当前位置:文档之家› 参数估计和假设检验习题解答讲解

参数估计和假设检验习题解答讲解

参数估计和假设检验习题解答讲解
参数估计和假设检验习题解答讲解

参数估计和假设检验习题

1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?

0.05,α=26,n =

0:1600H μ=,

即,以95%的把握认为这批产品的指标

的期望值μ为1600.

2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数

的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)?

解: 012112:, :,H H μμμμ≥<

3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?

解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2

Z z α>,取0.0252

0.05, 1.96z z αα===,

100,n =由检验统计量 3.33 1.96Z =

==>,接受1: 2.64H μ≠,

即, 以95%的把握认为新工艺对此零件的电阻有显著影响.

4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?

解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,

50,n =由检验统计量0.9733

Z =

==<1.65,接受H 0:p ≤0.05.

即, 以95%的把握认为p ≤0.05是成立的.

5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?

解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =

0.950.05, 1.65z α=-=-,由检验统计量

400

1.5973i x np

Z -=

=

=-∑>-1.65, 接受0:0.17H p ≥,

即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.

6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?

解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2

(1)t t n α>-,24,n = x =11958,

s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量

2.1537t =

==>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.

7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工

作情况。现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,ii02,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?

解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2

(1)t t n α>-,10,n =经计算得到

x =502, s =6.4979,取0.0250.05,(9) 2.2622t α==,由检验统计量

0.9733t =

==<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.

8.有一种新安眠药,据说在一定剂量下,能比某种旧安眠药平均增加睡眠时间3小时,根据资料

用某种旧安眠药时,平均睡眠时间为20.8小时。标准差为1.6小时,为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为26.7,22.O ,24.1,21.O ,27 .2,25.0,23.4。试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α=0.05)。

解: 01:23.8 :23.8H vs H μμ≥<,已知总体标准差σ =1.6,拒绝域为Z z α<-,7,n =经计算得到

x =24.2,取0.950.05, 1.65z α=-=-,由检验统计量

0.6614x Z =

==>-1.65, 接受0:23.8H μ≥

即, 以95%的把握认为新安眠药已达到新的疗效.

9.测定某种溶液中的水份,它的l0个测定值给出x =0.452%,s =O.037%,设测定值总体服从正

态分布,μ为总体均值,σ为总体的标准差,试在5%显著水平下,分别检验假(1)H 0: μ=O.5%; (2)H 0: σ=O.04%。

解:(1)H 01: μ=O.5%,11:0.5%H μ≠, 总体标准差σ未知,拒绝域为2

(1)t t n α>-,10,n =

x =0.452%,s =O.037%,取0.0250.05,(9) 2.2622t α==,由检验统计量

4.102t =

==>2.2622,拒绝H 0: μ=O.5%, (2) H 02:σ=0.04%, H 12:σ≠0.04%,拒绝域为2222

12

2

(1) (1)n n ααχχχχ-≤-≥-或,10,n =取α=0.05,

22

2

0.975

0.025

(9) =2.7 (9)19.023χ

χχ

≥=,,由检验统计量2

22

2

2

(1)(101)0.000377.70060.0004n s χσ--=

==,

即22.77.700619.023χ<=<,接受H 02:σ=0.04%.

10.有甲、乙两个试验员,对同样的试样进行分析,各人试验分析结果见下表(分析结果服从正态分布

解:(1)2222

01121112:, :,H H σσσσ=≠拒绝域为121212

2

(1,1) (1,1)F F

n n F F n n α

α-

≤--≥--或,128,

n n ==取α=0.05, 0.9750.0250.0251(7,7)0.2004 , (7,7) 4.99(7,7)

F F F =

==,经计算22

120.2927,0.2927,s s ==

由检验统计量2212/0.2927/0.29271F s s ===,

接受2

2

0112:,H σσ=

(2) 02121212:, :H H μμμμ=≠拒绝域为122

(2)t t n n α>+-,128,n n ==

0.0250.05,(14) 2.1448t α==,

并样本得到22

21122

12(1)(1)2

w

n s n s s n n -?+-?=+-=0.2927, w s =0.5410, 由检验统计量

-0.6833t =

=

=<2.1448, 接受0212:,H μμ=

即, 以95%的把握认为甲、乙两试验员试验分析结果之间无显著性的差异.

11.为确定肥料的效果,取1000株植物做试验。在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好,问施肥的效果是否显著(α=O.01)?

解:(1)2222

01121112:, :,H H σσσσ=≠拒绝域为121212

2

(1,1) (1,1)F F

n n F F n n α

α-

≤--≥--或,取α=0.01,

12100,900,n n ==0.9950.0050.0051

(99,899)0.7843 , (99,899) 1.3(899,99)

F F F =

==,计算

22

125353783783(1)0.2491,(1)0.1131,100100900900

s s =

?-==?-=

由检验统计量 2212/0.2491/0.1131 2.2025F s s ===, 拒绝22

0112:,H σσ=

(2) 02121212:, :H H μμμμ≤>拒绝域为12(2)t t n n α>+-,12100,900,n n ==0.010.01,() 2.4121t α=∞≥

并样本得到22

21122

12(1)(1)2

w

n s n s s n n -?+-?=+-=0.1266, w s =0.3558, 由检验统计量

-9.0656x y t =

==<2.4121, 接受0212:,H μμ≤

即, 以95%的把握认为施肥的效果有显著性的差异.

(备注: 0.005(99,899)F =1.43+(1.43-1.69)*0.5=1.3, 0.025(899,99)F =1.36+(1.36-1.53)*0.5=1.275)

12.在十块地上同时试种甲、乙两种品种作物,设每种作物的产量服从正态分布,并计算得

x =30.97,y =21.79,x s =26.7,y s =12.1。这两种品种的产量有无显著差别(α=O.01)?

解:(1)2222

01121112:, :,H H σσσσ=≠拒绝域为121212

2

(1,1) (1,1)F F

n n F F n n α

α-

≤--≥--或,1210,n n ==取

α=0.01, 0.9950.0050.0051(9,9)0.1529 , (9,9) 6.54(9,9)

F F F =

==,有题设22

712.89,146.41,x y s s ==

由检验统计量2212/712.89/146.41 4.8691F s s ===, 接受22

0112:,H σσ=

(2) 02121212:, :H H μμμμ≥<,拒绝域为12(2)t t n n α<-+-,0.010.01,(18) 2.5524t α==-,1210,n n ==

并样本得到22

21122

12(1)(1)2

w

n s n s s n n -?+-?=+-=(9×712.89+9×146.41)/18=429.6500, w s =20.7280, 由检验统计量

0.9903x y t =

==>-2.5524, 接受0212:,H μμ≥

即, 以95%的把握认为此两品种作物产量有显著差别,并且是第一种作物的产量显著高于第

二种作物的产量.

13.从甲、乙两店备买同样重量的豆,在甲店买了10次,算得y =116.1颗,10

21()i i y y =-∑=1442;

在乙店买了13次,计算x =118颗,13

21

()i i x x =-∑=2825。如取α=0.01,问是否可以认为甲、乙两店的

豆是同一种类型的(即同类型的豆的平均颗数应该一样)?

解:(1)2222

01121112:, :,H H σσσσ=≠拒绝域为121212

2

(1,1) (1,1)F F

n n F F n n α

α-

≤--≥--或,110,n =

213,n =取α=0.01, 0.005 (12,9) 5.20F =,0.9950.0051(12,9)0.1605 ,(9,12)

F F =

=,有题设2

235.25,x s =

2160.2222,y s =由检验统计量22/235.25/160.2222 1.4683x y F s s ===, 接受220112:,H σσ=

(2) 02121212:, :H H μμμμ=≠,拒绝域为122

(2)t t n n α>+-,0.0050.01,(11) 3.1058t α==,110,n =

213,n =并样本得到22

21122

12(1)(1)2

w

n s n s s n n -?+-?=

+-=(2823+1442)/11=387.7273, w s =19.6908, 由检验统计量

0.2294x y t =

==<3.1058, 接受0212:,H μμ=

即, 以95%的把握认为此甲、乙两店的豆是同一种类型的.

14.有甲、乙两台机床加工同样产品,从此两台机床加工的产品中随机抽取若干产品,测得产品直

径(单位:Illm)为机床甲:20.5,19.8,19.7,20.4,20.1,20.0,19.0,19.9; 机床乙:19.7,20.8,20.5,19.8,19.4,20.6,19.2.试比较甲、乙两台机床加工的精度有无显著差异(α=5%)?

解:(1)2222

01121112:, :,H H σσσσ=≠拒绝域为121212

2

(1,1) (1,1)F F

n n F F n n α

α-

≤--≥--或,128,7n n ==,

取α=0.05, 0.9750.0250.0251(8,7)0.2041 , (8,7) 4.53(7,8)

F F F =

==,经计算22

120.2164,0.3967,s s ==

由检验统计量 2212/0.2164/0.39670.5455F s s ===, 接受22

0112:,H σσ=

(2) 02121212:, :H H μμμμ=≠拒绝域为122

(2)t t n n α>+-, 128,7n n ==,0.0250.05,(13) 2.1604t α==,

并样本得到22

2

112212(1)(1)70.216460.3967

0.2996213

w

n s n s s n n -?+-??+?===+- w s =0.5474, 由检验统计量

-0.2657t =

=

=<2.1604, 接受0212:,H μμ=

即, 以95%的把握认为甲、乙两台机床加工的精度结果之间无显著性的差异.

15.某工厂所生产的某种细纱支数的标准差为1.2,现从某日生产的一批产品中,随机抽16缕进行支数测量,求得样本标准差为2.1,问纱的均匀度是否变劣?

解:01: 1.2, : 1.2,H H σσ=≠ 拒绝域为2

222

12

2

(1) (1)n n α

αχχ

χχ-

≤-≥-或,16,n =取α=0.05,

2

2

2

0.975

0.025

(15) = 0.0364 (15)27.4884χ

χχ

≥=,,由检验统计量2

22

2

2

(1)(161)2.145.93751.2

n s χσ--=

==, 即2

45.937527.4884χ=>, 拒绝H 0:σ=1.2

即, 以95%的把握认为生产的纱的均匀度是变劣了。

16.从一批钉子中抽取16枚,测得其长度为(单位:m):2.14,2.10,2.13,2.15,2.13,2.12,

2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11.设钉长分布为正态,试在下列情况下求总体期望值μ的90%置信区间: (1)已知σ=0.Ol(cm);(2) σ为未知。

解:

>> y1=[2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11] >>mean(y1),得到点估计 1y =0.1250, n =16 (1) 已知σ=0.Ol,~(0,1)

x N ,取0.952

0.1, 1.65z z αα===

包含总体期望值μ的90%置信区间为2

2

(//x z x z αασσ-+

(2) σ为未知, ~(1)

x t n -,取0.052

0.1,(1)(15) 1.7531t n t αα=-==

包含总体期望值μ的90%置信区间为0.050.05((15)(15)/x t s x t s -?+?

17.包糖机某日开工包了12包糖,称得的重量(单位:两)分别为10.1,10.3,10.4,10.5,10.2,

9.7,9.8,10.1,10.0,9.9, 9.8,10.3,假设重量服从正态分布,试由此数据对糖包的平均重量作置信度为95%的区间估计。

解:

>>x10=[10.1 10.3 10.4 10.5 10.2 9.7 9.8 10.1 10.0 9.9 9.8 10.3] >> [mu,sigma,muci,sigmaci]=normfit(x10,0.05)

得到平均重量点估计 mu = 10.0917, 置信区间为 muci =[9.9281,10.2553],

sigma = 0.2575, 置信区间为 sigmaci =[0.1824,0.4371]

18.某电子产品的某一参数服从正态分布,从某天生产的产品中抽取15只产品,测得该参数为3.0,2.7,2.9,2.8,3.1,2.6,2.5,2.8,2.4,2.9,2.7,2.6,3.2,3.0,2.8。试对该参数的期望值和方差作置信度分别为95%和99%的区间估计。

解:

>> x12=[3.0 2.7 2.9 2.8 3.1 2.6 2.5 2.8 2.4 2.9 2.7 2.6 3.2 3.0 2.8] 取定α=0.05,

>> [mu,sigma,muci,sigmaci]=normfit(x12,0.05)

得到参数的期望值点估计mu =2.8000, 95%置信区间为muci =[2.6762, 2.9238]; 方差点估计sigma =0.2236, 95%置信区间为sigmaci=[0.1637, 0.3527] 取定α=0.05,

>> [mu,sigma,muci,sigmaci]=normfit(x12,0.01)

得到参数的期望值点估计mu=2.8000, 99%置信区间为muci=[2.6281,2.9719]

方差点估计sigma =0.2236, 99%置信区间为sigmaci=[0.1495,0.4145]

19.为了在正常条件下,检验一种杂交作物的两种新处理方案,在同一地区随机挑选8块地段,

解:

>> x=[86 87 56 93 84 93 75 79],>> mean(x) 得到81.6250x =

>> y=[80 79 58 91 77 82 74 66],>> mean(y) 得到75.8750y =

128,n n == 计算22

21122

12(1)(1)2

w

n s n s s n n -?+-?=

+-,得到w s , 取定α=0.05, 由样本统计量

122

(2)t t n n α=

+-

最后,得到x y μμ-的置信水平为95%的一个置信区间为

12122

2

((2)(2)x y t n n s x y t n n s αα--+-?-++-? 20.设两位化验员A 、B 独立地对某种聚合物的含氯量用相同的方法各作了10次测定,其测定值

的方差2s 依次为0.5419和0.6065,设2A σ和2

B σ分别是A 、B 两化验员测量数据总体的方差,且总体服从正态分布,求方差比2A σ/2B σ的置信度为90%的置信区间。

解:1210,n n ==22

0.5419,0.6065A B s s ==,取α=0.1,0.05(9,9) 3.18F =, 0.950.051

(9,9)0.3145 , (9,9)

F F =

=

方差比2A σ/2

B σ的置信度为90%的置信区间为

22

2212121211(,)(1,1)(1,1)

A A

B B s s s F n n s F n n αα----- 解析:

(1)散点图如下;

(2)方法一:设线性回归方程为,则

∴时, 取得最小值,

即,∴时取得最小值.

所以线性回归方程为.

方法二:由系数公式可知,

,所以线性回归方程为.

(3)x=100时,,所以预测生产100吨甲产品的生产能耗比技术改造前降低吨标准煤.

点评:本题考查回归分析的基本思想,是课标区三年来考查的唯一的一道解答题。求线性回归方程的方法一这实际上是重复了回归系数公式的推导过程,这里的另一个解决方法是对我们再按集项,

即,而这个时候,当时

有最小值,结合上面解法中时有最小值,组成方程组就可以解出,的值;方法二前提是正确地使用回归系数的计算公式,一般考试中都会给出这个公式,但要注意各个量的计算;最后求出的

是指的平均值或者是估计值,不是完全确定的值.对于本题我们可以计算题目所给的数据组的相关系数

,相关指数.这说明,具有很强的线性相关性,说明解释变量对预报变量的贡献率是

,即耗煤量的是来自生产量,只有约来自其它因素,这与我们的直观感觉是十分符合的.

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。 点估计是用估计量的某个取值直接作为总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。统计学家在某种程度上确信这个区间会包含真正的总体参数。 在区间统计中置信度越高,置信区间越大。置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1 置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等 (1)来自正态分布的样本均值,不论抽取的是大样本还是小样本,均服从正态分布 (2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布 (3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理 (4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近 (5)样本均数服从的正态分布为N(u a^2/n)远远小于原变量离散程度N (u a^2) 2. 假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。 假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。最重要的是看能否通过得到的概率去推翻原定的假设,而不是去证实它<2>统计学中假设检验的基本步骤:(1)建立假设,确定检验水准α--假设有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单、双侧检验两种。检验水准用α表示,通常取0.05或0.10,检验水准说明了该检验犯第一类错误的概率。(2)根据研究目的和设计类型选择适合的检验方法 这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。 (3)确定P值并作出统计结论 u检验得到的是u统计量或称u值,t检验得到的是t统计量或称t值。方差分析得到的是F统计量或称F值。将求得的统计量绝对值与界值相比,可以确定P值。当α=0.05时,u值要和u界值1.96相比较,确定P值。如果u<1.96,则P>0.05.反之,如u>1.96,则P<0.05.t值要和某自由度的t界值相比较,确定P值。如果t值<t界值,故P>0.05.反之,如t>t 界值,则P<0.05。相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。即单侧检验更容易出现阳性结论。当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。 3.参数估计与假设检验之间的联系与区别: (1)主要联系:a.都是根据样本信息推断总体参数;b.都以抽样分布为理论依据,建立在概率论基础之上的推断;c.二者可相互转换,形成对偶性。 (2)主要区别:a.参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;b.区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;c.区间估计立足于大概率,假设检验立足于小概率。

第5章-假设检验课后习题解答

第五章假设检验 一、选择题 1.单项选择题 (1)将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性水平的 1 /2,这是(B )。 A.单侧检验 B.双侧检验 C.右单侧检验 D.左单侧检验 (2)检验功效定义为(B )。 A.原假设为真时将其接受的概率 B.原假设不真时将其舍弃的概率 C.原假设为真时将其舍弃的概率 D.原假设不真时将其接受的概率 (3)符号检验中,(+)号的个数与(-)号的个数相差较远时,意味着(C )。 A.存在试验误差(随机误差) B.存在条件误差 C.不存在什么误差 D.既有抽样误差,也有条件误差 (4)得出两总体的样本数据如下: 甲:8,6,10,7,8; 乙:5,11,6,9,7,10 秩和检验中,秩和最大可能值是(C )。 A.15 B.48 C.45 D.66 2.多项选择题 (1)显著性水平与检验拒绝域的关系是(ABD )。 A.显著性水平提高(α 变小),意味着拒绝域缩小 B.显著性水平降低,意味着拒绝域扩大 C.显著性水平提高,意味着拒绝域扩大 D.显著性水平降低,意味着拒绝域扩大化 E.显著性水平提高或降低,不影响拒绝域的变化 (2)β 错误(ACDE )。A. 是在原假设不真实的条件下发生的 B.是在原假设真实的条件下发生的 C.决定于原假设与实际值之间的差距 D. 原假设与实际值之间的差距越大,犯β 错误的可能性就越小 E.原假设与实际值之间的差距越小,犯β错误的可能性就越大 二、计算题 1.某牌号彩电规定无故障时间为10000 小时,厂家采取改进措施,现在从新批量彩电中抽取100 台,

ο n ο n 60 16 测得平均无故障时间为 10150 小时,标准差为 500 小时,能否据此判断该彩电无故障时间有显著增加(α =0.01)? 解:假设检验为H 0:μ0=10000,H 1:μ0<10000(使用寿命应该使用单侧检验)。n =100 可近似采用 x - μ0 正态分布的检验统计量z = 。查出α=0.01 水平下的反查正态概率表得到临界值 2.34 到 2.36 之间 (因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以 2,再查到对应的临界值)。计算统计量值 z = 3 。因为z =3>2.36(>2.34),所以拒绝原假设。 2. 假设某产品的重量服从正态分布,现在从一批产品中随机抽取 16 件,测得平均重量为 820 克,标准差为 60 克,试以显著性水平 α=0.01 与 α=0.05,分别检验这批产品的平均重量是否是 800 克。 解:假设检验为H 0:μ0=800,H 1:μ0≠800(产品重量应该使用双侧检验)。采用t 分布的检验统计量 t = x - μ0 。查出α=0.05 和 0.01 两个水平下的临界值(df =n -1=15)为 2.131 和 2.947。t = 820 - 800 =1.667。因为 t < 2.131 < 2.947 ,所以在两个水平下都接受原假设。 3. 某市全部职工中,平常订阅某种报纸的占 40%,最近从订阅率来看似乎出现降低的现象,随机抽 200 户职工家庭进行调查,有 76 户职工订阅该报纸,问报纸的订阅率是否显著降低(α=0.05)? 解:假设检验为H :P =40%,H :P <40%。采用成数检验统计量 z = α=0.05 1 水平下的临界值为 1.64 和 1.65 之间。计算统计量值 z ≈ -0.577 ,z =-0.577>- 1.64,所以接受原假设。p 值为 0.48 和 0.476 之间[因为本题为单侧检验, p 值= (1- F ( z )) 2 ] 。显然 p 值>0.05,所以接受原假设。 4. 某加油站经理希望了解驾车人士在该加油站的加油习惯。在一周内,他随机地抽取 100 名驾车人士 调查,得到如下结果:平均加油量等于 13.5 加仑,样本标准差是 3.2 加仑,有 19 人购买无铅汽油。试问: (1) 以 0.05 的显著性水平,是否有证据说明平均加油量并非 12 加仑? (2) 计算(1)的 p -值; (3) 以 0.05 的显著性水平来说,是否有证据说明少于 20%的驾车者购买无铅汽油? (4) 计算(3)的 p -值; (5) 在加油量服从正态分布假设下,若样本容量为 25,计算(1)和(2)。

假设检验习题答案

假设检验习题答案

1 1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。 解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。采用 t 分布的检验统计量n x t /0 σμ-=。查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为 2.131和 2.947。334.116/60800 820=-=t 。因为t <2.131<2.947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批

2 量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)? 解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布的检验统计量n x z /0 σμ-=。查出α=0.01水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。计算统计量值3100/5001000010150=-=z 。因为z=3>2.34(>2.32), 所以拒绝原假设,无故障时间有显著增

3 加。 3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量16371600 1.25 1.96/150/26 x Z n μσ--===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 0.05,α=26,n = 0:1600H μ=, 即,以95%的把握认为这批产品的指标 的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数 的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)? 解: 012112:, :,H H μμμμ≥< 3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)? 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n =由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)? 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n =由检验统计量0.9733 Z = ==<1.65,接受H 0:p ≤0.05. 即, 以95%的把握认为p ≤0.05是成立的.

(完整版)假设检验习题及答案

第三章 假设检验 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差 100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。 {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为 010110 2: 3.25 H :t 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041, 3.25n t t t H ααα- ??-?? ?? ==<∴Q 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S == 2N(,),μσ设总体为正态分布试在水平5%检验假设: 0101() H :0.5% H :0.5%() H :0.04% H :0.0.4% i ii μμσσ≥<≥< {}0.95()0.452% S=0.035%-4.1143 (1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。取检验统计量为X 本题中,代入上式得: 0.452%-0.5% 拒绝域为: V=t >t 本题中,0 1 4.1143H <=∴t 拒绝 {}2 2 2 002 2 2212210.95 2()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919 ii n n αα μχσσχχχχ χ χ--= ==*==>--==Q 2 构造统计量:未知,可选择统计量本题中,代入上式得: () () 否定域为: 本题中, 210 (1)n H αχ-<-∴接受 3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:

假设检验spss操作例题

单样本T检验 按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下: 1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65 假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05) 解:1)根据题意,提出: 虚无假设H0:苗木的平均苗高为H0=1.6m; 备择假设H1:苗木的平均苗高H1>1.6m; 2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据; 3)分析过程 在spss软件上操作分析,输出如下:

表1.1:单个样本统计量 表1.2:单个样本检验 由图1.1和表1.1数据分析可知,变量苗木苗高成正态分布,平均值为1.6680m,标准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。 由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检

验的p值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H1。 由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。 独立样本T检验 从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下: 样本1苗高(CM):52 58 71 48 57 62 73 68 65 56 样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73 设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。 解:1)根据题意提出: 虚无假设H0:两种抚育措施对苗木生长没有显著的影响; 备择假设H1:两种抚育措施对苗高生长影响显著; 2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”; 3)分析过程 在spss软件上操作分析输出分析数据如下;

假设检验练习题 -答案

假设检验练习题 1. 简单回答下列问题: 1)假设检验的基本步骤 答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论) 有三类假设 第二步选择检验统计量给出拒绝域的形式。 根据原假设的参数检验统计量: 对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A 拒绝域的形式由备择假设的形式决定 | H1:W为双边 H1:W为单边 H1:W为单边 第三步:给出假设检验的显著水平 第四步给出零界值C,确定拒绝域W 有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。例如:对于=有 的双边W为 的右单边W为 的右单边W为 ] 第五步根据样本观测值,计算和判断 计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受 (计算P值227页p值由统计软件直接得出时拒绝,否则接受 计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)

2)假设检验的两类错误及其发生的概率 答:第一类错误:当为真时拒绝,发生的概率为 第二类错误:当为假时,接受发生的概率为 . 3)假设检验结果判定的3种方式 答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受 2.计算P值227页p值由统计软件直接得出时拒绝,否则接受 3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受 4)在六西格玛A阶段常用的假设检验有那几种应用的对象是什么 答:连续型(测量的数据):单样本t检验-----比较目标均值 、 双样本t检验-----比较两个均值 方差分析-----比较两个以上均值 等方差检验-----比较多个方差 离散型(区分或数的数据):卡方检验-----比较离散数 2.设某种产品的指标服从正态分布,它的标准差σ =150,今抽取一个容量为26 的样本,计算得平均值为1 637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。 答:典型的Z检验 1. 提出原假设和备择假设 :平均值等于1600 :平均值不等于1600 2. 检验统计量为Z,拒绝域为双边 ~~N(0,1) (

第5章参数估计与假设检验练习题(精)

第5章 参数估计与假设检验练习题 1、设随机变量 X 的数学期望为 μ ,方差为 σ2 ,(X 1 ,X 2 ,···,X n )为X 的一个样本, 试比较 ))(1(1 2 ∑=-n i i X n E μ 与 ))(1(12∑=-n i i X X n E 的大小。 ( 前者大于后者 ) 2、设随机变量 X 与Y 相互独立,已知 EX = 3,EY = 4,DX = DY = σ2 ,试问:k 取何值时,Z = k ( X 2 - Y 2 ) + Y 2 是 σ2 的无偏估计 。 ( 16 / 7 ) 3、设正态总体 X ~ N ( μ , σ2 ) ,参数 μ ,σ2 均未知,( X 1 ,X 2 ,… ,X n )( n ≥ 2 ) 为简单随机样本,试确定 C ,使得 ∑-=+-=1 1212 )(?n i i i X X C σ 为 σ2 的无偏估计。 ( ) 1(21 -n ) 4、假设总体 X 的数学期望为 μ ,方差为 σ 2 ,),...,,(21n X X X 为来自总体 X 的一个样本, X 、S 2 分别为样本均值和样本方差,试确定常数 c ,使得 22cS X - 为 μ 2 的无偏估计量. ( 1 / n ) 5、设 X 1 ,X 2 是取自总体 N ( μ , σ2 ) ( μ 未知)的一个样本,试说明下列三个统计量 2114341?X X +=μ ,2122121?X X +=μ ,2132 1 31?X X +=μ 中哪个最有效。 ( 2?μ )

6、设某总体 X 的密度函数为:??? ??><=其它 03),(3 2θθθx x x f ,( X 1 ,X 2 ,… ,X n )为该 总体的样本, Y n = max ( X 1 , X 2 , … , X n ) ,试比较未知参数 θ 的估计量 X 3 4 与 n Y n n 31 3+ 哪个更有效? ( n > 1 时,n Y n n 31 3+ 更有效 ) 7、从某正态总体取出容量为10的样本,计算出 15010 1 =∑=i i x ,272010 1 2=∑=i i x 。求总体期望与 方差的矩估计 μ ? 和 2?σ 。 ( 15 ;47 ) 8、设总体 X 具有密度 ?? ? ??≤>=+-C x C x x C x f 01);()1 1(1???? ,其中参数 0 < ? < 1,C 为已知常数,且C > 0,从中抽得一样本 X 1 ,X 2 ,… ,X n ,求参数 ? 的矩估计量。 ( 1 - C /?X ,其中 ∑==n i i X n X 1 1 ) 9、设总体 X 服从( 0,? )上的均匀分布,其中 ? > 0 是未知参数,( X 1 ,X 2 ,… , X n )为简单随机样本,求出 ? 的矩估计量 ? ? ,并判断 ?? 是否为 ? 的无偏估计量。 ( 2?X ,其中 ∑==n i i X n X 1 1 ;是 ) 10、设( X 1 ,X 2 ,… ,X n )为总体 X 的一组样本,总体 X 密度函数为:

实验3 参数假设检验

实验编号:1四川师大SPSS实验报告2017 年3月27日 计算机科学学院2015级5班实验名称:参数假设检验 姓名:唐雪梅学号:2015110538 指导老师:__朱桂琼___ 实验成绩:___ 实验三参数假设检验 一.实验目的及要求 1.了解SPSS 特点结构操作 2.利用SPSS进行简单数据统计 二.实验内容 1.对12名来自城市的学生与14名来自农村的学生进行心理素质测验,他们的分数如下: 城市学生得分:4.75 6.40 2.62 3.44 6.50 5.30 5.60 3.80 4.30 5.78 3.76 4.15 农村学生得分:2.38 2.60 2.10 1.80 1.90 3.65 2.30 3.80 4.60 4.85 5.80 4.25 4.22 3.84 试分析农村学生与城市学生心理素质有无显著差别。 2、一汽车厂商声称其发动机排放标准的一个指标平均低于20个单位。在抽查了10台发动机之后,得到下面的排放数据:17.0、21.7、17.9、22.9、20.7、22.4、17. 3、21.8、24.2、25.4。目的是检验该申明是否正确 3. 用SPSS Samples数据文件“Employee data.sav”资料, 问:清洁工(jobcat=1)的受教育年数(Educational Level)与保管员(jobcat=2)和经理(jobcat=3)的受教育年数是否有显著差异?其中,显著性水平ɑ=0.05. ? 4. 用SPSS Samples数据文件“Employee data.sav”资料, 分析:美国企业现在工资(Current Salary)与过去工资(beginning Salary)是否有显著差异? 三、实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页) 1.数据录入

假设检验习题答案

1假设某产品的重量服从正态分布,现在从一批产品中随机抽取 16件,测得平 均重量为820克,标准差为60克,试以显着性水平 >0.01与>0.05,分别检验这批 产品的平均重量是否是 800克 解:假设检验为H 0 : % =800,比: 丄0沁00 (产品重量应该使用双侧 检验)。米 以在两个水平下都接受原假设。 2?某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩 电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此 判断该彩电无故障时间有显着增加(>0.01) ? 解:假设检验为H 。: J =10000,比7。.10000 (使用寿命有无显着增加,应该 使用右侧检验)。n=100可近似采用正态分布的检验统计量 水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验 的 接受域临界值,因此本题的单侧检验显着性水平应先乘以 2,再查到对应的临界值) 计算统计量值z 」 0150 _10000 =3。因为z=3>2.34(>2.32),所以拒绝原假设,无故 500 M/100 障时间有显着增加。 3. 设某产品的指标服从正态分布,它的标准差 (T 已知为150,今抽了一个容量为 26的样本,计算得平均值为1637。问在5%的显着水平下,能否认为这批产品的指标 的期望值卩为1600? 解 : H 0*=1600, H 1 -1600, 标 准 差 (T 已 知 , 当 — 0.05, n =26 , Z 1 _ :?/ 2 - Z 0.975 - 1.96 即,以95%勺把握认为这批产品的指标的期望值 卩为1600. 4. 某电器零件的平均电阻一直保持在 2.64 Q,改变加工工艺后,测得100个零件 的平均电阻为2.62 Q ,如改变工艺前后电阻的标准差保持在 O.06Q ,问新工艺对此零 件的电阻有无显着影响(a =0.05)? 解 : H 0:?二=2.64,已:?'2.64, 已知 标准差 c =0.06, 当 用t 分布的检验统计量 查出〉=0.05和0.01两个水平下的临界值 (df= n-1=15)为 2.131 和 2.947。t 820 一 800 60 / J6 二 1. 334 因为 t <2.131<2.947,所 查出〉=0.01 由 检 验 统 计 量 X-卩 hj~n 1637-1600 150/ , 26 = 1.25 <1.96,接受 H 0」=1600,

假设检验-例题讲解

假设检验 一、单样本总体均值的假设检验 .................................................... 1 二、独立样本两总体均值差的检验 ................................................ 2 三、两匹配样本均值差的检验 ........................................................ 4 四、单一总体比率的检验 ................................................................ 5 五、两总体比率差的假设检验 .. (7) 一、单样本总体均值的假设检验 例题: 某公司生产化妆品,需要严格控制装瓶重量。标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。 x t μ-= data6_01 样本化妆品重量 SPSS 操作: (1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量); (2)在Test Value (检验值)框中输入250;点击Options (选项)按钮,在

Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显著性水平设定为5%,即0.05,若需要改变显著性水平如改为0.01,则在框中输入99 即可); (3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。 图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显著性水平?时,要拒绝原假设(与教材不同,教材的判断标准是p

实验六 参数估计与假设检验

实验六参数估计与假设检验 一、实验目的: 学习利用spss对数据进行参数估计与假设检验(参数估计,单样本、独立样本、配对样本T 检验)。 二、实验内容: 某助眠药物临床实验征集了20位被试,试验后得数据表包含被试的性别、身高、体重、用药前睡眠时长及用药后睡眠时长。试就该数据估计性别对未使用药物时睡眠时长的影响、检验被试总体身高与165差距是否显著、对不同性别的被试的身高和体重变量进行独立样本T 检验、并检验药物是否对被试有用。 三、实验步骤: 参数估计 1、定义变量并输入数据 2、选择菜单“分析→描述统计→探索”弹出“探索”对话框,将对话框左侧的变量框中“用药前睡眠时长”添加到因变量列表,“性别”添加到自变量列表 3、点击“统计量”,弹出“探索:统计量”对话框,勾选描述性并设置均值置信区间为95%,单击“继续” 4、单击“确定”按钮,得到输出结果,对结果进行分析解释。 单样本T检验 1、定义变量并输入数据 2、选择菜单“分析→比较均值→单样本T检验”,弹出“单样本T检验”对话框,将对话框左侧的变量框中的“身高”添加到右侧的“检验变量”框中,将检验值设为165; 3、点击“选项”,弹出“选项”对话框,将置信区间百分比设为95%,点击“继续” 4、单击“确定”按钮,得到输出结果,对结果进行分析解释。 独立样本T检验 1、定义变量并输入数据 2、选择菜单“分析→比较均值→独立样本T检验”,弹出“独立样本T检验”对话框,在对话框左侧的变量列表中选变量“身高”“体重”进入检验变量框,选变量“性别”进入控制列表框 3、点击定义组,在组1(1)中填写1,组2(2)中填写2,点击继续, 4、点击“确定”按钮,得到输出结果。对结果进行分析解释。 配对样本T检验 1.打开一份可用数据。 2.选择分析→比较平均值→配对样本T检验,选择一对配对样本“用药前睡眠时长”和“用 药后睡眠时长”,将“用药前睡眠时长”拖至“variable1”,“用药后睡眠时长”拖至“variable2”,单击“选项”设置置信区间为95%,点击“确定”查看自定义结果。

有关假设检验的习题及详解

§假设检验 基本题型Ⅰ 有关检验统计量和两类错误的题型 【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验. 【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2 σ为未知时,用t 检验. 【例8.2】设总体2 (,)X N u σ ,2 ,u σ未知,12,,,n x x x 是来自该总体的样本,记 11n i i x x n ==∑,21 ()n i i Q x x ==-∑,则对假设检验0010::H u u H u u =?≠使用的t 统计量 t = (用,x Q 表示) ;其拒绝域w = . 【分析】2 σ未知,对u 的检验使用t 检验,检验统计量为 (1)t t n = = - 对双边检验0010::H u u H u u =?≠,其拒绝域为2 {||(1)}w t t n α=>-. 【例8.3】设总体2 11(,)X N u σ ,总体2 22(,)Y N u σ ,其中2 2 12,σσ未知,设 112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则 对于假设检验012112::H u u H u u =?≠,使用的统计量为 ,它服从的分布为 . 【分析】记1111n i i x x n ==∑,2 1 2 1 n i i y y n == ∑,因两样本独立,故,x y 相互独立,从而在0 H 成立下,()0E x y -=,2 2 12 1 2 ()()()D x y D x D y n n σσ+=+= + ,故构造检验统计量 (0,1)x y u N = . 【例8.4】设总体2 (,)X N u σ ,u 未知,12,,,n x x x 是来自该总体的样本,样本方 差为2 S ,对2 2 01:16:16H H σσ≥?<,其检验统计量为 ,拒绝域为 .

参数估计和假设检验

第五章参数估计和假设检验 本章重点 1、抽样误差的概率表述; 2、区间估计的基本原理; 3、小样本下的总体参数估计方法; 4、样本容量的确定方法; 本章难点 1、一般正态分布 标准正态分布; 2、t分布; 3、区间估计的原理; 4、分层抽样、整群抽样中总方差的分解。 统计推断:利用样本统计量对总体某些性质或数量特征进行推断。 两类问题:参数估计和假设检验 基本特点:(1)以随机样本为基础; (2)以分布理论为依据; (3)推断的只是一种可能的结果; (4)是归纳推理和演绎推理的结合。本章主要内容:阐述常用的几种参数估计方法。 第一节参数估计 一、参数估计的基本原理 两种估计方法

点估计 区间估计 1.点估计:以样本指标直接估计总体参数。 点估计优良性评价准则 (1)无偏性。估计量 的数学期望等于总体参数,即 , 该估计量称为无偏估计。 (2)有效性。当 为 的无偏估计时, 方差 越小, 无偏估计越有效。 (3)一致性。对于无限总体,如果对任意 ,有 ,则称 是 的一致估计。 (4)充分性。一个估计量如能完全地包含未知参数信息,即为 充分估计量。 2.点估计的缺点:不能反映估计的误差和精确程度 区间估计:利用样本统计量和抽样分布估计总体参数的可能区间 【例1】CJW 公司是一家专营体育设备和附件的公司,为了监控公司的服务质量, CJW 公司每月都要随即的抽取一个顾客样本进行调查以了解顾客的满意分数。根据以往的调查,满意分数的标准差稳定在20分左右。最近一次对100名顾客的抽样显示,满意分数的样本均值为82分,试建立总体满意分数的区间。 抽样误差 抽样误差:一个无偏估计与其对应的总体参数之差的绝对值。 抽样误差 = (实际未知) 要进行区间估计,关键是将抽样误差E 求解。若 E 已知,则区间可表示为: 区间估计:估计未知参数所在的可能的区间。 区间估计优良性评价要求 θ θ??θ?θθ=?E θ?0> εθ?2)?(θθ-E 0)|?(|=≥-∞ →εθθn n P Lim n θ?θθαθθθ-=1)??(U L P <<[]E x x +-,E

统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。 解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。采用t 分布的检验统计量n x t /0σμ-=。查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。667.116/60800820=-= t 。因为t <2.131<2.947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)? 解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布的检验统计量n x z /0σμ-=。查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。计算统计量值3100 /5001000010150=-=z 。因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。 3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2 Z z α>,

概率与数理统计第8章假设检验习题及答案

第8章 假设检验 一、填空题 1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设 00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。 2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。 3、设总体),(N ~ X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0 --<-n t n S X αμ,其中显著性水平为α。 4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记 ∑==n 1 i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- . 二、计算题 1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常? 解:设重量),(~2σμN X 05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH , 因为2σ未知,在0H 成立下,)15(~/250t n S X T -= 拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t 由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量 2 02 2)1(σS n x -= 在0H 成立条件下,2 x 服从)15(2x 分布,

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验的Stata实现本章用到的Stata命令有 例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下: 146 7 125 142 7 128 140 1 7 144 151 117 118 该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。 数据格式为

计算95%可信区间的Stata命令为: 结果为 该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71) 例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。 在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。 结果为: 该市7岁男童总体均数90%的可信区间(122.90~124.34)。 例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准

差为13.34。试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。 本题也可以应用Stata的即时命令: 结果: 差值为4.86,差值的可信区间为0.81~8.90。 例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。 Stata即时命令为 结果为 肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。 例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。 Stata即时命令为

第六章参数估计和假设检验(精)

第六章参数估计和假设检验 教学目的及要求:了解参数的点估计、区间估计的含义,掌握区间估计的几个概念,包括置信水平、置信区间、小概率事件,熟练掌握参数区间估计的计算方法,了解不同抽样组织形式下的参数估计,掌握参数估计中样本量的确定。了解假设检验的原假设和备择假设的含义,假设检验的两类错误,掌握总体均值的检验方法。 本章重点与难点:区间估计的计算与总体均值的假设检验方法。 计划课时:授课6课时;技能训练2课时。 授课特点:案例教学 第一节点估计和区间估计 一、总体参数估计概述 ?1、总体参数估计定义 ?就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。 ?2、参数估计应满足的两个条件 二、参数的点估计 ?用样本的估计量直接作为总体参数的估计值 例如:用样本均值直接作为总体均值的估计 例如:根据一个抽出的随机样本计算的平均分数为80分,我们就用80分作为全班考试成绩的平均分数的一个估计值,这就是点估计。 再例如,要估计一批产品的合格率,根据抽样结果合格率为96%,将96%直接作为这批产品合格率的估计值,这也是点估计 三、参数的区间估计 (一)参数的区间估计的含义 ?区间估计:计算抽样平均误差,指出估计的可信程度,进而在点估计的基础上,确定总体参数的所在范围或区间。

(二)有关区间估计的几个概念 置信水平 1. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平 2. 表示为 (1 - α% ) α 为是总体参数未在区间内的比例 3. 常用的置信水平值有 99%, 95%, 90% 相应的显著性水平α 为0.01,0.05,0.10 置信区间 1. 由样本统计量所构造的总体参数的估计区间称为置信区间 2. 统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间 3. 用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值 我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个 4. 由样本均值的抽样分布可知,在重复抽样或无限总体抽样的情况下,样本均值的数学期望等于总体均值, 5. 样本均值的标准差为 由此可知样本均值落在总体均值μ的两侧各为一个抽样标准差范围内的概率为0。6873 落在总体均值两个抽样标准差范围内的概率为0。9545 落在总体均值三个抽样标准差范围内的概率为0。9973 影响区间宽度的因素 1.总体数据的离散程度,用 σ 来测度 2.样本均值标准差 3.置信水平 (1 - α),影响 z 的大小 评价估计量的标准 x n x σ σ=

相关主题
文本预览
相关文档 最新文档