当前位置:文档之家› 10K NTC热敏电阻对照表

10K NTC热敏电阻对照表

10K NTC热敏电阻对照表
10K NTC热敏电阻对照表

10K NTC温度阻值对照表

-6 37.26586165 36 6.6806379874 78 1.8067428702 120 0.64612458683 -5 35.54839008 37 6.4492390516 79 1.7580269629 121 0.63218386263 -4 33.921962772 38 6.2272659994 80 1.7108894244 122 0.61861221257 -3 32.381173574 39 6.0142824362 81 1.6652713514 123 0.60539824268 -2 30.920969714 40 5.809874448 82 1.62111631 124 0.59253095752 -1 29.536626693 41 5.6136493318 83 1.5783702214 125 0.57999974472

0 28.223725086 42 5.4252344036 84 1.5369812533 126 0.56779436007

1 26.978129124 43 5.244275879

2 85 1.4968997166 127 0.55590491342

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

10KNTC热敏电阻对照表

10K NTC温度阻值对照表 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt -40 235.83075593 2 25.795966881 44 5. 1.4580779678 -39 221.67240981 3 24.673611964 45 4.9 1.4204703156 -38 208.47382602 423.6 ? 7428627464 88 1.3840329328 -37 196.16305694 5 22.594945784 47 4.5885344983 89 1.3487237721 -36 184.67403487 6 21.632463086 48 4. 44 ? 314502486 -35 173.94605364 7 20. 717416866 49 4.2974265762 91 1.2813303512 -34 163.92329912 8 19.847177965 50 4. 16 ?2491701959 -33 154.55442376 9 19. 4. 1.2179863314 -32 145.79216068 10 18.231399185 52 3.9 1.1877444861 -31 137.59297352 11 17.481363273 53 3.7785460774 95 1.1584117439 -30 129.91673843 12 16.767123414 54 3.66 ? 1299564843 -29 122.72645506 13 16. 3. 5472659437 97 1.1023483265 -28 115.9879839 14 15.438447903 56 3.4379794071 98 1.075558075 -27 109.66980711 15 14.820498836 57 3.3326915609 99 1.0495576687 -26 103.74281093 16 14.231304683 58 3.2312350849 100 1.024******* 0.9998195293 -25 98. 13.669355966 59 3. 01 2

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

NTC热敏电阻(25℃-100K)温度

T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max -30 1671.2 1721.2 1771.2 15 157.05 159.19 161.33 -29 1569.5 1615.9 1662.2 16 150.16 152.15 154.15 -28 1474.8 1517.8 1560.8 17 143.53 145.38 147.24 -27 1387.0 1426.8 1466.7 18 137.13 138.86 140.58 -26 1305.8 1342.8 1379.8 19 130.96 132.56 134.16 -25 1230.9 1265.3 1299.7 20 125.00 126.48 127.96 -24 1162.1 1194.1 1226.1 21 119.27 120.64 122.01 -23 1098.9 1128.7 1158.5 22 113.78 115.05 116.32 -22 1040.9 1068.8 1096.6 23 108.59 109.73 110.87 -21 987.82 1013.9 1039.9 24 103.63 104.71 105.79 -20 939.21 963.60 987.99 25 99.000 100.00 101.00 -19 878.25 900.70 923.16 26 94.648 95.629 96.609 -18 825.09 845.86 866.64 27 90.654 91.617 92.580 -17 778.08 797.36 816.64 28 87.037 87.985 88.932 -16 735.91 753.85 771.80 29 83.818 84.752 85.687 -15 697.56 714.30 731.04 30 81.015 81.940 82.865 -14 662.26 677.89 693.52 31 77.811 78.720 79.629 -13 629.37 643.98 658.58 32 74.679 75.571 76.463 -12 598.42 612.08 625.73 33 71.612 72.486 73.361 -11 569.05 581.81 594.57 34 68.611 69.467 70.323 -10 540.98 552.90 564.82 35 65.683 66.520 67.357 -9 514.01 525.13 536.26 36 62.837 63.654 64.471 -8 488.00 498.37 508.74 37 60.084 60.882 61.679 -7 462.85 472.51 482.16 38 57.438 58.216 58.994 -6 438.52 447.49 456.47 39 54.913 55.671 56.429 -5 414.97 423.30 431.63 40 52.521 53.260 53.999 -4 392.32 400.04 407.76 41 50.276 50.997 51.718 -3 371.74 378.91 386.08 42 48.190 48.894 49.598 -2 352.88 359.56 366.23 43 46.275 46.963 47.651 -1 335.49 341.70 347.91 44 44.541 45.215 45.889 0 318.95 325.10 331.25 45 42.998 43.660 44.322 1 303.83 309.58 315.33 46 41.279 41.926 42.573 2 289.63 294.99 300.35 47 39.656 40.288 40.920 3 276.20 281.20 286.21 48 38.122 38.740 39.357 4 263.46 268.13 272.81 49 36.669 37.273 37.877 5 251.34 255.70 260.06 50 35.289 35.880 36.471 6 239.77 243.84 247.92 51 33.976 34.554 35.132 7 228.72 232.52 236.32 52 32.724 33.289 33.854 8 218.14 221.68 225.23 53 31.524 32.077 32.630 9 208.02 211.32 214.62 54 30.372 30.913 31.454 10 198.33 201.40 204.47 55 29.261 29.790 30.319 11 188.70 191.55 194.40 56 28.186 28.703 29.220 12 179.94 182.59 185.25 57 27.142 27.647 28.152 13 171.84 174.31 176.78 58 26.124 26.617 27.111 14 164.25 166.55 168.85 59 25.128 25.610 26.091 R ---- T 分 度 表 R 25℃ =100.00KΩ±1% B 25/50: 3950 本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2009,版权所有,仅供试用。

热敏电阻B值

B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。 B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。 温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将B值换算成电阻温度系数: 电阻温度系数=B值/T^2 (T为要换算的点绝对温度值) NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。 NTC热敏电阻B值公式的: B= T1T2 Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。V NTC热敏电阻B值公式。 先更正昨天的帖子,我用的热敏电阻的精度是1%,不是3%。 B= T1T2 Ln(RT1/RT2)/(T2-T1) ——(1) B:NTC热敏电阻的B值,由厂家提供;

RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值,厂家提供的是温度为298.15K (25摄氏度)时的阻值。 T1、T2:绝对温标。 我还是针对昨天的原理图简单的说说:由(1)式可得: RT1/RT2=e B(1/T1-1/T2)————————(2) 取T1=298.15K,此时热敏电阻的阻值为RT1=10K,故取R1=10K,设温 度为T2时的分压值为V2,则:V2=RT2Vcc/(RT2+R1),得 RT2=V2R1/(Vcc-V2),所以 RT1/RT2=Vcc/V2-1 代入(2)式得 e B(1/T1-1/T2) =Vcc/V2-1 得 B(1/T1-1/T2)=Ln(Vcc/V2-1) T2=T1/(1-T1(Ln(Vcc/V2-1))/B)设8位ADC输出值为N,则 Vcc/V2-1=256/N-1 所以 T2=T1(1-T1(Ln(256/N-1))/B)换算为摄氏温度后则 T=T2-273.15 你可以用C或VB编个程序从N=0开始到N=255计算出温度表,然后以N为索引查表直接得到温度。也可以通过实际测试出温度值构成温度表格,采用插值等算法得到温度值。我这里是以T1=25度计算的,你可以通过调整T1的值来测试更高或更低温度。

PTC热敏电阻基础知识总结

热敏电阻的物理特性与表示 热敏电阻的物理特性用下列参数表示: 电阻值、B值、耗散系数、热时间常数、电阻温度系数。 1、电阻值:R〔Ω〕 电阻值的近似值表示为:R2=R1exp[1/T2-1/T1] 其中:R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B:B值〔K〕 2、B值:B〔k〕 B值是电阻在两个温度之间变化的函数,表达式为: B= InR1-InR2 =2.3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2 其中:B:B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕 3、耗散系数:δ〔mW/℃〕 耗散系数是物体消耗的电功与相应的温升值之比。δ= W/T-Ta = I2 R/T-Ta 其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上的电流值〔mA〕R:在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。 4、热时间常数:τ〔sec.〕 热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。 5、电阻温度系数:α〔%/℃〕 α是表示热敏电阻器温度每变化1oC,其电阻值变化程度的系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为: α = 1/R·dR/dT×100 = -B/T2×100 其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B:B值〔K〕 PTC热敏电阻发热元件 一、PTC热敏电阻的简介: PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。 有恒温、调温、自动控温的特殊功能 当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。 不燃烧、安全可靠 PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。 省电 PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。 寿命长 PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。并且多孔型比无孔型寿命更长。 结构简单 PTC元件本身自动控温,不需另加自动控制温度线路装置。特别是我公司新产品棗多孔型PTC更不需要其他散热装置,也不需用导电胶。 使用电压范围广 PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。 二、PTC热敏电阻的应用: 低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。 高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手

NTC10K_热敏电阻温度阻值对应表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

半导体热敏电阻

航:OLS > 实验首页> 综合设计性物理实验> 实验三温度传感器特性研究 .::实验预习::. 【实验目的】 1.了解几种常用的接触式温度传感器的原理及其应用范围; 2.测量这些温度传感器的特征物理量随温度的变化曲线. 【实验原理】 1.铂电阻 导体的电阻值随温度变化而改变,通过测量其电阻值推算出被测环境的温度,利用此原理构成的传感器就是热电阻温度传感器.能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定.目前,在工业中应用最广的材料是铂和铜. 铂电阻与温度之间的关系,在0~630.74 o C范围内可用下式表示 (1) 在-200~0 o C的温度范围内为 (2)

式中,R0和RT分别为在0 o C和温度T时铂电阻的电阻值,A、B、C为温度系数,由实验确定,A = 3.90802×10-3o C-1,B = -5.80195×10-7o C-2,C = -4.27350×10-12o C-4.由式(1)和式(2)可见,要确定电阻RT 与温度T的关系,首先要确定R0的数值,R0值不同时,RT 与T的关系不同.目前国内统一设计的一般工业用标准铂电阻R0值有100Ω和500Ω两种,并将电阻值RT 与温度T的相应关系统一列成表格,称其为铂电阻的分度表,分度号分别用Pt100和Pt500表示. 铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033 K~961.78 o C标准温度计来使用.铂电阻广泛用于-200~850 o C范围内的温度测量,工业中通常在600 o C以下. 2.半导体热敏电阻 热敏电阻是其电阻值随温度显著变化的一种热敏元件.热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC)热敏电阻,正温度系数(PTC)热敏电阻和临界温度电阻器(CTR).PTC和CTR型热敏电阻在某些温度范围内,其电阻值会产生急剧变化,适用于某些狭窄温度范围内一些特殊应用,而NTC热敏电阻可用于较宽温度范围的测量.热敏电阻的电阻-温度特性曲线如图1所示.

温度传感器原理及热敏电阻NTC温度常数β值计算温度

温度传感器原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所调用标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶和温度传感器热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化温度传感器热电偶为我国统一设计型温度传感器热电偶。 (2)温度传感器热电偶的结构形式为了保证温度传感器热电偶可靠、稳定地工作,对它的结构要求如下: ①组成温度传感器热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与温度传感器热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.温度传感器热电偶冷端的温度补偿 由于温度传感器热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都

相关主题
相关文档 最新文档