当前位置:文档之家› 一井定向在立井联系测量中的应用

一井定向在立井联系测量中的应用

一井定向在立井联系测量中的应用
一井定向在立井联系测量中的应用

2010年3月第30卷第1期 四川地质学报 Vol.30 No.1 Mar,2010

一井定向在立井联系测量中的应用

卜 晔

(攀枝花实嘉测绘有限公司,攀枝花 617000)

摘要:详细介绍了在立井平面联系测量中连接三角形法一井定向的测量和解算方法,特别提出了不同连接三角形解算适用不同的计算公式。并结合实践经验,阐述了一井定向连接三角形法和瞄直法的使用范围和测量注意事项。

关键词:一井定向;投点;连接三角形;瞄直法

中图分类号:TP391;P641.47 文献标识码:A 文章编号:1006-0995(2010)01-0115-04

1 概述

目前,我国地下矿山大多数采用立井—平硐开拓。在建井和矿山生产中都离不开联系测量,经常会遇到通过一个立井对上下分段巷道进行联系测量,即通常所说的一井定向。一井定向是通过几何学原理向井下传递坐标和方位角的测量方法。其目的就是将井上的平面坐标和方位角传递到井下经纬仪(全站仪)导线的起始点和起始边上,使立井上下采用同一平面坐标系统。概括地说,就是在井筒内悬挂两根钢丝(图1),钢丝的一端固定在井口上方,另一端系有定向专用的重锤自由悬挂至定向水平。再按井上坐标系统求出两垂线AB的平面坐标及其连线的方位角。在定向水平通过测量把垂线与井下永久点连接起来,这样就能将井上的方向和坐标传递到井下达到定向的目的。

2 定向测量

2.1 定向前的准备工作

1)查看了立井井筒的断面和提升系统对井筒占用情况,确定两垂线间的最大距离。踏勘井上、下测量路线,选择了合理的连接图形和测量路线。

2)根据《煤矿测量规程》规定,埋设与定向有关

的3个测点(C点、C′点和D′点),保证D C和 C

′D′间距均大于20m。并连测C点的坐标,保证C

点的坐标精度可靠。

3)准备投点所用的手摇绞车、滑轮、钢丝、定向

重锤、水桶以及定向所用的经纬仪(或全站仪)一台、

50m钢尺测距一把。

4)规定好井上下联络方式(矿用电话或对讲机)。

2.2 投点

所谓投点,就是在井筒中悬挂重锤线至定向水平(图1-1)。由于井筒内气流引起垂线偏斜、垂线摆动、井筒内水滴影响以及钢丝弹性等因素影响,致使悬垂线偏斜产生投点误差。投点误差引起两垂线连线方向的误差称为投向误差。为保证投点精度,必须减少投向误差,减少投向误差的方法是加大两垂线间的距离和减少投点误差。由于井筒直径有限,两垂线间的距离不能无限增大(一般根据井筒直径和井筒内的提升系统占用空间来确定)。因此,在投点时必须采取以下措施减少投点误差:

1)采用高强度小直径钢丝,加大重锤重量(根据井深来确定,一般30kg至50kg),来减少对风流的阻力。

2)将重锤置于稳定液体中,以减少钢丝摆动。实践证明机油作稳定液比水效果好得多。

3)测量时应关闭风门或暂停风机,以减少风流的影响。

4)挂上重锤后必须检查钢丝是否自由悬挂,通常用信号圈法和比距法。信号圈法,用细金属丝做成

收稿日期:2009-11-23

作者简介:卜晔(1973—),男,四川梓潼人,工程师,从事采矿研究工作

115

一井定向在立井联系测量中的应用

116

2~3cm 的小圈套在钢丝上,对每一根钢丝应相隔一定时间放下2~3个圈,以检查垂线是否自由悬挂;比距法,如果井上下所量垂线间距的值之差不大于2mm 时,便认为是自由悬挂的。

2.3连接

2.3.1连接三角形法

是根据井上下井筒附近埋定的连接点C 和C′,在井上下形成以两垂线连线AB 为公共边的两个三角形ABC 和AB C′,ABC 和AB C′称为连接三角形(图2)。为了提高精度,要求点C 与C′应尽可能地在AB 延长线上,即角度γ和α及

γ′和β′不应大于2°,这样便构

成最有利的三角形,一般称之为延

伸三角形。当然,根据实际情况并

不是所有立井测量的连接三角形都

能布设成延伸三角形,只是要求在

三角形解算时根据不同的内角大小

选用不同的公式来计算。

1)观测方法及精度检查:①测角,在连接点C 上用测回法测量角度测角γ和φ。在实际工作中,当CD 边小于20m 时,在C 点的水平角观测,仪器应对中三次,每次对中时转动仪器基座120°。每次对中后观测一个全圆测回,其测角精度执行 《煤矿测量规程》规定。当CD 边大于20米时,观测两个全圆测回。依上法进行井下定向水平上的连接三角形测量。在井下测角时,为提高测角精度,在垂直与经纬仪(或全站仪)视线方向的钢丝后面放一带毫米刻划的标尺,在连接点观测垂线的摆动,取10余次读数的平均值。在平均位置处做标记以代替钢丝而进行角度观测。②量距,丈量连接三角形的三个边长a、b 及c。在垂线稳定的情况下,应用钢尺的不同起点丈量6次,读数估读到0.5毫米,同一边各次观测值的互差不得大于2㎜,取其平均值作为丈量结果。在垂线摆动情况下,井下量边时,应将钢尺沿所量边的方向固定,然后用摆动观测的方法至少读取6个数。每条边用上述方法丈量2次,互差不得大于2㎜,取其平均值做为丈量结果。③外业精度检查:从连接三角形的布置形式来看,外业精度检查有两种情况:

当α<20°,β>160°时。根据规程应该用余弦公式检核:c 2计=a 2+b 2-2abcosγ d=c 测-c 计 d′=c

′测-c′计

规程规定:d 值小于±2㎜,d ′小于±4㎜。从计算结果看符合规程规定可以进行内业解算,否则重测。 当α>20°,β<160°时。根据规程应该用边长求半角公式来检核:p=1/2(a+b+c) tg (γ/2)计=±√((p-a)(p-b)/(p(p-c))) d=γ测-γ计 d ′=γ′测-γ′计

规程规定:用边长求半角公式d 或d ′小于1′30″。从计算结果看符合规程规定可以进行内业解算,否则重测。

2)连接三角形法的内业解算:从连接三角形来看,其内业解算也分两种情况进行:

当α<20°,β>160°。根据规程应该用正弦公式解算:由正弦公式:a/sinα=b/sinβ=c/sinγ 得:α=sin -1(asinγ/c) β=sin -1(bsinγ/c)

三角形内角和为180°,可以计算出闭合差f,由于f 的误差值很小,将它进行平均分配给α、β。从而得到角度改正。f=α+β+γ-180°得:α改=α±f/3;β改=β±f/3,有一种特殊情况就是当连接三角形布设成最有利的延伸三角形,即角度α<2°,β>178°时可以运用正弦定理的简化公式来计算:α〃=a/c×γ〃 β〃=b /c×γ〃;其余步骤和α<20°,β>160时计算一样。

当α>20°,β<160°。根据规程应该用边长求半角公式来解算:p=1/2(a+b+c) tg (γ/2)=±√((p-a)(p-b)/(p(p-c))) 计算出γ。同理可以推算出α、β。

三角形内角和为180°可以计算出闭合差f,由于f 的误差值很小,将它进行平均分配给α、β。从而得到角度改正。f=α+β+γ-180°得:α改=α±f/3;β改=β±f/3

在计算井下连接三角形时,必须用井下定向水平丈量的和计算的两垂秋线间的距离的平差值进行计算。经检验计算合乎要求后,便可按导线计算表格来计算各边方位角及各点坐标。为了校核,一井定向应独立进行两次,两次独立定向求得的井下起始边的方位角互差不得超过2′。当外界条件较差时,

在满

2010年3月第30卷第1期 四川地质学报 Vol.30 No.1 Mar,2010 117足采矿工程要求的前提下,互差可放宽至3′。

2.3.2 瞄直法

瞄直法一井定向可以看作是连接三角形延伸的一个特例:即连接点选择在井筒内两垂线一致的方向上,设垂线稳定不动,此时连接角为零,依此按导线测量计算定向分段连接点的坐标和定向边方位。如图3所示,在选择连接点时,先粗瞄两垂线A、B方向,在此方向线上的C 点或C′点安置经纬仪(或全站仪),整平后用望远镜精确瞄准A、B两垂线,按垂直于A、B连线的方向移动仪器,而后再用望远镜瞄准两垂线,直至C 点或C′点精确地选择在A、B方向上。只要在C 与C′点上安置经纬仪(或全站仪),测出βc 和βc’角;量出CA、

AB 、BC ′边长就完成了定向工作。

瞄直法的内业计算就是进行导线推算,

此处不再介绍。

1)瞄直法的优缺点。采用瞄直法定

向最大的优点是不用进行连接三角形的

解算,只要垂线稳定、连接点选择的好,同样也能达到较好的定向效果。但瞄直法的缺点是只有非常熟练的测量人员,操作才能达到精度要求。因此,这种方法仅在精度要求不高的小型矿井定向中才较为适用。

2)瞄直法一井定向应用范围:分段巷道的开切位置及走向一致,是采用瞄直法进行一井定向的先决条件、否则会因分段巷道走向不同而无法选择连接点进行瞄直。

在分段高度较小的两分段之间进行一井定向,操作时可较方便地稳定垂线和上下联系,并可在小范围内移动垂线以适应连接点,使连接点与两垂线方向一致。

目前,在民营矿山开采中,对于一些储量规模较小的矿体多采用小分段采矿法,其分段高度一般不超过10m,在采矿设计时,相邻上下分段巷道走向多数基本一致、巷道长度一般不会太长,因此,在保证采矿生产要求的前提下,应更多地选择瞄直法进行定向测量。

3 结束语

关于一井定向的资料作者查阅了不少,大多资料数在连接三角形的选择上要求构成最有利的延伸三角形,即点C 与C′应尽可能地在AB 延长线上,即角度γ和α及γ′和β′不应大于2°。但根据实际情况,并不是所有的连接三角形都能布设成延伸三角形,只要根据不同的连接三角形选用不同的公式来计算(根据上面讲解的方法来选择适用公式)。并且通过多个矿山的立井联系测量实践中证明非延伸三角形也是能满足测量要求的。在瞄直法的选择上,分段巷道的开切位置及走向一致,是采用瞄直法进行一井定向的先决条件、否则会因分段巷道走向不同而无法选择连接点进行瞄直。小矿山在采矿设计时,相邻上下分段巷道走向多数基本一致、巷道长度一般不会太长,因此,在保证采矿生产要求的前提下,应更多地选择瞄直法进行定向测量,既简单又快捷。

参考文献:

[1] 中国矿业学院测量教研室. 矿山测量学(上册)[M]. 北京:煤炭工业出版社, 1979.

[2] 白裕良, 徐云龙, 杨赞行. 矿山测量[M]. 北京:煤炭工业出版社, 1982.

The Application of Single Shaft Orientation

to the Shaft Connection Survey

PU Ye

(Panzhihua Shijia Topographic Mapping Company Limited, Panzhihua 617000)

Abstract : This paper deals with the application of single shaft orientation to the shaft connection survey with calculation of different connection triangles by use of different formulae and with scope of sighting line method and connection triangle method.

Key words : single shaft orientation; projective point; sighting line method; connection triangle method

定向井、水平井测量技术

第四章定向井、水平井测量技术 第一节定向井、水平井测量的性质和特点 一. 钻井过程中测量的方法、媒介和基准 石油钻井过程中的测量属于工程测量的一种类型。从物理意义上讲, 测量井下钻 具的工具面角, 即为井下钻具定向或测量井眼的轨迹均属于空间姿态的测量。由于石 油钻井工程的特殊性使得这一测量过程必须借助专门的工具和仪器, 采取间接测量的 方法来完成。 目前, 石油钻井过程中的测量需要借助三种媒介, 即大地的重力场、大地磁场和 天体坐标系, 由此产生了与这三种测量媒介有关的测量仪器。 1. 借助于重力场测量井斜角或高边工具面, 采用的测量元件为测角器、罗盘重锤或重力加速度计等。这类仪器的测量基准是测点与地心的连线, 即铅垂线。 2. 借助于地磁场测量方位角或磁性工具面, 采用的测量元件为罗盘或磁通门等。这类仪器的测量基准是磁性北极, 所以磁性仪器测量的方位角数据必须根据当地的磁 偏角修正成真北极, 即地理北极的数据。 3. 借助于天体坐标系测量方位角或磁性工具面, 采用的测量元件为陀螺仪。陀螺仪为惯性测量仪器, 不以地球上任何一为基准, 这类仪器下井测量之前必须对陀螺仪 的自转轴进行地理北极的方位标定。 二. 钻井过程中测量的特点 1. 钻井过程中的测量是间接测量, 必须借助专用工具和仪器完成。而且根据测量仪器的数据记录和传输方式的不同, 钻井测量分为实时测量和事后测量。 2. 测量仪器的尺寸受到井眼和钻井工具的限制, 特别是下井仪器的径向尺寸必须能够下入套管和钻具内, 而且不会因仪器的下入而影响泥浆的流动或产生过大的泥浆 压降。 3. 下井仪器受到地层和泥浆的高压, 仪器的保护筒和密封件必须能够承受这种高压, 而且还应具备一定的安全系数。 4. 由于地层的温度随着井深变化, 下井仪器是在高于地面温度的环境里工作, 要求下井仪器具有良好的抗高温性能, 一般称耐温 125℃以下的仪器为常温或常规仪器, 称耐温 182℃以下的仪器为高温仪器。 5. 某些仪器在使用过程中要承受冲击 (如单多点测斜仪的投测)、钻具转动 (如 转盘钻具中的 MWD 仪器)、钻头和钻具在钻进过程中的振动 (如 MWD 和有线随钻测斜仪) 等。 二. 测量仪器技术发展情况 第二节测量仪器分类和应用范围 一. 测量仪器分类 (图片: 测量仪器分类)

坐标方位角计算

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

井巷控制测量及一井定向

井巷导线测量及一井定向 测量是矿山系统基础建设和生产过程中不可缺少的一项技术工作。它在矿山企业中的主要任务就是为矿山建设和生产过程中的各种工程设计和施工服务。 井下测量和地面测量一样,必须首先从控制测量开始。井下控制测量也包括平面控制测量和高程控制测量。井下由于受巷道的限制,平面控制测量只能沿巷道布设经纬仪导线;高程控制测量则在水平巷道用几何水准测量,在倾斜巷道用经纬仪高程测量。井下控制的坐标系统与高程系统应与地面控制系统一致。因此在作井下控制测量之前,应将地面坐标系统和高程系统传递到井下,求出与地面坐标系统一致的井下经纬仪导线起算边的坐标方位角和其端点的坐标,以及与地面高程系统一致的井下高程起算点的高程。 1.1、井下导线测的量的仪器和工具: 在地面经纬仪导线测量中,要用经纬仪测角、用钢尺量距离。同样,井下经纬仪导线也用经纬仪测角、用钢尺量距离。所不同的是,由于井下导线一般都设在巷道顶板上,测角时经纬仪要在点下对中,因此望远镜上应设有供对中用的表示仪器中心的镜上中心;由于井下黑暗、潮湿、矿尘大,在瞄准和读数时,均应用给予照明,常用的照明设备有矿灯和手电,另外要求仪器的密封性要好;由于井下受采掘施工和巷道形状的限制,导线边长都比较短,加之点位设在顶板,所以为了方便和提高观测精度,在前后视准点上都采用悬挂垂线来作为

战标。这些都是井下导线测量的一些特点。 关于井下用的经纬仪,根据我国矿山目前的具体情况,一般地面用的经纬仪经可用于井下。井下经纬仪导线水平角观测角所采用的仪器当倾角小于30°时的各向观测限差,见表1-1。 井下导线测角仪器及观测限差 在倾角大于30°的井巷中,各项限差可放宽到表中规定的1.5倍。 1.2选点埋点和点的编号 1.导线点间应通视良好; 2点位应设在顶板岩石坚硬的地点,以便于保存和工作安全; 3所选点要避免淋水,便于安置仪器,容易寻找,易于保存,在点下便于安设瞄准标志。 4导线点应一律进行编号。在一个矿井内导线点很多,编号不能重复,以免混乱。编号时应尽量使其简单又能按次序排列,并便于根据导线点的编号判别其位置。 1.3仪器的安置及注意事项: 1在测量点安置经纬仪时,先在测点上挂好垂球,根据垂球和人的身高安置三脚架,调整架腿使架头大致水平和对中,并踩固架腿; 2将垂球线打一活结,调整活结使垂球升高,再将仪器头安在脚架上,调整脚螺旋使上盘水准管气泡居中; 3根据竖盘读数将望远镜调到水平位置(90°或270°),调整垂球线活结,下放垂球到适当高度,前后左右平行移动仪器基座,使镜上中心

竖井联系测量方法比较探讨

地下隧道竖井联系测量方法比较探讨随着城市发展的需要,国内很多城市都陆续开展了轨道交通工程的建设,以保证城市交通的顺畅,确保人民群众出行的便利。我市从上世纪八十年代末就开始首条轨道交通线的建设,目前已运营的轨道交通线达到4条。06年12月19日,随着3号线北延伸段的正式通车试运营,我市轨道交通的运营里程达到了139公里,超越香港和北京成为全国第一。 为有效利用城市空间,我市轨道交通工程主要采用地下隧道的形式进行。在进行地下隧道的施工建设时,主要是通过竖井(车站端头井或中间工作风井)提供工作面进行施工,因此如何保证地下车站以及区间隧道严格按设计施工就成为建设者们的首要问题。竖井联系测量(平面)的目的就是将地面控制网的坐标和方位按要求精度准确地传递给地下隧道施工控制导线(或施工导线),为施工提供控制依据。笔者根据近期参加轨道交通11号线第三方测量的工作经验,将地下隧道竖井联系测量的常用几种方法进行分析比较,提出一种适合我市情况的联系测量方法,为今后的地下隧道施工建设提供一些参考经验。 目前国内绝大多数城市在轨道交通建设中,竖井联系测量基本上采用以下四种方法进行:陀螺定向法、钻孔投点法、联系三角形法和导线定向法。以下就这几种方法分别作个分析比较。 1 测量原理 1.1 陀螺定向法 陀螺定向法是综合利用全站仪、光学垂准仪(或重锤球)以及陀螺经纬仪等仪器进行导线联系测量的一种方法。首先利用光学垂准仪(或重锤球)将地面车站端头井的点位沿同一铅锤线方向投影到端头井的井底,同时利用全站仪测量井上、井下各导线点的角度与距离、利用陀螺经纬仪测量井上、井下的相关导线边的陀螺方位角,从而求算出井上、井下投影点在空间的平面夹角,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。 如下图1所示,K0、K1为地面趋近导线点,其中K0为近井点;T1、T2为地面车站端头井投影点;T1′、T2′分别为T1、T2投影到车站端头井底部的投影

定向井技术(入门基本概念)

定向井技术(入门基本概念)

定向井技术(部分) 编制:李光远 编制日期:2002年9月9日 注:内部资料为企业秘密,任何人不得相互传阅或外借泄露!!!

一、定向井基本术语解释 1)井眼曲率:指在单位井段内井眼前进的方向在三维空间内的角度变化。它既包含了井斜角的变化又包含着方位角的变化,与“全角变化率”、“狗腿度严重度”都是相同含义。 K= v a SIN l l a 2*22 ?? ? ????Φ+??? ???? 式中: 均值 相邻两点间井斜角的平际长度 相邻两测点间井段的实的增量相邻两测点的增量相邻两测点----?--?Φ--?v a l a 方位角井斜角 2)井斜角、方位角和井深称为定向井的基本要素,合称“三要素”。 3)αA :A 点的井斜角,即A 点的重力线与该点的井眼前进方向线的夹角。单位为“度”; 4)ΦA :A 点的井斜方位角,亦简称“方位角”,即从正北方向线开始,顺时针旋转到该点井眼前进方向线的夹角。单位为“度”; 5)S B ’:B ’点的水平位移,即井口到B ’点在水平投影上的直线距离,也称“闭合距”。单位为“米”; 6)ΦS :闭合距的方位角,也称“闭合方位角”。单位为“度”; 7)L A :A 点的井深,也称“斜深”或“测深”,即从井口到A 点实际长度。单位为“米”; 8)H A :A 点的垂深,即L A 在H 轴上的投影。 H A 也是A 点的H 坐标值。同样,A 点在NS 轴和EW 轴上的投影,也可得到A 点的N 和E 坐标值。 9)磁偏角:某地区的磁北极与地球磁北极读数的差异; 10)造斜点:在定向钻井中,开始定向造斜的位置叫造斜点、通常以开始定向造斜的井深来表示; 11)目标点:设计规定的、必须钻达的地层位置,称为目标点; 12)高边:定向井的井底是个呈倾斜状态的圆平面,称为井底圆。井底圆上的最高点称为 高边。从井底圆心至高边之间的连线所指的方向,称为井底高边方向。高边方向上水平投影的方位称高边方位,即井底方位; 13)工具面:造斜工具面的简称。即在造斜钻具组合中,由弯曲工具的两个轴线所决定的 那个平面; 14)工具面角:工具面角有两种表示方法: A 、高边基准工具面角,简称高边工具角,即高边方向线为始边,顺时针转到工具

地铁测量方案

第一章工程概况 本工程段为地铁号线站~ 站区间工程,设计范围为K3+582.820~K4+975.405m,总长1392.585m,左右双线均采用矿山法施工,区间隧道沿造甲街和丰台东大街下方设置,整体呈南北走向,隧道覆土10~19.5m,周边房屋密集;由于单线隧道较长在区间内拟开3个竖井施工,因地面条件的制约每个施工场区都比较狭小,而隧道埋深又较深,给施工中的测量工作带来很大的困难。施工工作面多,测量工作量大,施工期间需要更好的安排测量工作,满足施工需要。

第二章施工测量准备 2.1 施工测量仪器准备 施工测量使用仪器表详见表2-1。 表2-1 施工测量使用仪器表 所有测量仪器必须经过计量检测部门检测并且具有检定合格证方可使用。 2.2 施工测量人员组织 公司拟设专业测量队,具体人员配备(所有测量人员必须持有效证件上岗): 测量工程师2名 高级测量放线工2名 测量放线工4名 2.3 施工测量技术要求 1)测量计算工作的要求 依据正确(对原始数据要认真仔细地逐项审阅与校核)、方法科学(各项计算要在规定的表格中进行)、计算有序(各项计算前后有联系时,前者经校核无误后,后者方可开始)、步步校核(各项计算应由不同的人用不同的方法独立进行,结果正确后方可进行下一步工作)、结果可靠(计算中所用的数据应与观测精度相适应,在满足精度的前提下,应及时合理地删除多余数字,以便提高计算速度,多余数字的删除应遵循“四舍、六入、五凑偶”的原则)。 2)测量记录工作的要求 原始真实(不允许抄录)、数字正确(不允许有涂改现象)、内容完整(表头填齐,附有草图和点志记图等)、字体工整。 3)测量观测的精度要求 工程自始至终保持等精度观测,观测人员、记录人员、仪器、测量方法和测量路线等基本保持不变。

竖井测量方案

昆明市轨道交通*号线一期工程***隧道*号竖井开挖 (CK11+140) 测量方案 中铁**局集团公司 2010年8月5日

第一章主要施工技术方案 一、项目简介 昆明市轨道交通*号线一期工程***隧道*号竖井,中心里程CK11+140,纵向长10米,横向宽16米,深度26米。竖井两侧连接矿山法施工段隧道,施工期本竖井作为隧道施工的工作面,隧道施工结束后作为通风口使用。通常由于地面测量、地下控制测量以及施工放样中的误差等诸多因素的影响,在实际贯通隧道中心线在贯通面不能理想衔接而造成错位,形成隧道施工贯通误差。隧道施工贯通误差可分为三部分;一沿隧道中线方向的纵向贯通误差、二垂直隧道中线方向的横向贯通误差、三铅垂面上的高程贯通误差。在地铁隧道贯通中,横向贯通与高程贯通精度指标最为重要。是衡量隧道掘进准确度的标准。我们拟在本竖井施工中采用以下测量方法。 1联系三角形测量 联系三角形通过合理构造三角形形状和测量装置可达到较高的 精度。如图1所示,我们在井口架设框架,固定两根钢丝L1、L2,钢丝底部悬挂20kg的重锤,并使重锤浸入油桶中,但不能与油桶有接触, 钢丝在重锤重力作用下绷紧,且由于油桶内油的阻尼而保持铅直, 所以,L1、L2起了传递坐标的作用。在实测传递时,首先需要在井口精确定位A0,然后在钢丝上标定两点a1及a2,精确测量三角形a1A0b1 的边长S1、S2、S3及连接角a、β之角值。同样在井底选择B0,并在钢 丝上选出a2及b2,精确丈量三角形a2B0b2的边长S'1、S'2和S'3传递 角a'、β'之角值。利用定向原理可以得到井下控制边B0-B1的方位角以及井下控制点B0的坐标。联系三角形在竖井定位中起传递方位

联系测量中矿井的一井定向

联系测量中矿井的一井定向 【摘要】竖井一井定向属于矿山平面联系测量中较为复杂且经常遇到的一项工作,其施测由投点、摆动观测、构建连接三角形、获取观测数据和进行内业数据处理等步骤组成。一井定向的重点是进行投点和作摆动观测,另外,在构建连接三角形时要注意点位之间要满足一定条件。 【关键词】联系测量;定向;投点;连接三角形 1 平面联系测量及一井定向简介 在采矿工程中,较早期的测量工作是将地面的平面坐标系统传递到地下,从而统一地上、井下平面坐标系统,以确保矿井在平面上的顺利建设和安全生产,该项工作称为平面联系测量。 平面联系测量的具体任务是通过经纬仪导线测量并计算得到井下导线起算边的坐标方位角及起算点的平面坐标x和y的值,并同时对测量的精度和误差进行控制及预计。 在平面联系测量中,坐标方位角传递的误差是主要的,因此又把它称为矿井定向。 矿井定向按照其性质可分为几何定向和陀螺定向两种,而几何定向又分为一井定向和两井定向。在通过平硐和斜井以及竖井的几何定向中,其中前两种定向较为简单,而在竖井几何定向中,又以一井定向较复杂且常见。本文有意对矿山一井定向的基本原理和测量过程进行总结,并结合实例分析对其加以说明,以期在今后工作中遇到此类问题时能够解决的更好。 2 一井定向的基本原理 2.1 钢丝投点及外业施测过程 进行一井定向时,在竖井井筒中悬挂两根钢丝垂球线(如图1),投点时利用绞车盘住钢丝向下放,并使用信号圈检查钢丝垂直度,钢丝下放到井底后挂上30kg的圆盘式垂球。 挂上垂球后的钢丝呈摆动状态,为了确定其投点位置,在井下放置能够确定钢丝摆动中心的简易支架,然后作摆动观测。根据井下条件,安置交角位于45°-135°之间的两台经纬仪,并在其垂直方向分别放两个直尺,由于钢丝摆动,用两台经纬仪分别观测钢丝在两个直尺摆动的左右最大读数,连续取13个读数,取其左右平均值,作为钢丝铅垂状态的位置读数。同法进行两次,当较差不大于1mm时,取其平均值作为最终值。

坐标方位角计算实例

坐标方位角计算实例 在市政工程施工测量过程中,经常会遇到根据已知导线控制点,利用经纬仪、钢尺测设待定点的实际问题,解决此类问题往往需要计算坐标方位角或点位坐标,根据工作中实践体会将计算方法总结如下: 1 根据已知控制点计算坐标方位角,测设放样点平面位置(极坐标法) 首先明确方位角的概念,方位角是指从直线起点的标准方向北端开始,顺时针量到直线的夹角,以坐标纵轴作为标准方向的称为坐标方位角(以下简称方位角)。测量上选用的平面直角坐标系,规定纵坐标轴为x轴,横坐标轴为y轴,象限名称按顺时针方向排列(图1),即第Ⅰ象限x>0 y>0;第Ⅱ象限x<0 y>0;第Ⅲ象限x<0 y<0;第Ⅳ象限x>0 y<0,或许对于测量坐标系与数学坐标系的x、y 轴位置不同,象限规定不同,觉得难理解,其实能注意到测量上的平面直角坐标系与数学上的平面直角坐标系只是规定不同,x轴与y轴互换,象限的顺序与相反,因为轴向与象限顺序同时都改变,只要真正理解了方位角的定义,测量坐标系的实质与数学上的坐标系是一致的,因此数学中的公式可以直接应用到测量计算中。 1.1 按给定的坐标数据计算方位角αBA、αBP ΔxBA=xA-xB=+123.461m ΔyBA=yA-yB=+91.508m 由于ΔxBA>0,ΔyBA>0 可知αBA位于第Ⅰ象限,即 αBA=arctg =36°32'43.64" ΔxBP=xP-xB=-37.819m ΔyBP=yP-yB=+9.048m 由于ΔxBP<0,ΔyBP>0 可知αBP位于第Ⅱ象限, αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67" 此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+ arctg 当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°+ arctg 1.2 计算放样数据∠PBA、DBP ∠PBA=αBP-αBA=129°59'59.03" 1.3 测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。 2 当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置 上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点

大连地铁竖井联系测量施工方案讲课稿

大连地铁一期工程204标段 南南竖井联系测量施工方案 中国中铁中铁九局集团大连地铁一期工程第204标段项目经理部

目录 第 1 章工程概况 (3) 第 2章测量作业依据 (3) 2.1地面桩点 (3) 2.2测量规范 (3) 第 3 章测量作业任务和测量管理组织机构 (4) 3.1测量作业任务 (4) 3.2测量组织机构 (4) 3.3测量人员及设备配置 (4) 3.4施工测量程序 (5) 第 4 章联系(定向)测量 (6) 4.1定向测量 (6) 4.2高程传递 (9) 第 5 章施工测量管理制度及技术保障措施 (10) 5.1 施工测量管理制度 (10) 5.2测量人员安全保证措施 (10) 5.3测量技术保证措施 (10)

第1章工程概况 大连市地铁一期工程南关岭镇站-南关岭站区间的隧道工程,起讫里程为: DK39+493.801?DK40+951.924,区间全长1458.813米,其中204标段主要施工任务为DK40+234.801-DK40+951.024,全长711.789米。其间在DK40+391 设置竖井一处。 第2章测量作业依据 2.1地面桩点 本工程测量方案依据大连勘测设计研究院提供的“工程测量交接桩书”资料。 2.2测量规范 本工程测量方案遵守: 1、《城市轨道交通工程测量规范》GB5030—2008; 2、《城市测量规范》(CJJ 8-99); 3、《工程测量规范》(GB 50026-93); 4、《建筑变形测量规程》(JGJ/T 8-97 ); 5、《地下铁道工程施工及验收规范》(GB 50299-1999);

&《全球定位系统(GPS测量规范》CH200—92 。

测量常用计算公式.

测量常用计算公式 一、 方位角的计算公式 二、 平曲线转角点偏角计算公式 三、 平曲线直缓、缓直点的坐标计算公式 四、 平曲线上任意点的坐标计算公式 五、 竖曲线上点的高程计算公式 六、 超高计算公式 七、 地基承载力计算公式 八、 标准差计算公式 一、 方位角的计算公式 1. 字母所代表的意义: x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角 2. 计算公式: ()()212212y y x x S -+-=

1)当y 2- y 1>0,x 2- x 1>0时:1 21 2x x y y arctg --=α 2)当y 2- y 1<0,x 2- x 1>0时:1 21 2360x x y y arctg --+?=α 3)当x 2- x 1<0时:1 21 2180x x y y arctg --+?=α 二、 平曲线转角点偏角计算公式 1. 字母所代表的意义: α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角 2. 计算公式: β=α2-α1(负值为左偏、正值为右偏) 三、 平曲线直缓、缓直点的坐标计算公式 1. 字母所代表的意义: U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD ) T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= D :JD 偏角,左偏为-、右偏为+

2. 计算公式: 直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°) Y ′=V+Tsin(A+180°) 缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D) Y ″=V+Tsin(A+D) 四、 平曲线上任意点的坐标计算公式 1. 字母所代表的意义: P :所求点的桩号 B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1 C :J D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标 T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= I=C -T :直缓桩号 J=I+L :缓圆桩号 s L DR J H -+ =180 π:圆缓桩号

定向井钻井工程师技术等级晋升标准

定向井钻井工程师技术等级晋升标准 四级工程师 1专业理论知识 1.1了解钻井工艺的主要环节(如钻进、下套管、注水泥、电测等)及其实现方法; 1.2能看懂定向井工程设计书内容; 1.3熟知各种常规钻具和套管的技术规范和机型; 1.4了解钻井设计的基本原则、设计程序、设计内容; 1.5掌握井眼轨迹计算参数和计算方法; 1.6掌握定向井专用工具的工作原理及其技术规范; 1.7掌握单点、电子多点、地面记录陀螺的工作原理和技术规范; 1.8掌握井下动力钻具的工作原理、内部结构和技术规范; 1.9了解海洋钻井平台主要设备及其技术性能规范; 1.10了解海洋钻井平台主要仪器、仪表的用途及其技术性能; 1.11掌握海洋常用的钻井工具及其技术规范; 1.12了解钻井取芯基本原理; 1.13了解海洋钻井作业的基本安全常识。 2操作知识 2.1掌握单点、电子多点和地面记录陀螺操作技能,能独立地进行井眼轨迹参数测量和计算; 2.2会正确选用定向井专用工具,并能正确组合; 2.3会正确选用动力钻具,掌握其正确操作要领; 2.4能正确判断钻井指重表、泵压表、扭矩表、流量表,并根据以上仪表读数判断井下情况(如钻压、遇卡、遇阻等); 2.5会正确选用配合接头及其上扣扭矩; 2.6能正确选用各种钻井工具,并掌握其操作要领; 2.7会看懂较复杂的钻井工具装配图,并能绘制简单零配件的机加工图; 2.8会记录钻井班报表、日报表以及定向井测量数据记录; 2.9能进行日常定向井专业英语交流; 2.10能识别各种型号取芯工具、取芯钻头基本类型和应用范围、性能参数,以及组装、保

养取芯工具的技能。 2.11油田常用单位(英制)和公制单位熟练换算; 2.12能用英语进行作业技术交流。

竖井联系测量

竖井联系测量 人民交通出版社 一、竖井联系测量的任务 在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。其中坐标和方向的传递,称为竖井定向测量。通过定向测量,使地下平面控制网与地面上有统一的坐标系统。而通过高程传递则使地下高程系统获得与地面统一的起算数据。 按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种: 1.经过一个竖井定向(简称一井定向); 2.经过两个竖井定向(简称两井定向); 3.经过横洞(平坑)与斜井的定向; 4.应用陀螺经纬仪定向。 竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。 平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向

和高程引入地下。由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。其作业方法与地面控制测量相同。 斜井的联系测量方法与平峒基本相同。不同处是隧道坡度较大,导线测量要注意坡度的影响。另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。 由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。 高程联系测量是将地面高程引入地下,又称导入高程。 显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。如此种种,说明联系测量是非常重要的。 几何定向 几何定向分一井定向和两井定向。 1.一井定向 一井定向是在井筒内挂两根钢丝,钢丝的上端在地面,下端投到定向水平。在地面测算两钢丝的坐标,同时在井下与永久控制点连接,如此达到将一点坐标和一个方向导入地下的目的。定向工作分投点和连接测量两部分。

地铁隧道联系测量方法及精度控制讲解

地铁隧道联系测量方法及精度控制 (王伟中交隧道盾构公司江西南昌30029) [摘要] 本文以南昌地铁一号线青山湖站至高新大道站为例,对盾构隧道区间联系测量方法进行详细的介绍。同时对数据的处理方法,对投点方法及两井定向精度进行了相关分析。 [关键词] 联系测量两井定向精度分析数据处理 1前言 随着中国的城市化进程的加快,城市人口的增加给城市交通带来的压力日渐明显。然而,城市化的发展绝不可以被交通压力所约束。因而与我们传统的地上交通相对应的地下交通就成为缓解城市交通压力的新渠道。这就是目前的大、中城市正在极力发展的地铁交通。地铁的发展主要依赖与地下工程隧道开挖等的相关技术的进步,了解相关的主要技术就会知道地铁测量对地铁隧道尤为重要,这是地铁施工的最重要的基本条件。 2工程背景概况 青山湖大道站~高新大道站区间里程范围:SK20+052.554~SK20+902.822,区间长度为850.268双线延米,下行线在XK20+840.204里程处设置XK20+840.000长链(XK20+840.204=XK20+840.000 长链0.204),区间线路间距13.4~15.0m,线路包括2个曲线,曲线半径均为3000m。区间最大坡度为22‰,区间隧道覆土厚度在10.0m~16.5m。本区间设置一处联络通道(兼泵站),中心里程在为:SK20+502.007和XK20+502.042。区间西端为青山湖大道站,东端为高新大道站。青山湖大道站~高新大道站区间区间隧道,线路在北京东路下方。隧道结构距离地面319#、320#、321#、371#(19层)建筑物建筑物均在14m以上,地面建构筑物无需采取特殊处理和保护措施。 根据盾构工程筹划,两台盾构机从青山湖大道站东端出发,向东掘进到高新大道站西端结束。 3联系测量 在地铁隧道推进前必须要进行联系测量,即将车站地面平面坐标系统和高程系统传递到井下,使车站上下能采用同一坐标系统所进行的测量工作;两井定向有物理定向、几何定向等,这里主要阐述两井几何定向。联系测量须独立进行两次,在互差不超过限差时采用均值作为联系测量的最终结果。

矿井联系测量的作用与任务

第一节联糸测量的作用和任务 一、概念 联糸测量:将矿区地面平面坐标糸统和當程糸统传递.到井下, 使井上下能采用同一坐标糸统所进行的测量工作。 朕糸测量包括平面朕糸测量和當程朕糸测量,即之向和导入當程 二、朕糸测量的目的和任务 1、联糸测量的目的: 使地面和井下测量控制网采用同一坐标糸统。 2、联糸测量的任务: (i)井下经纬仪导线起算边的坐标方佞角; C2J确定井下经纬仪导线起算点的平面坐标x和y; (3)确定井下水准基点的當程H。

第二节矿井定向的种类与要求 矿井定向概括来说分为两类: 厂通过斜井或平啊 几何定向 定向 「或性定向 投向仪定向 陀螺定向令. -T-

第三节地面近井点、井D水准基A ‘笃 及井下定向基点的测设 -、近井点和井口水准基点的役置要求 1J尽可能埋设在便于观测、保存和不受开采影响的地点; 2丿每个井口附近应设置一个近井点和两个水准基点; 3丿近井点至井口的连测导线边数应不超过三个; 二、近井点和井D水准基点的精度要求 1,近井网的布设方秦和要求 《煤矿测量规程》 2,近井点的点佞精度要求

*. 峠 近井点可在矿区三、四等三角网、测边网的基础上,用插网、插点和敷设经纬仪导线(钢尺量距或光电量距丿等方法测设。 近井点的精度,对于测设它的起算点来说,其点佞中谖差不得超过 ±7cm,后视边方住角中誤差不得超过±10”。 3,井口壽程基点的精度要求 井口水准基点的高程精度应满足两相邻井口间进行主要卷道贯通的要求 井口水准基点的壽程测量,应按四等水准测量的精度要求测彳殳 对于不涉及两井间贯通问题的當程基点的當程精度不受此限制 测量嵩程基点的水准路线,可布设成附(闭丿合路线、嵩程网或水准支线。除水准支线必须往返观测外,其余均可只进行单程测量。 ■八■用三角當程测量肘应采用精度不低于J2级的经纬仪测量垂直角,用测距

工程测量计算坐标

知道方位角和距离怎么计算坐标 设原点坐标为(x,y),那么计算坐标(x1,y1)为 x1=x+s·cosθ y1=y+s·sinθ 其中θ为方位角,s为距离 CAD里计算方位角和距离 CAD默认的世界坐标系跟测量上用的坐标系是不同的。世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。 不知道你是不是要编程的方法或源程序?下面是在CAD下的常用操作方法: 用命令id可以查看点的XYZ坐标 例如: 命令: '_id 指定点: X = 517.0964 Y = 431.1433 Z = 0.0000 命令: ID 指定点: X = 879.0322 Y = 267.6949 Z = 0.0000 用命令dist(快捷命令di)即可知道两点间的角度和距离 例如: 命令: '_dist 指定第一点: 指定第二点: 距离 = 397.1308,XY 平面中的倾角 = 335d41'46.7",与 XY 平面的夹角 = 0d0'0.0" X 增量 = 361.9358, Y 增量 = -163.4483, Z 增量 = 0.0000 其中的“XY 平面中的倾角= 335d41'46.7”是世界坐标系内的平面夹角,用450度减去这个值335d41'46.7"即是坐标方位角114°18′13.3〃。 你可以用计算器验算一下,点1、X = 431.1433,Y = 517.0964;点2、X = 267.6949,Y = 879.0322的坐标方位角和距离值是不是114°18′13.3〃和397.131m。 已知两坐标点求方位角和距离的计算公式 如点A(X1,Y1 ) 点B(X2,Y2) A到B的方位角为:Tan(Y2-Y1)/(X2-X1)其中(X2-X1)>0时加360°,(X2-X1)<0时加180° 而距离就是((X2-X1)平方+(Y2-Y1)平方)最后开方得到的值即为A到B距离 方位角坐标计算公式

定向井轨迹测量仪器及测量原理

第四章定向井轨迹测量仪器及测量原理 4.1 定向井轨迹测量仪器的种类 定向井轨迹轨迹测量仪器包括: .MWD无缆随钻测量仪 .SST 有缆随钻测量仪 .ESI电子多点 .BOSS电子陀螺仪 .SRO电子陀螺仪 .Single-Shot单点测斜仪 4.2 定向井轨迹测量仪器的基本原理 下面分别介绍各主要测斜仪器的基本结构和原理 4.2.1 Measurement-While-Drilling(MWD) MWD(Measurement While Drilling)无缆随钻测斜仪作为当今钻井作业中的五大高新技术之一,于八十年代后期在国际上广泛应用于定向井作业中。 以Sperry-Sun MWDO 为例,其基本原理是:利用重力加速度计做倾角传感器,用磁通门做方位参数传感器,用集成电路温度传感器提供井下温度参数。MWD测量仪器井下部分,在入井之前,预先按定向井工程师对所采集测量数据的要求,进行特定的模式设置,然后将其随钻具组合一并下入井内,由泥浆流动作其动力源,测量信号的输出由泥浆的脉冲波动来完成。在地面井口处安装脉冲信号接收装置--压电感应器,压力感应器将泥浆脉冲信号输进地面计算机,再由计算机对此信号进行处理,并将处理过的信息送至钻台上的司钻读数器及操作间内的操作终端,加以显示、输出,其所输出的测量结果是定向工程师可直接采用的倾角、方位、工具面值,到此完成整个测量过程。能保证此套仪器工作所需的泥浆排量为220-1200GPM,完成一组数据的传送时间为:长测量模式下:4.2分钟,短测量模式下:2.3分钟,工具面:18秒钟。 MWD的最大特点是,信号传输以泥浆脉冲形式,不需要电缆。无论井下马达钻进还是转盘钻进,都可以随钻测量。 MWD的主要技术性能: 测量精度:方位±1.5°(0-360°) 井斜±0.2°(-=189°) 工具面±2.5°(0-360°) 温度±3° 最高工作温度: 257°F(125℃) 最大压力: 15000PSI 4.2.2 SST(Survey Steering Tool) SST的工作原理大致为:钻具组合中,弯接头上部接定向接头,弯接头与定向接头连接完毕后在定向接头内坐入斜口管鞋,并调整对准斜口管鞋键与弯接头刻线方向,到此井下部分准备完毕,下钻到测量点。地面设备在调整、连接完毕后,由电缆绞车通过悬挂在钻台上的天、地两滑轮将仪器探管通过循环头或旁通头(电缆入井的两种送入方式)送入井下,地面仪器监测定向键是否坐入斜口管鞋键内,坐入后,仪器便开始正常工作,提供工具面,倾角、方位等测量值,直至完成整个测量工作。

城市轨道交通盾构施工竖井联系测量方法的探讨

城市轨道交通盾构施工竖井联系测量方法的探讨 发表时间:2018-05-29T16:48:07.110Z 来源:《基层建设》2018年第9期作者:张殿[导读] 摘要:在地下铁道施工测量中,联系测量是为暗挖隧道施工传递方向、坐标、高程的测量方式,一般在竖井内进行。 北京城建勘测设计研究院有限责任公司 510380 摘要:在地下铁道施工测量中,联系测量是为暗挖隧道施工传递方向、坐标、高程的测量方式,一般在竖井内进行。联系测量包括明挖工程投点、定向;暗挖工程竖井投点、定向以及向地下传递高程。联系测量的质量好坏将直接关系到隧道的贯通质量,是隧道贯通的基础,也属于施工测量的关键环节。 关键词:一井定向;两井定向;基线边方位;二次始发基线边方位。 1.前言 由于地下铁道施工隧道(非开挖工法)施工对地面交通等影响较小,尤其是盾构法施工,工期短,见效快,已经被越来越多的城市地下轨道交通采用。在地面以下非开挖工法施工,线路测量定位等有其独特的特点。本文结合广州地铁三号线大石站~汉溪站区间隧道盾构施工平面联系测量工程的实践,对地铁施工竖井联系测量的几种方法进行了探讨。 2.工程概况 广州地铁三号线(大石站至汉溪站)隧道盾构施工,包括大石至中间风井,风井至汉溪站两个区间,两个车站一个竖井(大石、汉溪、风井),左、右线四条隧道。左线:大石-风井区间长度为1032.0m,风井-汉溪区间长度为1529.m;右线:大石-风井1006.0m,风井-汉溪1503.0m。全线地平标高变化较大:大石-风井区间由7.06m~16.25m 22.46m~8.46m。 3.地面控制测量 为满足盾构施工的需要,首先对业主提供的首级GPS控制点、精密点及精密水准点进行检测,通过相邻点的精度分别小于±10mm、±8mm和±8mm(精密水准路线闭合差L表示水准线路长度)来确定控制点的稳定性和可靠性,以此作为盾构测量工作的起算依据。工作内容包括:平面及高程控制点检测。在地面控制网检测无误后,为了更方便施工的需求,依据检测的控制点,再进行施工控制网的加密,以保证日后的施工测量及隧道贯通测量的顺利进行。通常控制网中精密导线点的密度及数量都不能满足施工测量的要求,因此根据现场的实际情况,进一步进行施工控制网的加密,以满足施工结构和放样、竖井联系测量、隧道贯通测量的需要。 4.联系测量 4.1地面趋近导线和趋近水准测量 4.1.1地面趋近导线 地铁隧道盾构法施工不同于其它矿山法施工。盾构法施工区段长,且贯通面受已施工浇注的预留洞门圈的影响,可调范围极其有限,因而要求在施工过程中必须提高测量精度。为确保横向贯通误差在允许值(±50mm)内,尽可能减少因过程中的测量误差累积,地面近井导线测量可在GPS控制网下进行加密测量,导线形式最好布设为附合,条件不允许情况下可布设成闭合导线形式。以大石站到汉溪站盾构区间为例,其盾构始发前两井定向地面趋近导线测量如下图所示。 趋近导线测量示意图 趋近导线测量外业作业按精密导线作业精度要求施测。对于大石站到汉溪站盾构区间趋近导线外业测量采用Ⅰ级全站仪,外业水平角观测四测回,往返测距二测回。内业经测量平差软件NASEW V3.0严密平差后最大点位中误差为±3.9mm,最大点间中误差为±3.2mm,导线全长相对中误差为l/ll0000。 4.1.2趋近水准测量 测定趋近近井水准点高程的地面趋近水准路线需附合在地面相邻的精密水准点上。趋近水准测量采用二等精密水准测量方法和±8 mm的精密要求进行施测。 4.2 竖井定向测量 竖井定向测量(通常称为定向)是将地面的平面坐标及方位通过竖井传递至井下,使井上井下坐标系统一。概括来说,可分几何定向和物理定向两大类。 从几何原理出发定向称为几何定向,可分为:(1〉通过平峒或斜井的几何定向;(2〉通过一个立井的几何定向即一井定向;(3〉通过两个立井的几何定向即两井定向。本文中只讨论一井定向、二井定向。 4.2.1一井定向 采用一井定向(联系三角形定向)测量方法时需满足以下条件: a.联系三角形定向均应独立进行三次,取三次的平均值作为一次的定向成果。 b.井上、井下联系三角形应满足下列要求: ①两悬吊钢丝间距不应小于5m。 ②定向角α应小于3°。

矿井联系测量

一>概念 联糸测量:将矿区地面平面坐标糸统和當程糸统传递.到井下, 使井上下能采用同一坐标糸统所进行的测量工作。 联糸测量包括平面联糸测量和嵩程联糸测量,即之向和导入嵩程 二、联糸测量的目的和任务 1,联糸测量的目的:使地面和井下测量控制网采用同一坐标糸统。 2,联糸测量的任务: C1J井下经纬仪导线起算边的坐标方佞角; (2)确定井下经纬仪导线起算点的平面坐标x和y;

(3)确主井下水准基点的當程H。 矿井之向概括来说分为两类: 厂通过斜井或平啊 厂几何定向J _井定向 走向J \两井定向 , 、( 该性之向 < 物理定向 \ 投向仪之向 陀螺之向

-、近井点和井口水准基点的役置要求 1)尽可能埋设在便于观测、保存和不受开采影响的地点; 2丿每个井口附近应设置一个近井点和两个水准基点; 3丿近井点至井口的连测导线边数应不超过三个; 二、近井点和井D水准基点的精度要求 1、近井网的布设方秦和要求 《煤矿测量规程》 2、近井点的点住精度要求 *.

峠 近井点可在矿区三、四等三角网、测边网的基础上,用插网、插点和敷设经纬仪导线(钢尺量距或光电量距丿等方法测设。 近井点的精度,对于测设它的起算点来说,其点佞中谖差不得超过 ±7cm,后视边方住角中誤差不得超过±10”。 3,井口壽程基点的精度要求 井口水准基点的高程精度应满足两相邻井口间进行主要卷道贯通的要求井口水准基点的壽程测量,应按四等水准测量的精度要求测彳殳 对于不涉及两井间贯通问题的當程基点的當程精度不受此限制 测量嵩程基点的水准路线,可布设成附(闭丿合路线、嵩程网或水准支线。除水准支线必须往返观测外,其余均可只进行单程测量。 ■八■用三角當程测量肘应采用精度不低于J2级的经纬仪测量垂直角,用测距

两井定向测量的实施及其分析

本科毕业论文 两井定向测量的实施与其精度分析 TWO WELLS DIRECTIONALLY MEASUREMENT IMPLEMENTATION AND PRECISION ANALYSIS 学院(部): 专业班级: 学生姓名:王伟 指导教师: 2010年07月1号 两井定向测量的实施及其精度分析

摘要 在矿山建设、生产阶段时联系测量是必不可少的,用于统一地上、下坐标系统。其方法很多,有物理定向和几何定向等等,一般几何定向比较普遍,本文采用新旧技术介绍了两井几何定向。 过程中近井点的坐标得到可以运用现代的GPS技术;数据处理采用了EXCLE和VBA联合处理方法;对于投点方法的分析后,运用单重投点发比较繁重、精度一般,本文介绍了激光铅锤仪的投点;同时也对两井定向进行了相关的精度分析。 关键词:联系测量,两井定向,精度分析,激光定向,EXCEL,数据处理 误差,导线,VBA TWO WELLS DIRECTIONALL Y MEASUREMENT IMPLEMENT A TION AND PRECISION ANAL YSIS

BSTRACT In mine construction, production stage contact measurement is indispensable, under the ground, for unity Coordinate system. The method is very much, have physical directional and geometric directional etc, general geometric directional than is generally, the paper introduces two Wells old technology geometric orientation. Process the coordinates get nearly well point can be used modern GPS technology; Data processing with the joint treatment EXCLE and VBA; Analysis of the point method for shots after using single heavy hurl bit, comparative onerous, accuracy, this paper introduces the general QianChui instrument for laser point; Also on the two Wells directionally related precision analysis. KEYWORDS:relation measurement ,two wells directionally ,analysis, precision, vba,,laser directional ,data processing ,error ,wires , excel 目录

相关主题
文本预览
相关文档 最新文档