo计划的发展前景等。 关键词:国际A rgo计划;实时海洋观测网;剖面浮标 中图分类号:P71512 文献标识码:B 文章编号:100322029(2007)0120069208 引言 A rgo海洋观测网建设是一项国际合作计划。它采用一种沉浮式的自动观测浮标收集无冰冻海洋剖面的温度、盐度和海流等要素资料。A rgo浮标与JA SON卫星高度计协同配合,可以对全球海洋进行大面积观测。 A rgo计划会很快实现它的设计目标,即由3000个浮标组成的观测网在24h内可向研究人员和从事海洋、气象预报的相关业务中心快速提供海洋观测资料。世界上已经有23个国家参与国际A rgo计划,并有很多国家参与了浮标布放等工作。A rgo计划的实施,使得人们从海洋内部获取信息的手段产生了突破性进展。 1 人类为何要开展海洋观测 人们越来越关注全球的变化及其对区域性的影响。全球海平面以每年3mm速率加速上升,北极的冰层覆盖面也在开始收缩,高纬度地区的气温呈现急剧升高的趋势。极端天气事件导致了大量人员伤亡和巨大财产损失。就全球而言,自从1860年有仪器记录以来的10个最暖年中,其中有8个出现在最近10a中。通过对地球的辐射平衡和海洋 收稿日期:2006208215 基金项目:国际科技合作重点项目计划(2002CB714001)资助项目作者简介:朱伯康(1954-),男,浙江长兴人,工程师,主要从事物理海洋学调查和技术信息工作。的热贮量观测表明,过去10a,全球因表面温度升高使热能增加了约1W m2(瓦 平方米)。 这些影响是气候长期变化和自然界异常现象共同造成的。这一方面对延长农作物生长季节,打开北极海域的航运通道等是有利的;而在另一方面则会引发沿海地区的洪水,产生严重干旱,以及频发极端恶劣的高温(热浪)天气事件和严重的热带气旋。 人类认识(当然最终是为了预测)海洋和大气的变化,对于指导一些国际性的活动、优化政府的决策、以及调整工业布局策略等,都是十分必要的。为了准确预测气候,人们首先需要知道自然演变和长期变化的相对重要性。这只有通过大气和整个地球系统(包括社会-经济因素在内)的预测模式来实现。 由于缺乏对大气、海洋和陆地持续不断的观测,阻碍了气候研究模式的发展和可靠性的提高。近期的分析研究表明,大西洋中向北输送热量和影响西欧气候的海流,在过去的10a中已经减弱了30%。这项研究结果是根据过去40a 中所进行的5次大规模调查所得出的。这种变化可能是导致大西洋环流格局产生巨大变化的一种趋势(图1),或者说这种变化仅仅是自然的异常现象,将来会恢复,这项研究结果也又可能是受观测资料的限制而得出的错误结论。 正是由于缺乏对影响全球气候关键因素的观测,才促使各国政府在2003年构建“全球地球观测系统(GEO SS)”。欧洲则提出了建设“全球环境和安全监测系统(G M ES)”。GEO SS和G M ES的目标,旨在为预测影响天气、气候、水、能源、人类健康,以及灾害等的全球变化问题,提供必要的观测资料。GEO SS又分气候和海洋两个部分,即“全球气 第26卷 第1期2007年1月 海 洋 技 术 O CEAN T ECHNOLO GY V o l126,N o11 M arch,2007

施工控制网的布设

海南省红岭灌区工程东干渠土建施工第Ⅰ标段 施工控制网布设 批准: 审核: 编制:

中国水利水电第十一工程局有限公司红岭灌区工程东干I标施工项目部 2016年2月28日 一、工程概况 东灌区系统的控灌面积为131.84万亩,其中新增灌溉面积78.96万亩,保灌面积 40.57 万亩,改善灌溉面积 12.31 万亩。渠首由总干渠分水闸分水,设计流量为 40.0m3/s,加大流量 46 m3/s,灌溉定安、琼海、文昌和海口等 4 个市县的24 个镇与 8 个农场区域内的耕地。渠首设计水位为 125.537m,加大水位为125.778m,渠道底高程为 122.025m。 东干渠设 3 条分干渠、20 条支渠、2 条水库补水渠、1 个水库补水口及 15条干斗等 42 个分(补)水口,分别设置相应的分水闸控制流量,干渠全长145.93km。 本工程第1标段为桩号 0+000~27+551 段是连接 1#渡槽首端至 16#渡槽渐变段首端的渠段,全长 27.551km,设计流量为 40m3/s,加大流量 46.0m3/s。本段渠系共布置有渡槽14座、倒虹吸1座、暗涵1座、隧洞1座、节制泄水闸3座、分水闸 2 座等渠系建筑物。 二、控制网布设原则 2.1平面控制网原则 2.1.1各级GPS网一般逐级布设,在保证精度、密度等技术要求时可跨级布设。 2.1.2各级GPS网的布设应根据其布设目的、精度要求、卫星状况、接收机类型和数量、测区已有的资料、测区地形和交通状况以及作业效率等因素综合考虑,按照优化设计原则进行。 2.1.3各级GPS网最简异步观测环或附合路线的边数应不大于表1的规定。 表1 2.1.4各级GPS网点位应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。 2.1.5各级GPS网按观测方法可采用基于A级点、区域卫星连续运行基准站网、临时连续运行基准站网等的点观测模式,或以多个同步观测环为基本组成的

海洋观测站点管理办法

海洋观测站点管理办法 根据2019年7月16日自然资源部第2次部务会议审议通过,2019年8月19日公布。 第一条为了加强海洋观测站点管理,保护海洋观测设施和观测环境,服务经济建设、国防建设和社会发展,根据《海洋观测预报管理条例》,制定本办法。 第二条在中华人民共和国领域和中华人民共和国管辖的其他海域设立、调整和保护海洋观测站点,适用本办法。 本办法所称海洋观测站点,包括海洋观测站、测点、浮标、潜标、雷达站、海上观测平台、海底观测站点等。 第三条海洋观测站点分为基本海洋观测站点和其他单位或者个人海洋观测站点。 基本海洋观测站点,是指国务院自然资源主管部门或者省、自治区、直辖市自然资源主管部门根据海洋观测网规划统一设立的海洋观测站点,包括国家基本海洋观测站点和地方基本海洋观测站点。 第四条国务院自然资源主管部门负责全国海洋观测站点的管理。 国务院自然资源主管部门的海区派出机构(以下简称海区派出机构),按照国务院自然资源主管部门规定的权限,负责所管辖海域内海洋观测站点的管理。 沿海省、自治区、直辖市自然资源主管部门负责本行政区近岸海域内地方基本海洋观测站点以及其他单位或者个人海洋观测站点的管理。 第五条海洋观测站点的设立和调整应当符合海洋观测网规划,符合国家有关标准和技术要求。 海洋观测站点的调整,包括海洋观测站点的迁移、撤销以及观测要素和规模的变更。 第六条设立国家基本海洋观测站点,由海区派出机构按照全国海洋观测网规划,组织专家根据国家有关标准进行论证,报经国务院自然资源主管部门同意后,按照国家固定资产投资项目建设程序设立。 第七条符合下列条件之一的,可以申请迁移国家基本海洋观测站点: (一)国家重点工程建设确需依法占用的; (二)海洋观测环境遭到严重破坏,失去治理和恢复可能,或者不能确保海洋观测资料的代表性、准确性和连续性的;

国家及工程平面控制网的布设原则与方案

一、国家平面控制网的布设原则 分级布网、逐级控制 应有足够的精度 应有足够的密度 应有统一的规格 ㈠传统国家平面控制网布设方案 根据当时国家平面控制网施测的测绘技术水平,我国决定采取传统的三角网作为水平控制网的基本形式,只是在青藏高原特殊困难的地区布设了一等电磁波测距导线。国家三角网的布设方案分为一、二、三、四等4个等级。 一等三角锁是国家大地控制网的骨干,其主要作用是控制二等以下各级三角测量,并为地球科学研究提供资料。一等三角锁尽可能沿经纬线方向布设成纵横交叉的网状图形。 二等三角网是在一等锁控制下布设的,它是国家三角网的全面基础,同时又是地形测图的基本控制。 三、四等三角网是在一、二等网控制下布设的,是为了加密控制点,以满足测图和工程建设的需要。 三、工程平面控制网布设原则 工测控制网可分为两种:一种是在各项工程建设的规划设计阶段,为测绘大比例尺地形图而建立的控制网,叫做测图控制网;另一种是为工程建筑物的施工放样或变形监测等专门用途而建立的控制网,我们称其为专用控制网,建立这两种控制网时亦应遵守下列布网原则。 工测控制网可分为两种:一种是在各项工程建设的规划设计阶段,为测绘大比例尺地形图而建立的控制网,叫做测图控制网;另一种是为工程建筑物的施工放样或变形监测等专门用途而建立的控制网,我们称其为专用控制网,建立这两种控制网时亦应遵守下列布网原则。 1.分级布网、逐级控制 2.要有足够的精度 3.要有足够的密度 4.要有统一的规格 四、工程平面控制网布设方案 工程平面控制网的布设方案可以采用三角网、导线网、GPS网等形式。 一、国家基本控制网 国家平面控制网分为一、二、三、四等四个等级,布设形式有三角锁、精密导线、插点等形式。 二、城市及工程控制网 工程控制网:为城市规划、建筑设计及施工放样等目的而建立的控制网称为城市或工程控制网。 三、小地区控制网 1.小地区控制网:在小范围内建立的控制网称为小地区控制网。 2.分类:首级控制和图根控制

2016年大连市海洋观测预报工作方案

2016年大连市海洋观测预 报工作方案 2016年3月

一、海洋观测 (一)海洋站观测 工作内容 在老虎滩、小长山、温坨子、长兴岛和皮口5个海洋站开展业务化观测, 具体工作内容见附录1。 (二)浮标观测 工作内容 老虎滩站1个3m浮标站位的观测工作。 小长山站1个1m浮标站位的观测工作。 温坨子站1个1m浮标站位的观测工作。 长兴岛站1个1m浮标站位的观测工作。 (三)雷达观测 (四)海冰观测 工作内容 开展大连沿海重点岸段的海冰观测 (五)备品备件库建设 工作内容 开展海洋观测系统备品备件库建设 (六)海洋站水准联测工作 工作内容 根据《全国海洋站水准连测工作方案》的要求,开展海洋站水准连测 工作。

(七)运行管理 1、应急观测管理 开展海洋灾害响应期间的应急观测工作。具体按照《北海区风暴潮、海浪、海啸和海冰灾害应急预案》及《大连市海洋预报台灾害应急预案》执行。 2、运行维护管理 按照观测业务运行管理规定和海洋观测仪器设备运行维护责任制度的相关要求进行管理维护。自动观测系统配件出现故障或损坏时,由预报台负责修复或更换。岸基观测仪器故障后,正常情况下在7天内恢复正常使用,浮标等离岸观测仪器故障后,正常情况下在15天内恢复正常使用。修复后的仪器必须经过检定/校准或检验,确认恢复正常后方可投入使用。 3、质量管理 观测系统要严格质量管理,在通过CMA认证基础上,重点在管理体系运行、仪器设备检定、观测资料审核、人员培训和资质等方面加大管理力度。 所有在用的海洋观测仪器必须严格执行《海洋计量工作管理规定》的相关要求,在有效检定周期内使用。 海洋观测工作应严格按照有效标准或规范执行,严禁使用未经批准、备案的标准开展与计量有关的观测预报工作。 严格资料审核制度,所有自动观测资料要指定专人进行实时监控,非实时资料要经过预审和审核,保证第一手资料的准确规范有效。 4、运行监控管理 (1)海洋观测网管理信息系统运行 按照《海洋观测网管理信息系统运行维护暂行管理办法》要求,对海洋观测网管理信息系统运行管理和维护。 (2)开展海洋观测系统定期巡查和计量检定工作 将会同国家/海区海洋标准计量中心通过定期巡查,对管理体系运行进行检查,组织开展观测业务检查考核工作。

控制网布设及控制方案

测量控制方案 一、控制网的布设 ⑴制网的布设原则和布设方案 A平面控制网的布设,遵循下列原则: 首级控制网的布设,因地适宜,且适当考虑发展,与国家 坐标系统联测时,同时考虑联测方案。 首级控制网的等级,应根据工程规模、控制网的用途和精度要求合理确定。 B平面控制网的建立,可采用卫星定位测量、导线测量、三角形网测量等方法。平面控制网精度等级的划分,卫星定位测量控制网依次为二、三、四等和一、二级,导线及导线网依次为三、四等和一、二、三级,三角形网依次为二、三、四等和一、二级。平面控制网的坐标系统,应在满足测区内投影长度变形不大于2.5cm/km的要求下,做下列选择: 小测区或有特殊精度要求的控制网,可采用独立坐标系统 在已有平面控制网的地区,可沿用原有的坐标系统 C平控制网形式:根据桥梁跨越宽度、地形条件,可布设如下 形 式:

选择控制点要求: 尽可能使桥轴线作为三角网的一个边,提高桥轴线精度。 或将桥轴线的两个端点纳入网内,间接求算桥轴线长度。 交会角不致太大或太小(图形刚强),地质条件稳定,视野开阔, 便于交会墩位。 控制点要埋设标石,刻有“十”字的金属中心标志。 当兼作高程控制点使用时,中心顶部应为半球状。 控制网基线精度:高于桥轴线精度2~3倍 根据已知条件以及经济因素,采用导线布置控制网,等级为四级。 精密导线的布置形状 平面控制测量中精度导线的布置形状一般为:直伸形,曲折形, 闭合环形和主副导线环形等。 三角大地四边双大地四边三角

⑵控制网布设应考虑的因素 布设控制网时,可利用桥址地形图,拟定布网方案,并仔细研究桥梁设计图及施工组织设计图及施工组织计划的基础上,结合当地情况进行踏勘选点。点位布设满足以下要求: ①图形应简单 ②控制网的边长一般在0.5~1.5倍河宽的范围内变动。 ③使桥轴线与控制网紧密联系。 ④所有控制点不应位于淹没地区和土壤松软地区,尽量避开施工区、堆料区及受交通干扰区。便于观测和保存 二、现场测量控制 现场放线时候要注意复测,放完线通过拉距离及换人测量等避免出错,而且还要通过下面所述的控制现场测量成果精度。 现场用全站仪测量放线的时候要注意以下事项 ①测距前应先检查电池电压是否符合要求,在气温较低的条件下作业时,应有一定的预热时间。

海底观测网络研究进展

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/1915112656.html, Journal of Software,2013,24(Suppl.(1)):148?157 https://www.doczj.com/doc/1915112656.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 海底观测网络研究进展 李正宝, 杜立彬, 刘杰, 吕斌, 曲君乐, 王秀芬 (山东省科学院海洋仪器仪表研究所,山东青岛 266001) 通讯作者: 李正宝, E-mail: lizhengb@https://www.doczj.com/doc/1915112656.html, 摘要: 海底观测网络已成为海洋科学研究的重要数据获取平台.首先简要介绍了世界各国在海底观测网络研究 领域的发展历史,然后对各国海底观测网络的研究进展进行了详细介绍,指出了海底观测网络系统的关键技术和初 步解决方案,探讨了海底观测网络下一步的发展. 关键词: 海底观测网络;关键技术;进展;展望 中文引用格式: 李正宝,杜立彬,刘杰,吕斌,曲君乐,王秀芬.海底观测网络研究进展.软件学报,2013,24(Suppl.(1)):148?157. https://www.doczj.com/doc/1915112656.html,/1000-9825/13016.htm 英文引用格式: Li ZB, Du LB, Liu J, Lü B, Qu JL, Wang XF. Research development of seafloor observatory network. Ruan Jian Xue Bao/Journal of Software, 2013,24(Suppl.(1)):148?157 (in Chinese).https://www.doczj.com/doc/1915112656.html,/1000-9825/13016.htm Research Development of Seafloor Observatory Network LI Zheng-Bao, DU Li-Bin, LIU Jie, Lü Bin, QU Jun-Le, WANG Xiu-Fen (Institute of Oceanographic Instrumentation, Shandong Science Academy, Qingdao 266001, China) Corresponding author: LI Zheng-Bao, E-mail: lizhengb@https://www.doczj.com/doc/1915112656.html, Abstract: Seafloor observatory network has been an important data acquisition platform in marine scientific research. This pager provides a brief introduction to the history of seafloor observatory network system, followed by detailed description of the progress from the different countries round the world on seafloor cable observatory network systems. It also explores future development of the seafloor observatory network with a discussion on the key technologies and preliminary solutions employed in seafloor observatory network system. Key words: seafloor observatory system; key issue; development; development tendency 海洋占地球表面积的71%,蕴藏着丰富的资源,已成为世界各国激烈争夺的重要战略目标.由于缺乏有效的 观测手段,目前人类对海洋尤其是深海的认识依然肤浅.继海洋调查船和遥感卫星之后,海底观测网络成为人类 探测深海的第3个重要平台[1].海底观测网络能够长期、实时、连续地获取所观测海区海洋环境信息,为人类认 识海洋变化规律、提高对海洋环境和气候变化的预测能力提供支撑,对于海洋减灾防灾、海洋生态系统保护、 气候变化应对、资源/能源可持续开发利用、海洋权益维护、海上航运和国防安全等具有重大的战略意义[2]. 本文回顾了海底观测网络的发展历史,分析和研究了国内外海底观测网络的建设成果,指出构建海底观测 网络系统的关键技术和初步解决方案,探讨海底观测网络下一步的发展方向,以期对世界和我国海底观测网络 建设有所借鉴. 1 国外海底观测网络系统发展现状 20世纪末以来,美国、欧洲各国、日本等国家和地区凭借在海洋观测领域的先发优势,纷纷投入巨资开展 ?基金项目: 国家高技术研究发展计划(863)(2013AA09A411); 海洋公益性行业科研专项经费(201105030, 201305026); 山东省 自然科学基金(ZR2012FL14) 收稿时间:2013-05-02; 定稿时间: 2013-08-22

施工控制网的布设

海南省红岭灌区工程东干渠土建施工第I标段 施工控制网布设 中国电建 POWERCHINA 批准: 审核: 编制: 中国水利水电第十一工程局有限公司红岭灌区工程东干I标施工项目部

2016年2月28日 亠、工程概况 东灌区系统的控灌面积为131.84万亩,其中新增灌溉面积78.96万亩,保灌面积40.57万亩,改善灌溉面积12.31万亩。渠首由总干渠分水闸分水,设计流量为 40.0m3/s,加大流量46 m3/s,灌溉定安、琼海、文昌和海口等4个市县的24个镇与8个农场区域内的耕地。渠首设计水位为125.537m,加大水位为125.778m,渠道底高程为122.025m。 东干渠设3条分干渠、20条支渠、2条水库补水渠、1个水库补水口及15 条干斗等42个分(补)水口,分别设置相应的分水闸控制流量,干渠全长145.93km。 本工程第1标段为桩号0+000~27+551段是连接1#渡槽首端至16#渡槽渐变段首端的渠段,全长27.551km,设计流量为40m3/s,加大流量46.0m3/s。本段渠系共布置有渡槽14座、倒虹吸1座、暗涵1座、隧洞1座、节制泄水闸3座、分水闸2座等渠系建筑物。 1、控制网布设原则 2.1平面控制网原则 2.1.1各级GPS网一般逐级布设,在保证精度、密度等技术要求时可跨级布设。 2.1.2各级GPS网的布设应根据其布设目的、精度要求、卫星状况、接收机类型和数量、测区已有的资料、测区地形和交通状况以及作业效率等因素综合考虑,按照优化设计原则进行。 2.1.3各级GPS网最简异步观测环或附合路线的边数应不大于表1的规定。 表1 2.1.4各级GPS网点位应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。 2.1.5各级GPS网按观测方法可采用基于A级点、区域卫星连续运行基准站网、临时连续运行基准站网等的点观测模式,或以多个同步观测环为基本组成的网观测模式。网观测模式中的同步环之间,应以边连接或点连接的方式进行网 的构建

海洋预报规范

海洋预报规范 海洋观测预报管理条例 第一章总则 第一条为了加强海洋观测预报管理,规范海洋观测预报活动,防御和减轻海洋灾害,为经济建设、国防建设和社会发展服务,制定本条例。 第二条在中华人民共和国领域和中华人民共和国管辖的其他海域从事海洋观测预报活动,应当遵守本条例。 第三条海洋观测预报事业是基础性公益事业。国务院和沿海县级以上地方人民政府应当将海洋观测预报事业纳入本级国民经济和社会发展规划,所需经费纳入本级财政预算。 第四条国务院海洋主管部门主管全国海洋观测预报工作。 国务院海洋主管部门的海区派出机构依照本条例和国务院海洋主管部门规定的权限,负责所管辖海域的海洋观测预报监督管理。 沿海县级以上地方人民政府海洋主管部门主管本行政区毗邻海域的海洋观测预报工作。 第五条国家鼓励、支持海洋观测预报科学技术的研究,推广先进的技术和设备,培养海洋观测预报人才,促进海洋观测预报业务水平的提高。

对在海洋观测预报工作中作出突出贡献的单位和个人,给予表彰和奖励。 第二章海洋观测网的规划、建设与保护 第六条国务院海洋主管部门负责编制全国海洋观测网规划。编制全国海洋观测网规划应当征求国务院有关部门和有关军事机关的意见,报国务院或者国务院授权的部门批准后实施。 沿海省、自治区、直辖市人民政府海洋主管部门应当根据全国海洋观测网规划和本行政区毗邻海域的实际情况,编制本省、自治区、直辖市的海洋观测网规划,在征求本级人民政府有关部门的意见后,报本级人民政府批准实施,并报国务院海洋主管部门备案。 修改海洋观测网规划,应当按照规划编制程序报原批准机关批准。 第七条编制海洋观测网规划,应当坚持统筹兼顾、突出重点、合理布局的原则,避免重复建设,保障国防安全。 编制海洋观测网规划,应当将沿海城市和人口密集区、产业园区、滨海重大工程所在区、海洋灾害易发区和海上其他重要区域作为规划的重点。 第八条海洋观测网规划主要包括规划目标、海洋观测网体系构成、海洋观测站总体布局及设施建设、保障措施等内容。 第九条海洋观测网的建设应当符合海洋观测网规划,并按照国家固定资产投资项目建设程序组织实施。

全国海洋观测网规划-整编(2014-2020年度)

全国海洋观测网规划(2014-2020年)建设全国海洋观测网是提高我国海洋综合实力的基础性工作。为进一步规范海洋观测网的建设和管理,更好地服务于海洋防灾减灾、海洋经济发展、海洋科技创新、海洋权益维护和海洋生态文明建设,依据《海洋观测预报管理条例》相关规定,制定《全国海洋观测网规划(2014-2020年)》。 一、形势与现状 (一)面临的形势。 保障和促进沿海地区经济社会发展,提高海洋经济对国民经济的贡献度,需要加强海洋观测网建设。海洋经济已成为我国经济发展新的增长点。国务院先后批复设立了舟山海洋经济区、福建海峡西岸经济区、广东海洋经济综合试验区、青岛西海岸新区等沿海经济开发区域,这是发展海洋经济、建设海洋强国的重要举措。面对海洋经济发展的新形势,海洋观测网发展现状已不适应沿海地区海洋资源开发、海上交通运输、海洋渔业、海洋海岛旅游、海洋工程建设的需求,急需进一步加强基础海洋环境要素观测和产品服务能力的建设。 维护海洋权益,需要加强海洋观测网建设。为海洋权益维护活动、运输通道安全及推进21世纪海上丝绸之路建设提供环境保障,已成为海洋观测网建设的新任务。我国部分管辖海域和大洋重点关注区域的海洋观测工作远不能满足海上维权的需求,需要及时、准确地获取和利用海洋观测信息,提升海洋环境保障能力。 减轻海洋灾害的影响,提高海上突发事件应急响应能力,需要加强海洋观测网建设。我国是世界上海洋灾害频度和危害程度最严重的国家之一,灾害种类多,

影响范围广。随着海洋运输、资源开发、海洋渔业和沿海城市的快速发展,各种海上突发事件也日益增加。海洋防灾减灾和应对突发事件,都需要加强海洋观测,及时、有效提供海洋观测数据和产品服务。 应对全球气候变化,促进海洋科学研究,需要加强海洋观测网建设。海洋是全球气候变化的关键因素,气候变化加剧了海平面上升、极端天气气候事件等灾害,需要加强气候变化敏感区的海洋观测,深化对全球气候变化的认识,提高海洋领域应对气候变化的能力。为促进海洋科学研究的发展,需要针对研究热点,优先选择海洋科学的重点观测内容,提升关键海洋现象和海洋过程的观测能力,保证获取有效的海洋科学试验观测资料。 (二)发展现状。 目前,我国已初步形成涵盖岸基海洋观测系统、离岸海洋观测系统以及大洋和极地观测的海洋观测网基本框架,在我国海洋防灾减灾、科学研究等领域中发挥了重要作用。岸基海洋观测系统主要包括岸基海洋观测站(点)、河口水文站、海洋气象站、验潮站、岸基雷达站等。岸基海洋观测站(点)主要开展海洋水文和海洋气象要素的观测,目前已建设国家基本海洋站(点)120多个,地方基本海洋观测站(点)数十个。为水利、气象、海事、教育、科研等服务的专业河口水文站、海洋气象站、验潮站、科学试验站也已达到一定数量。其中河口水文站主要开展河口区域的水文观测;海洋气象站主要开展海洋气象要素,以及海气相互作用等的观测;验潮站主要开展港口码头的潮位观测;岸基雷达站主要开展海流、海浪、海冰和气象等观测,其覆盖率不断提高。 离岸海洋观测系统主要由各种浮(潜)标、调查断面、海上平台、志愿船和卫星等组成。我国已建成业务化观测浮(潜)标40余个,主要布设在我国陆架

控制网布设原则

咱们平时说的控制网主要有首级网和加密网,首级网就是设计院做的控制网,一般设计院提供的控制点并不能满足施工放样的要求,这就要求我们根据设计院提供的控制网来加密,以满足施工放样的要求。这样就存在一个加密网了,加密网的成果是有施工单位自己选点,埋点,以及测量,报监理单位复核、批准方能使用。 控制网又分为平面网和高程网,设计院要先提供一部分控制点给施工单位,设计交桩点有CP0,CPI,CPII,JY点,还有SM水准点,其中CP0,CPI,CPII是坐标点,JY点和SM点是高程点,是高程基准。当然为使用方便CP0,CPI,CPII也可以带高程,作为高程点使用,这些设计单位提供的点位和成果就是咱们后续施工的加密网测设的依据。 加密网是又咱们自己施测,所以咱们主要就是要做好加密网: 1、选点:点位选择要沿线路两侧布设,点位置不能离线路太远也不能离线路太近,太远了施工放样时不方便,太近了,在施工过程当中容易被破坏。平面和高程网要在施工范围外50-100米为宜。当然,客专上要求做沉降观测,我们根据实际情况沉降观测的基准网也就是高程都是沿线路红线附近埋设。特别是路基段,高差太大,沿着红线附近埋设为了方便沉降观测时不用转站太多,在300米左右一个点,桥上和隧道里面可能更长一点。平面网要看有什么仪器测量,使用GPS测,还是直接用全站仪测。用GPS测量时要保证相邻的一对点能通视,还有视野要开阔,周围不能有遮挡,附近不能有大面积水域。用全站仪测量时要保证前后两个点都要通视的原则。相邻两个点位之

间要保证300米左右为宜,不能太近也不能太远。 2、埋点:埋点要根据当地实际情况考虑埋设深度,像咱们这边冻土层较深,埋的点位深度要达到1米8,方能保证冬天施工时控制点的稳定。 3、测设:高程用电子水准仪测量,测量数据仪器自动记录,每一测站自动提示超限与否,最后要注意往返程不超限方可。平面用GPS 测量比较简单,但要注意,测量过程当中不能随意开关机。开关机时间要听从带队人安排,要正确记录测量点号,测量时间,以及仪器高。全站仪测量时要注意,记录数据,角度和距离以及点号。记录要规范。相互之间要配合好,对观测人员测量素质要求比较高。 4、计算、平差:监理单位要求测量平差都要用严密平差,要求用相应的软件进行平差。 5、成果报审:报批之前要将原始数据,成果报告,电子文档发过去,复核,报审完了以后的资料就要作为正式文档,归档。

工程建筑方格网的布设

工程施工控制网的建立 摘要:大型工业厂房的建设及成套机械设备的安装都需要精确的轴线定位,高精度的建筑方格网在这方面得到了广泛运用.本文简略介绍了新钢长才工程建筑施工方格网的建立和应用. 关键词:方格网、布设、观测、应用 一、工程概况 新钢长材工程是拆除原三型厂房,在原址上新建高速厂房。是13年重点技改工程。长489米,宽米.总投资2亿多,是新钢公司的重大技改工程.该施工区域复杂、北面高差大,存在大量待拆除的障碍物,给控制网的布设带来一定难度.本控制网作业量如下: 1、复测检查二个已知一级导线点. 2、测设一级方格网,共计12个点。. 3、四等水准点1个。(现场水池角) 二、施测主要依据 1、平面和高程控制的依据:根据该地区原来已有的一级导线点1#(X=,Y=和2#(X=,Y=为依据.高程点3#(H=) 2、图纸资料依据:根据工程主厂方柱基平面布置图和主厂房定位图. 3、技术规范依据: 国标工程测量规范《GB50026-93》 三、施工控制网布设

本施工控制网布设成形矩形方格网,共计12个坐标点。 (施工控制网布置图见后) 四、标桩的埋设 标桩的埋设采用现浇砼标桩,周围砌砖围护,标桩上面埋设150*150mm的不锈钢埋件,并埋设一根ф20mm的钢筋,平面点为不锈钢埋件上的冲眼,以红油漆圈定,高程点以钢筋头顶为准. 五、施工控制网的施测 1、施工控制网的施测 施工控制网采用轴线法进行测设,先以厂区一级导线点1#、2#为起算点,测设K1L6和K2L6两点。用轴线法测设直线K1和K2. 2、高程测量 高程测量采用二等水准测量的精度要求进行施测. 3、使用仪器:TOPCON 332全站仪、S3水准仪. 六、施工控制网的检测及精度评定 1、施工控制网的检测 水平角观测:采用测回法观测两测回或全圆观测法两测回测定;边长观测:采用往返各两测回测定。 2、根据各水平角的检测结果与设计角(90o)比较,最大不 超过5秒,边长比较误差最大不超过±2毫米,相对误差最大为1/30000,按闭合环角度闭合差计算的测角中误差为±秒,水准测量按水准线路闭合环闭合差计算的每公里中误差为±毫米,根据检测精度分析,本施工控制网质量为优.

全国海洋观测网规划_整理(2014_2020)

全国海洋观测网规划(2014-2020年) 建设全国海洋观测网是提高我国海洋综合实力的基础性工作。为进一步规海洋观测网的建设和管理,更好地服务于海洋防灾减灾、海洋经济发展、海洋科技创新、海洋权益维护和海洋生态文明建设,依据《海洋观测预报管理条例》相关规定,制定《全国海洋观测网规划(2014-2020年)》。 一、形势与现状 (一)面临的形势。 保障和促进沿海地区经济社会发展,提高海洋经济对国民经济的贡献度,需要加强海洋观测网建设。海洋经济已成为我国经济发展新的增长点。国务院先后批复设立了海洋经济区、海峡西岸经济区、海洋经济综合试验区、西海岸新区等沿海经济开发区域,这是发展海洋经济、建设海洋强国的重要举措。面对海洋经济发展的新形势,海洋观测网发展现状已不适应沿海地区海洋资源开发、海上交通运输、海洋渔业、海洋海岛旅游、海洋工程建设的需求,急需进一步加强基础海洋环境要素观测和产品服务能力的建设。 维护海洋权益,需要加强海洋观测网建设。为海洋权益维护活动、运输通道安全及推进21世纪海上丝绸之路建设提供环境保障,已成为海洋观测网建设的新任务。我国部分管辖海域和大洋重点关注区域的海洋观测工作远不能满足海上维权的需求,需要及时、准确地获取和利用海洋观测信息,提升海洋环境保障能力。 减轻海洋灾害的影响,提高海上突发事件应急响应能力,需要加强海洋观测网建设。我国是世界洋灾害频度和危害程度最严重的国家之一,灾害种类多,影响围广。随着海洋运输、资源开发、海洋渔业和沿海城市的快速发展,各种海上突发事件也日益增加。海洋防灾减灾和应对突发事件,都需要加强海洋观测,及时、有效提供海洋观测数据和产品服务。 应对全球气候变化,促进海洋科学研究,需要加强海洋观测网建设。海洋是全球气候变化的关键因素,气候变化加剧了海平面上升、极端天气气候事件等灾害,需要加强气候变化敏感区的海洋观测,深化对全球气候变化的认识,提高海洋领域应对气候变化的能力。为促进海洋科学研究的发展,需要针对研究

建筑工程施工控制网的布设

大型工业建筑工程施工控制网的布设 摘要:随着社会的发展与进步,工业生产工艺流程越来越复杂,工业建筑也越来越庞大。工业建筑施工控制网的布设对于现实施工生产显得更加重要。本文主要介绍大型工业工程施工控制网布设的有关内容。 关键词工业;施工;控制;布设; abstract: with the social development and progress, more and more attention to the layout of buildings for industrial control network, the layout of the buildings for industrial control network for the real life of great significance. this paper describes the large-scale industrial plant construction control network laid. keywords industry; plant; construction; control; laid; 中图分类号:[f287.2]文献标识码:a文章编号: 引言 大型工业建筑纵、横轴线和设备基础中心线定位,是现场施工测量工作的关键,它的精度直接影响施工质量和设备安装精度。因此,施工开始前,施工现场建筑物轴线网的布设显得尤为重要。要保证轴线网的精度,首先要保证整体首级控制网(基准控制网)的完备和有足够的精度。 1、工程概况

某水电站工程结构由引水枢纽和发电厂房两部分组成。引水枢纽包括压力前池、退水洞、进水口、压力管道等。压力前池与烟岗水电站(鸭嘴河流域梯级规划的第二级水电站)的尾水相接,压力管道空间结构为由一段竖井、两段斜井和三段平洞组成,总长1.2 km,高差600 m。测区占地面积约1 km2,高差约600 m,地面自然坡比约为1:l,地表局部植被生长茂盛,通视条件较差。 2、施工测量控制网布设方案 受地形通视条件限制,本工程采用导线网组网。根据各点之间的通视情况,兼顾外业观测精度要求,构建两个闭合环的环形导线网,其中g11--yx3和c2--c3两条边为辅助观测边。各网点兼作高程控制点。控制网布置见下图。 3、控制点施工要求 为了使工程测量控制网点保持在施工的全过程,控制点用棍凝土浇注,地质资料显示一8. 5 m以下是回填土,因此须在每个标桩下压人3根6 m长工字钢,以免沉降变形。根据现场实际情况,可把部分点记标注在稳定牢固的原基础和构件上,控制点位置要考虑挖填土方、浇灌混凝土对点变形无影响,特别注意网点及标高施工测量放线前的校核及与原有厂房柱的衔接。 4、施工控制网施测方案设计 4.1选点及埋石 选出的点位要求周围视野开阔、与其他点通视多、视线避开其他

广东海洋观测网建设规划2016—2020年-广东海洋与渔业厅

广东省海洋观测网 建设规划(2016—2020年) 2017年10月

目录 前言 (1) 1发展形势 (2) 1.1现状 (2) 1.2存在的问题 (6) 2总体要求 (8) 2.1指导思想 (8) 2.2基本原则 (8) 2.3发展目标 (9) 3重点任务 (10) 3.1优化海洋观测布局,保障滨海重点项目安全 (10) 3.2加强海洋灾害观测,构建沿海城市海洋灾害观测体系 (10) 3.3发展应急机动观测,提升海洋应急观测能力 (10) 3.4加强海洋观测数据整合,实现数据共享 (10) 4观测布局及建设内容 (11) 4.1岸基海洋观测系统 (12) 4.1.1岸基海洋观测站 (12) 4.1.2岸基雷达海洋观测系统 (14) 4.2海基观测系统 (16) 4.2.1海洋观测浮标系统 (16) 4.2.2志愿船观测系统 (17) 4.2.3水下滑翔机观测系统 (17)

4.3空基观测系统 (18) 4.3.1卫星遥感数据应用中心 (18) 4.3.2无人机遥感探测系统 (18) 4.4数据管理体系 (18) 4.4.1数据管理系统 (18) 4.4.2数据传输网络 (18) 4.5管理体系 (20) 4.5.1管理制度 (20) 4.5.2管理队伍 (21) 4.6海洋观测综合保障系统 (21) 4.6.1海洋观测综合保障基地 (21) 4.6.2地市应急装备保障系统 (21) 5远景规划 (22) 5.1海床基观测系统 (22) 5.2海上平台观测系统 (22) 5.3高频地波雷达海洋观测系统 (22) 6保障措施 (23)

前言 为进一步加强广东省的海洋防灾减灾能力,有效减轻海洋灾害损失,更好地为广东省沿海社会经济发展服务,根据《海洋观测预报管理条例》《中华人民共和国国民经济和社会发展第十三个五年规划纲要》《全国海洋观测网规划(2014—2020年)》《海洋观测预报和防灾减灾“十三五”规划》和《广东省国民经济和社会发展第十三个五年规划纲要》等法律法规和相关文件,特制定本规划。 本规划于2017年10月18日经省人民政府原则同意。本规划主要明确“十三五”期间广东省海洋观测网建设的指导思想、基本原则、发展目标和主要任务,是政府履行海洋防灾减灾职能的重要依据。

欧洲国家的海洋观测系统介绍

欧洲国家的海洋观测系统介绍 欧洲社会经济发展离不开海洋科技和海洋经济的支撑,因此他们十分重视海洋科技发展和海洋环境保障能力建设,而海洋观测系统的建设是提升海洋环境保障能力的基础。几十年前,欧洲的海洋观测系统都是各个国家自行建设,规模不大,而且主要为本国服务。近年来,区域社会经济的发展、区域和全球的环境问题以及全球经济危机,使欧洲国家有许多共同的海洋利益,面对许多共同的环境和资源问题。因此,建设资源共享的海洋观测系统,共享海洋信息和信息产品资源,以加速区域社会经济发展和应对环境灾害,成为他们共同关注的焦点问题之一。于是,欧洲的海洋观测系统呈现出在欧盟框架下的集成和共享的发展趋势,目前,由欧洲科学基金会主持的欧洲海洋观测与数据网络(EMODNET)在系统建设和运行中,明显表现出先进工业国家的技术和管理优势。该系统的建设将增强欧洲在全球气候变化和环境污染等方面所面临挑战的应对能力,同时提高区域海洋管理、资源利用和环境保护能力。 欧洲具有先进的海洋观测技术,其海洋观测系统的建设经验对我们有很好的借鉴意义。首先他们根据海洋经济的发展需要建设了局域海洋观测系统,之后为研究和解决海洋环境问题并发挥观测系统的系统效益,他们对现有观测系统进

行了大规模的集成和二次开发,在此基础上建成了区域海洋观测系统,从而显著提升了为海洋科学研究和海洋经济发展服务的水平。对于这种高技术和高投入的海洋观测集成系统,欧盟在经费投入和组织协调方面发挥了重要作用。 一、英国的CEFAS海洋观测系统 英国的全国海洋观测系统是由英国环境、渔业及水生物研究中心CEFAS)与英国气象局等单位合作建设的,最初的目的是为海洋渔业服务。CEFAS拥有波浪观测站14个,温度和盐度观测站38个,智能化生态监测浮标19个。在CEFAS 网站上可以看到关于各种鱼群、鱼疾病以及鱼捕食的信息,可以看到英国海岸区域海浪、潮位以及生物化学信息。波浪观测系统是与国家气象局合作建立的,参数有:有效波高、波高最大值、波峰周期、平均波高、平均波周期、波扩展、温度、平均水位、风向和风速等。CEFAS系统具有以下特点:①高时间空间分频率取样;②物理、化学和生物多参数测量; ③智能化保真取样;④现场校正;⑤卫星通信;⑥可根据客户需要制定监测项目。 二、希腊的爱琴海监测和预报系统 该系统于1997年由希腊国家立项建设,欧洲自由贸易联盟(EFTA)资助了85%的经费,其余部分由希腊国家经济部

相关主题
文本预览
相关文档 最新文档