当前位置:文档之家› GPS_AHRS组合导航系统_袁信

GPS_AHRS组合导航系统_袁信

GPS_AHRS组合导航系统_袁信
GPS_AHRS组合导航系统_袁信

无线电导航的发展历程

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

民航常用无线电导航设备

民航常用无线电导航设备 简介

第一节仪表着陆系统(Instrument Landing System — ILS) 仪表着陆系统由地面设备和机载设备组成。地面设备可以分为三个部分:航向信标台、下滑信标台、指点信标台或测距仪台。当测距仪成为仪表着陆系统的一部分时,其通常安装在下滑信标台。机载设备则包括相应的天线、接收机、控制器及指示器等。 1.地面设备的组成 ①航向信标:航向信标的主要作用是给进近和着陆的飞机提供对准跑道中心延长线航向道(方位)信息。 工作在VHF频段,频率范围为108.1~111.975MHz,每个频道之间的间隔为0.05MHz;并优先使用以MHz为单位的小数点后一位为奇数的那些频率点,例如109.7、110.3等;小数点后一位为偶数的那些频率点则分配给了全向信标。因此,航向信标只有40个频道可使用。 ②下滑信标:下滑信标的主要作用是给进近和着陆的飞机提供与地面成一定角度的下滑道(仰角)信息。 工作在UHF频段,频率范围为328.6~335.4MHz,每个频道之间的间隔为0.15MHz,其工作频道与航向信标的工作频道配对使用,因此也只有40个频道可供使用。 ③指点信标:用于给进近和着陆的飞机提供距跑道入口固定点的距离信息。工作在VHF 频段,固定频率为75MHz。 ④测距仪:用测距仪代替指点信标时,能给进近和着陆的飞机提供至测距仪台或着陆点或跑道入口的连续距离。工作在L波段,频率范围为962~1215MHz。与ILS合用时,其工作频率与航向信标配对使用。 各台的典型位置如图1—1所示。 图1—1 ILS典型位置示意图 2.ILS的基本定义和性能类别 2.1.基本定义 调制度差(ddm):较大音频信号对射频的调制度百分数减去较小音频信号对射频的调制度百分数的值。 航道线:在任何水平面内最靠近跑道中心线的ddm为零的各点的轨迹。

民航导航技术的发展现状及发展趋势

民航导航技术的发展现状及发展趋势 引言 导航是一种为运载体航行时提供连续、安全和可靠服务的技术。航空和航海的需求是导航技术发展的主要推动力。尤其是航空技术,由于飞机在空中必须保持较快的运动速度,留空时间有限,事故后果严重,对导航提出了更高的要求;同时飞机所能容纳的载荷与体积较小,使导航设备的选择受到较大的限制。对于航空运输系统来讲,导航的基本作用就是引导飞机安全准确地沿选定路线、准时到达目的地。 自无线电导航技术的广泛应用以来,导航已从通过观测地形地物、天体的运动以及灯光电磁现象,改变为主要依赖电磁波的传播特性来实现,部分摆脱了天气、季节、能见度和环境的制约,以及精度十分低下的状况。飞机在云海茫茫的天上,能随时掌握自己的位置,大大降低了飞行安全风险。导航已成为民航完全可以依赖的技术手段,促进了世界民航事业的发展。 20年代70世纪发展起来的信息技术使导航技术呈现了新面貌。卫星导航(GPS和GLONASS)以及其增强系统和组合系统,已经能够方便、廉价地为全球任何地方、全天候提供较高精度和连续的位置、

速度、航姿和时间等导航信息,成为支持未来航空运输发展的又一股强大动力。 1民航导航技术的现状 1.1支持航路的导航技术 1.1.1惯性导航系统 从20世纪20年代末开始,虽然陆基无线电导航逐渐成为航空的主要导航手段,但由于需要地面系统或设施的支持,无法实现自主定位和导航,限制了航空的发展。首先,军事上对导航系统提出了生存能力、抗干扰、反利用和抗欺骗的需求,具有自主导航能力的惯性导航系统(INS)于60年代在航空领域投入使用。但民用飞机采用INS 的主要原因是由于INS提供的导航信息连续性好,导航参数短期精度高,更新速率高(可达50~1000Hz)。 20世纪70年代后,由于数字计算机的使用和宽体飞机的发展,INS也开始了大发展阶段。由于INS具有许多陆基导航系统不具备的优点,尤其是可以产生包括飞机三维位置、三维速度与航向姿态等大量有用信息,在民航中得到了应用,是民航飞机的基本导航系统。当然它自生的垂直定位功能不好误差是发散的,不能单独使用,在现代

某组合导航系统捷联导航方案及仿真技术研究

某组合导航系统捷联导航方案及仿真技术研究 发表时间:2018-09-27T18:19:29.877Z 来源:《知识-力量》2018年9月中作者:王欣张龙飞李锦龙王丹李晓菊[导读] 捷联导航方案在自主导航系统中广泛应用。本文主要阐述了导航原理,导航方法设计,以及仿真设计原理和实现。利用仿真技术,进行捷联惯性组合导航系统模拟试验,验证了所设计的捷联惯性组合导航系统的可行性和有(中国航天科技集团公司第四研究院四〇一所,西安 710025) 摘要:捷联导航方案在自主导航系统中广泛应用。本文主要阐述了导航原理,导航方法设计,以及仿真设计原理和实现。利用仿真技术,进行捷联惯性组合导航系统模拟试验,验证了所设计的捷联惯性组合导航系统的可行性和有效性。关键词:组合导航系统;组合导航方法;数据修正;仿真 1组合方案内容 1.1性能分析及组合导航原理根据组合导航系统的使用要求,惯性/卫星组合导航系统可供选择的组合方式有简单组合模式、浅组合模式、深组合模式。简单组合模式是利用卫星导航系统提供的位置和速度直接重置惯性导航系统;浅组合模式是利用惯性导航系统和卫星导航系统输出的位置和速度信息的差值作为观测量,利用滤波器估计惯性导航系统的误差,并进行校正;深组合模式是惯性导航系统和卫星导航系统相互辅助和相互修正,实现协同超越。三种组合方式对比,简单组合模式能直接修正惯性导航系统的位置和速度,但无法修正姿态误差和惯性测量元件误差,浅组合模式能校正惯性导航系统的误差,但无法修正卫星导航系统的误差,不能彻底发挥二者的优势,深组合模式对惯性导航系统和卫星导航系统都有修正效果,但是工程实现难度较大,因此,组合模式选用简单组合模式。组合导航系统定位误差在不考虑对准误差和姿态解算误差的情况下,加速度测量误差不能大于,但是,实际系统肯定存在对准误差和姿态解算误差,所以单一的惯性导航不能满足技术指标要求,必须与其他导航方式组合。采用GNSS导航和捷联惯性导航的组合方式。其中GNSS导航具有定位精度高、导航误差不随时间积累、可全天时、全天候工作、难直接提供姿态信息、数据更新率低、易受电磁干扰等特点;惯性导航系统具有隐蔽性好、抗干扰能力强、短时精度高、导航信息完整和数据更新率高等特点。两种导航方式对比,捷联惯性导航系统能提供完整连续的导航参数,具有完全自主、短时精度高的优点。捷联惯性导航系统解算出的速度、位置与GNSS提供的速度、位置之差作为卡尔曼滤波器的观测量,姿态误差、速度误差和位置误差作为卡尔曼滤波器的状态变量,估计出状态变量的最优估计值后,对捷联惯性导航系统进行校正。 1.2捷联惯性导航算法组合导航系统的捷联导航算法包含姿态更新、速度更新和位置更新。算法设计时,利用四元数法将系统采集到的角速度实时算出姿态 阵,进而求出载体的姿态角,对系统采集到的视加速度进行补偿和坐标转换,解算出速度和位置 捷联导航算法原理见图1中虚线框内部分。 图1捷联导航算法原理框图 1.3组合导航方法 采用节所述的方法解算出载体当前速度和位置,与GNSS提供的速度和位置相减作为卡尔曼滤波器的观测量,姿态误差、速度误差和位置误差作为卡尔曼滤波器的状态变量,估计出姿态误差、速度误差和位置误差的最优估计值后,对捷联惯性导航系统进行校正。 2仿真 2.1仿真结果 仿真曲线见图2-3所示:

北斗卫星发展历程

中国北斗卫星导航系统发展历程 相信在座的大部分都只知道北斗时中国的导航系统,但并没有深入的了解,那中国北斗卫星导航系统是如何发展到如今的地步呢? 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 2017年11月5日,中国第三代导航卫星顺利升空,它标志着中国正式开始建造“北斗”全球卫星导航系统。 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为了更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 2012年12月27日,北斗系统空间信号接口控制文件正式版1.0正式公布,北斗导航业务正式对亚太地提供无源定位、导航、授时服务。 2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规

民航空管系统通信导航监视设备使用管理规定

民航空管系统通信导航监视设备 使用管理规定 第一章总则 第一条为加强民航空管系统通信导航监视设备(以下简称“设备”)的管理,延长设备的使用年限,特制订本规定。 第二条设备使用年限指设备投入使用到退役所经历的时间。 第三条本规定适用于民航空管系统各级空管单位通信导航监视设备的运行、管理、维护、维修及保养工作。 第二章设备使用年限及更新计划 第四条设备运行维护和管理单位必须按照《中国民用航空通信导航监视系统运行、维护规程》(以下简称《规程》)、《通信导航监视设备值班管理规定(试行)》等要求,做好设备的运行、维护和管理等有关工作,使设备达到规定的使用年限。 (一)甚高频通信设备、高频通信设备、语音通信交换系统、仪表着陆系统、全向信标、测距设备、无方向性信标、雷达(包括SSR、PSR、SMR)、自动化系统、程控交换机和记录仪使用年限不少于15年。 (二)数据通信网的硬件设备使用年限不少于10年,卫星网的基带硬件设备使用年限不少于15年,室外单元设备使用年限不

少于12年。 (三)自动转报系统设备的使用年限不少于10年。 第五条在设备达到使用年限之前应提前启动设备更新改造项目,以保证设备能够提供连续可靠的服务。 (一)甚高频通信设备、高频通信设备、语音通信交换系统等单点通信设备,仪表着陆系统、全向信标、测距设备、无方向性信标等导航设备,雷达、自动化系统、程控交换机和记录仪应在投入使用第13年启动更新改造项目。 (二)数据通信网的硬件设备应在投入使用第7年启动更新改造项目;自动转报系统应在投入使用第8年启动更新改造项目;卫星网的基带硬件设备应在投入使用第12年启动更新改造项目,室外单元设备应在投入使用第9年启动更新改造项目。 第六条涉及计算机系统和软件系统的设备(如自动化系统、自动转报系统、语音通信交换系统、数据通信网和卫星网网控系统等),在设备达到使用年限之前,应根据业务和功能需要及时进行软件升级。 第七条自动化系统可根据硬件设备市场变化及备件存储情况,每六至八年对系统硬件进行更新。 第八条因特殊情况需在第五条规定时间之前启动更新改造项目的,以及根据第六、七条规定需进行软件升级、硬件更新的,应向民航局空管局提出申请,由民航局空管局组织专家进行评估且同意后,方可实施。

MEMS仪表惯性组合导航系统发展现状与趋势_蔡春龙

DOI:10.13695/https://www.doczj.com/doc/1014104645.html,ki.12-1222/o3.2009.05.006 第17卷第5期中国惯性技术学报V ol.17 No.5 2009年10月 Journal of Chinese Inertial Technology Oct. 2009 文章编号:1005-6734(2009)05-0562-06 MEMS仪表惯性组合导航系统发展现状与趋势 蔡春龙1, 刘 翼1,刘一薇2 (1. 北京航天时代光电科技有限公司,北京100854;2. 航天东方红卫星有限公司,北京100094) 摘要:基于MEMS仪表的惯性组合导航系统是飞行器实现轻小型化的关键配套设备之一。针对国外MEMS惯性组 合导航系统产品的实现方案与性能指标进行了综述;介绍我国在该领域的研究现状,简要分析当前存在的问题 与技术瓶颈,指出我国应结合现有硅微惯性器件加工水平与理论研究成果展开有针对性的研究工作。最后,对 该领域的技术发展方向进行了分析。 关键词:微机械系统;组合导航系统;信息融合 中图分类号:U666.1 文献标志码:A Status quo and trend of inertial integrated navigation system based on MEMS CAI Chun-long1, LIU Yi1, LIU Yi-wei2 (1. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd., Beijing 100854, China; 2. China Spacesat Co., Ltd., Beijing 100094, China) Abstract: As one of the core equipments of the miniaturization of vehicle, the inertial integrated navigation system based on MEMS has significant meaning to both the aerospace industry and the construction of national defense. Firstly, the system solution and performance specification of foreign latest products are summarized. Then the status quo of Chinese development is introduced. The problems and technological bottlenecks at present are analyzed. It is also pointed out that some pertinent research should be made based on the present manufacturing level of Chinese micro-silicon inertial sensors and existing theoretical achievements. Finally, the future development direction of the techniques in this field is analyzed. Key words: MEMS; inertial integrated navigation system; filter; information fusion 微机械惯性测量单元(Micro-Electronic Mechanical System Inertial Measurement Unit,MEMS-IMU)作为第三代惯性测量组件,与第一代机械转子陀螺惯性测量组件、第二代光电陀螺惯性测量组件相比,具有体积小、重量轻、功耗少、成本低、集成化程度高等优点,拥有更广阔的工程应用前景,尤其对于微小型运载体的导航、制导与姿态控制具有重要意义,已被多个国家列为未来惯性导航系统的重点发展方向之一。但从目前国内外微机械惯性测量器件的研制现状来看,由于受到加工工艺、选材等因素的限制,MEMS-IMU在精度以及稳定性等方面与前两代惯性测量组件相比仍然存在较大差距,同时受限于惯导系统固有的导航误差随时间积累问题,微惯性导航系统尚不具备独立完成导航定位任务的能力。 因此,基于MEMS-IMU的组合导航方案是解决上述问题的一条有效途径。 目前,MEMS-IMU组合导航系统已经在民用和军用领域得到了广泛认可。民用方面,具有导航定位功能的汽车、精细农业用机械与车辆、用于农药喷洒与林区防火的无人飞机等已部分装配该类型组合导航系统;军用方面,欧美发达国家已成功将其应用于战术制导武器、微小型无人侦查飞机、卫星探测、航天器导航等领域。我国在该领域的研究工作起步较晚,目前正处于从原理样机研制向工程应用过渡阶段,国内各科研院所与高校正在加紧进行该领域的技术攻关工作。 收稿日期:2009-07-24;修回日期:2009-09-03 作者简介:蔡春龙(1967—),男,研究员,研究方向为光纤陀螺捷联惯性导航系统。E-mail:cai_chun_long@https://www.doczj.com/doc/1014104645.html,

飞机导航系统

飞机导航系统 一、判断题 1、导航是一个时间和空间的联合概念,需要在特定的时刻描述在特定空间位置的状态,空间位置的描述可以采用地理坐标,由于导航通常是相对于某一具体目的地面而言的,因此采用地理坐标是方便而合理的. 2、无线电导航具有不受时间、天气的限制,精度高,定位时间短,设备简单,可靠等优点. 3、测距询问脉冲有用户发出,该询问脉冲需要经过特殊的编码以区别是哪个用户的询问脉冲,导航台站收到该脉冲后,及时向该用户发射应答脉冲,由用户接收并测量询问脉冲和应答脉冲之间的时间间隔,由导航台测量载体和导航台之间的距离. 4、无线电导航中的角参量可以分为两类:一类用于描述载体与导航台之间的相对角度关系;另一类用于描述载体的飞行状态,如导航、俯仰、横滚等. 5、频率测距通常是利用发射信号与反射信号的频率差来进行距离测量的,不一定要有反射面,因此作为频率测距系统. 6、载体航行状态指的是载体作为一个刚体在空间运动时所表现的非物理状态,通常与一定的参照量(如载体坐标系,当地理坐标系)相联系,他们可以从不同的角度进行描述,如方位、距离、位置、速度、姿态等. 7、 VOR方位飞机所在未知的磁北方向顺时针测量到飞机与VOR连线之间的夹角,是以飞机为基准来观察VOR台在地理上的方位. 8、无线电高度表,又称雷达高度表是一种等幅调频测距无线电导航设备。利用普通雷达的工作原理,以地面为发射体,在飞机上发射电波,并接收地面的反射波以测定飞机到地面的高度. 9、仪表着陆系统(ILS)决断高度(DH)是指驾驶员对飞机着陆或复飞做出判断的最低高度,在决断上,驾驶员必须看见跑到才能着陆,否则放弃着陆,进行复飞. 10、ADF指示的角度是飞机横轴方向到地面导航台的相对方位,因此,若要得到飞机相对于导航台的方位,还必须获知飞机的航向,这需要与磁罗盘或其他航向测量设备相结合. 二、选择题 1、无线电导航距离测量主要有___________________________三种测量方法。 2、导航参量的方位以经线北端为基准,顺时针测量到水平面上某方向线的高度 3、 ADF无线电罗盘,是一种_________________测向无线电导航系统,利用设置在地面的无方向信标(NDB)发射无线电波,在机上用环形方向性天线接收和处理电波信号,获取飞机到地面导航台的相对方位. 4频率测距的基本原理实际上的发射信号为__________________信号,由于颠簸的传播需要时间,那么在某一时刻,反射回来的信号的频率与正在发射的信号的频率之间的差频将反映这段时间,而这段时间同时也代表往返的距离. 5、 VOR伏尔是一种__________比较测向进程导航系统。机载设备通过接收地面VOR导航台发射的甚高频电波,可直接测量从飞机所在位置的磁北方向到地面导航台的位置,以近一步确定飞机相对于所选航道的偏离状态. 6、位置线或位置面,单值确定载体的位置,至少需要测定____条位置线或____个位置面,根据相交定位法实现定位.

实现车道识别的车载导航系统的组合定位技术

实现车道识别的车载导航系统的组合定位技术 作者:彭彦彦,陈丽钦,严慧明,苏鉴英 指导教师:刘友文 (闽江学院地理科学系,福州350108) 摘要: 通过实验设计了一套实现车道识别的车载导航系统的组合定位技术。 汽车导航是GPS应用的主要领域,将来一段时间,高性能的车载导航产品的发展前景将被看好。目前车载导航的精度不够高,要是能实现车道的识别,则车载导航系统的整体性能将得到升华。高精度的定位是实现车载导航车道识别的关键技术。本项目建议书研究基于自适应卡尔曼滤波,设计低成本、高精度、易于工程实现的GPS/DR组合定位模型,为实现车道识别的车载导航提供定位保障。 首先基于自适应卡尔曼滤波分别对GPS和DR系统设计了子滤波器。对于GPS/DR的组合,提出采用联邦式卡尔曼滤波方案,通过主滤波器对两个子滤波器的滤波结果进行最优数据融合,以在车辆高速运动状态中,达到米级的定位精度。项目成果可应用于高性能的车载导航系统的定位模块中,为实现车道识别提供基本条件。 关键词:GPS;车载导航;组合定位 Integrated Positioning Technique of Vehicle Navigation System that Can Distinguish the Driveway Authors : Peng Yanyan, Chen Liqin, Yan Huiming, Su Jianying Teacher: Liu Youwen (Department of Geographical Science,Minjiang University, Fuzhou 350108) ABSTRACT Through the experimental we designed a set of Lane Recognition Navigation System tor ealize the Combined Positioning Technologies. Car navigation is the main application fields of GPS,and high performance of navigation product development foreground will be valued in a period of ti-me. Currently the vehicle-mounted navigation precision isn't high enough. If it can realize the driveway, that the navi gation system identification of the overall performance will get distillation.As we all know, precision positioning is the key technology to the vehicle-mounted navigation lane identify. So our research project proposal are based on the adaptive kalman filter, low cost, high precision, and designed to realize the GPS/DR project portfolio for the locating model,which provides the orientation to the navigation lane identification . Keywords: GPS, Navigation, Combination 联系人:彭彦彦EMAIL:821042725@https://www.doczj.com/doc/1014104645.html, 1 背景及意义

北斗导航系统的30年历程

挑战GPS 盘点北斗导航系统的30年历程 ?2014-8-22 15:01:20 ?类型:原创 ?来源:电脑报 ?报纸编辑:电脑报 ?作者: 【电脑报在线】卫星导航系统已逐渐成为最重要的空间基础设施,手机导航、车载导航的应用已经随处可见。中国作为最大的发展中国家,拥有广阔的领土和海域,出于民间应用和国防安全的需要,高度重视卫星导航系统的建设,一直在努力发展自己的卫星导航定位系统。 @詹锟(北京航空航天大学) 卫星导航系统已逐渐成为最重要的空间基础设施,手机导航、车载导航的应用已经随处可见。中国作为最大的发展中国家,拥有广阔的领土和海域,出于民间应用和国防安全的需要,高度重视卫星导航系统的建设,一直在努力发展自己的卫星导航定位系统。从1983年

我国的北斗卫星导航计划于正式提出,距今已经有30多年的历史。按照最初规划的“三步走”的战略,经过几代科学家们的努力,北斗计划已实现过半。褒贬之中回顾这30年的发展历程,不但有助于厘清北斗系统的发展脉络,也让国人体会到其中的艰辛。 上世纪80年代到2000年 试验阶段,覆盖我国周边 我国早在上世纪60年代就开始了关于卫星导航与定位的研究,随后由于受到文化大革命的影响,研究一度中断直到70年代末才恢复。从那时起,中国科学家们开始积极探索适合我国国情的卫星导航定位系统的技术途径和方案。1983年,一个名为“双星快速定位系统”的卫星导航与定位方案在全国科学大会上被提出。随后,我国著名航天专家陈芳允院士正式提出,在国内利用两颗地球静止轨道通信卫星,实现区域快速导航定位的设想。到了1989年,在陈芳允院士的带领下,我国首次利用通信卫星展开了双星定位演示验证试验,证明了北斗卫星导航试验系统技术体制的正确性和可行性。此后,1994年中国正式启动了该项目的系统建设和发展,并更名为北斗卫星定位导航系统。 双星定位示意图 该阶段以2000年成功发射的两颗“北斗一号”为结束,两颗卫星成功构成了北斗导航系统,形成了区域的有源服务能力。“北斗一号”是利用地球同步卫星为用户提供快速定位、简短数字报文通信和授时服务的一种全天候、区域性的卫星定位系统。并且由于采用卫星接收测定机制,用户终端机工作时需要发送无线电信号给北斗卫星,是一种有源定位系统,能实现一定的互动性。随着2003年和2007年又成功发射了两颗“北斗一号”备份卫星,标志着完整的第一代北斗卫星导航定位系统已经完成,今后将转入长期的在轨管理阶段。 虽然第一代北斗系统缺陷很明显,但它是我国独立自主建立的首个卫星导航系统,打破了美、俄在此领域的垄断地位。而此阶段也是北斗计划最艰难的时期,在缺少人力、物力的

车载组合导航系统发展现状

车载组合导航系统发展现状 随着科学技术的不断发展,现代导航系统的种类越来越多,如: INS、全 球定位系统(GPS)、多普勒(Doppler)测速系统、奥米加导航系统(Omega),罗兰系统(Loran),塔康系统(Tacan),还有天文导航(CNS)、地形辅助系统等,这 些导航设备都各有优缺点,精度和成本也不大相同。同时,由于各领域,尤其 是军事领域对导航信息量的要求越来越多,对导航精度的要求也越来越高。要 使系统性能得到提高,靠提高单一导航系统的精度,不仅在技术上难度很大, 而且在实际中效果也不十分明显,无法满足高精度要求的。若将多种导航系统 适当地组合起来,即可大大提高导航精度。 组合导航系统与单一导航系统的性能比较,具有以下优点 1) 组合系统中惯性导航系统的精度比单独使用惯性导航系统时要求的精 度低,能够降低惯性导航系统的成本,还可提高系统的可靠性和容错性能; 2) 组合导航具有余度的导航信息,可利用其余度信息检测出某个导航子 系统的故障,并隔离掉失效的子系统,然后将其余正常子系统重新组合(系统重构),就能够继续完成导航任务。 因而在20世纪70年代,组合导航技术的出现使得这一问题有了完美的解决 方案,使其得到了迅速发展,并取得了令人瞩目的成就。它克服了单个导航系统的缺点,取长补短,使组合后的导航精度高于各个系统单独工作的精度。组合导航系统就是将具有不同特点的导航设备与导航方法进行综合,应 用计算机技术对多种导航信息进行融合处理,以提高整个系统的性能。它是一 种综合工程技术,涉及到各导航信息源相关设备技术、计算机技术、显示技术 以及控制系统、最优估计等理论。 目前,组合导航系统技术在工程实践中还必须解决以下问题: 在导航 信息大量冗余的情况下,计算量过大,实时性不能保证;导航子系统的增加使故障率也随之增加,如果某一子系统出现故障而又没有及时监测出并隔离掉时,故障数据会污染整个系统,使可靠性降低。 针对组合导航系统量测信息量多,数据处理困难这一特定问题,导航信息 的处理技术也从根据单个传感器所获得的数据集来进行的单一信息处理向多传感器获得的多数据集的信息融合方向发展。

无线电导航的发展历程

无线电导航的发展历程 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开 始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率一兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为一兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入 研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有 多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NAV-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与);突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

民航空管系统通信导航监视设备使用管理规定

民航空管系统通信导航监视设备使用管理规定 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

民航空管系统通信导航监视设备 使用管理规定 第一章总则 第一条为加强民航空管系统通信导航监视设备(以下简称“设备”)的管理,延长设备的使用年限,特制订本规定。 第二条设备使用年限指设备投入使用到退役所经历的时间。 第三条本规定适用于民航空管系统各级空管单位通信导航监视设备的运行、管理、维护、维修及保养工作。 第二章设备使用年限及更新计划 第四条设备运行维护和管理单位必须按照《中国民用航空通信导航监视系统运行、维护规程》(以下简称《规程》)、《通信导航监视设备值班管理规定(试行)》等要求,做好设备的运行、维护和管理等有关工作,使设备达到规定的使用年限。(一)甚高频通信设备、高频通信设备、语音通信交换系统、仪表着陆系统、全向信标、测距设备、无方向性信标、雷达(包括SSR、PSR、SMR)、自动化系统、程控交换机和记录仪使用年限不少于15年。

(二)数据通信网的硬件设备使用年限不少于10年,卫星网的基带硬件设备使用年限不少于15年,室外单元设备使用年限不少于12年。 (三)自动转报系统设备的使用年限不少于10年。 第五条在设备达到使用年限之前应提前启动设备更新改造项目,以保证设备能够提供连续可靠的服务。 (一)甚高频通信设备、高频通信设备、语音通信交换系统等单点通信设备,仪表着陆系统、全向信标、测距设备、无方向性信标等导航设备,雷达、自动化系统、程控交换机和记录仪应在投入使用第13年启动更新改造项目。 (二)数据通信网的硬件设备应在投入使用第7年启动更新改造项目;自动转报系统应在投入使用第8年启动更新改造项目;卫星网的基带硬件设备应在投入使用第12年启动更新改造项目,室外单元设备应在投入使用第9年启动更新改造项目。 第六条涉及计算机系统和软件系统的设备(如自动化系统、自动转报系统、语音通信交换系统、数据通信网和卫星网网控系统等),在设备达到使用年限之前,应根据业务和功能需要及时进行软件升级。 第七条自动化系统可根据硬件设备市场变化及备件存储情况,每六至八年对系统硬件进行更新。 第八条因特殊情况需在第五条规定时间之前启动更新改造项目的,以及根据第六、七条规定需进行软件升级、硬件更新

航空导航知识

航空导航知识 航路导航 ①长波导航台(NDB)。是设在航路上,用以标出所指定航路的无线电近程导航设备。台址应选在平坦、宽阔和不被水淹的地方,并且要远离二次辐射体和干扰源。一般在航路上每隔200~250公里左右设置一座;在山区或某些特殊地区,不宜用NDB导航。 ②全向信标/测距仪台(VOR/DME) 全向信标和测距仪通常合建在一起。全向信标给飞机提供方位信息;测距仪则给飞机示出飞机距测距仪台的直线距离。它对天线场地的要求比较高。在一般情况下,要求以天线中心为中心,半径300米范围内,场地地形平坦又不被水淹。该台要求对二次辐射体保持一定的距离。台址比中、长波导航台的要求严。在地形特殊的情况下,可选用多普勒全向信标/测距仪台(DVOR/DME),以提高设备的场地适应性。该台的有效作用距离取决于发射机的发射功率和飞机的飞行高度。在飞行高度5700米以上的高空航路上,两台相隔距离大于200公里。 ③塔康(TACAN)和伏尔塔康(VORTAC) 塔康是战术导航设备的缩写,它将测量方位和距离合成为一套装置。塔康和全向信标合建,称伏尔塔康。其方位和距离信息,也可供民用飞机的机载全向信标接收机和测距接收设备接收;军用飞机则用塔康接收设备接收。塔康和伏尔塔康台的设置以及台址的选择,和全向信标/测距仪台的要求相同。 ④罗兰系统(LORAN) 远距导航系统。20世纪80年代航空上使用的主要是“罗兰-C”。“罗兰-C”系统由一个主台和两个至四个副台组成罗兰台链。“罗兰-C”系统的有效作用距离,在陆上为2000公里,在海面上为3600公里。主台和副台间的距离可达到1400公里。按所定管辖地区的要求,设置主台和副台;并按一般的长波导航台选址要求进行选址。 ⑤奥米加导航系统(OMEGA)。和“罗兰-C”一样,是一种远程双曲线相位差定位系统。由于选用甚低频波段的10~14千赫工作,作用距离可以很远,两台之间的距离可达9000~10800公里。只要有8个发射台,输出功率为10千瓦,即可覆盖全球。罗兰系统和奥米加导航系统不是一个飞机场的导航设施,而是半个地球的甚至是全球性的导航设施。 飞机场终端区导航 ①归航台着陆引导设施。飞机接收导航台的无线电信号,进入飞机场区,对准跑道中心线进近着陆,这样的导航台称归航台。归航台建在跑道中心线延长线上。距跑道入口的距离为1000米左右的称近距归航台(简称近台);距离为7200米左右的称远距归航台(简称远台)。归航台一般都和指点标台合建。指点标台标出该台与跑道入口的距离。在一个降落方向上,只设置一座归航台的(不论是近台还是远台)称单归航台着陆引导设施;如果有近台和远台,则称双归航台着陆引导设施。归航台的选址要求基本上和航路上导航台相同。由于飞机的速度越来越快,机载设备越来越先进,因此归航台引导着陆在中国飞机场已逐步淘汰。 ②全向信标/测距仪台(VOR/DME) 除可用在航路上作为导航设备外,也可用作机场终端区导航设备。这时,该台应设在跑道中心附近,距跑道中心线不少于150米、距滑行道中心线不少于75米。对周围地形、地物的技术要求,和用作航路导航台时相同。该台也可布置在指定穿云转弯点处,以引导飞机穿云下降。 ③仪表着陆系统(ILS)。是20世纪70年代国际上通用的着陆引导设备。由航向台(LOC)、

车载组合导航系统

车载组合导航系统 ( Car Integrated Navigation System) GI-100 用户手册 V1.6 上海航姿测控科技有限公司 2016年12月15日

1.1产品概述 (1) 1.2产品特点 (1) 1.3产品优点 (1) 1.4产品应用 (2) 2 设计原理 (2) 3电器特性 (4) 3.1极大值参数 (4) 3.2电器特性 (4) 4性能指标 (5) 5机械尺寸与引脚定义 (6) 5.1机械尺寸 (6) 5.2引脚定义 (7) 6 推荐电路 (8) 6.1推荐PCB封装 (8) 6.2推荐参考电路 (8) 7坐标系和安装方位 (9) 7.1坐标系 (9) 7.2 安装方位 (9) 8使用说明 (10) 8.1传感标定 (10) 8.2通信接口 (10) 8.3通信频率 (10) 8.4 通信协议 (10) 8.5 控制命令 (11) 9注意事项 (12) 10固件升级 (13) 10.1 winxp系统...................................................................... 错误!未定义书签。 10.2 win7系统 ....................................................................... 错误!未定义书签。附录:.. (15)

2 GPRMC (16) 3 GPATT (17)

1系统介绍 1.1产品概述 GI-100是一款高性能的面向车载导航领域的车载组合导航系统,系统包含高性能的同时支持北斗和GPS的卫星接收机芯片、三轴陀螺仪、三轴加速度等;通过在线的自适应组合导航算法,GI-100提供实时高精度的车辆定位、测速和测姿信息,在GNSS系统的信号精度降低甚至丢失卫星信号时,不借助里程计信息,GI-100利用纯惯性导航技术,也可在较长时间内单独对汽车载体进行高精度定位、测速和测姿。 图1. GI-100 1.2产品特点 元件选型:高性能三轴陀螺仪和三轴加速度计; 误差补偿:完成正交误差/温度漂移等误差补偿; 唯一防盗:每个产品标定参数均不一致防盗版; 物理尺寸:紧凑模块化设计可节省用户产品空间; 通信协议:即插即用的标准通信协议NEMA0183; 工程安装:无安装角度要求方便用户车载安装; 亚米级:支持RTCM2.3协议/复杂环境亚米级导航; 1.3产品优点 陀螺漂移:消除陀螺漂移获高精度姿态航向信息; 加速噪声:消除震动加速度获高精度速度信息; 零速修正:零速修正算法可防止导航数据漂移; 软件算法:基于自适应的扩展卡尔曼滤波算法; 智能识别:识别并隔离有较大误差的GNSS数据; 摆脱里程计:利用纯惯性导航实现高精度定位; 导航技术:组合导航和纯惯导航技术自主切换;

GPS发展历史

上周,美国媒体一篇关于欧洲“伽利略”卫星导航系统的报道,使这个中国也有参加合作开发的项目再次成为关注的焦点。美国一些官员以担心该系统被敌对国家与美国进行战争时使用为借口,威胁在不利情况发生时攻击该系统的卫星。自从俄罗斯的“格洛纳斯”卫星导航系统(Glonass)受前苏联剧变影响一蹶不振之后,美国的全球定位系统(GPS)几乎独霸全球卫星定位服务市场,随着俄罗斯国力的逐渐增强,Glonass将在未来三四年里恢复使用,而欧盟的“伽利略”卫星导航系统(Galileo)也要在2008年投入运营,届时,卫星导航服务将由美国一家独霸转为三国分立,面对这样的局面,美国官员的激进言论也就不足为奇。回顾Galileo此前的筹划历程,处处可以看到美国阻碍该计划的身影,这表明,美国对卫星导航领域可能即将到来的三国时代依然抱着敌视态度,尽管如此,在中欧俄三方的合作下,这一时代也将很快来临。 “欧版GPS”挑战美国 自冷战结束后,美国在空间领域的军事和民用技术开发上逐渐呈现出绝对优势,目前在全球卫星定位和导航服务上几乎独霸全球,美国的GPS(全球定位系统)自投入使用近20年来,不仅为美国本土提供了周到的民用服务,而且为美军军事行动立下了汗马功劳。GPS 在军事应用上给人们留下深刻的印象是在海湾战争时期。在美军攻击伊拉克的一个水电厂时,为了达到立即打击敌人、同时减少损失的效果,美军使用依靠GPS导航的“斯拉姆”空地导弹,他们先发射了第一枚导弹将电厂的围墙炸开一个洞,紧跟着,第二枚导弹像长了眼睛一样穿洞而入,一举摧毁了发电厂的核心部位,而附近的水闸却完好无损。这种“千里穿杨”的功夫着实令世界为之动容。 欧洲的卫星定位服务一直由美国免费提供,但美国出于自身利益长期只为欧洲提供精度百米以上服务,而GPS在美国的民用领域精度可以达到30米,军事用途更达到了10米。内外有别的“二等服务”让欧洲人甚为不满,在这种涉及军事应用以及巨大民用利益的技术上,欧洲人决心打造自己的卫星导航系统,摆脱对美国的依赖。 欧洲欲后发制人 在上世纪90年代,欧盟和欧洲航天局已就全球卫星导航系统进行了长达5年的可行性论证。1999年,他们提出了欧洲版的GPS——“伽利略”全球卫星导航系统。“伽利略”计划的出台是一个争吵不断的过程,欧盟内部一直存在着支持和反对两种意见。以法国为代表的国家强调打造欧洲独立GPS的重要性,而英德等国却认为,既然有美国提供的免费“午餐”,没有必要花巨额资金再打造一个同样的系统。

相关主题
文本预览
相关文档 最新文档