当前位置:文档之家› 第二节 二氧化钛光催化影响因素

第二节 二氧化钛光催化影响因素

第二节 二氧化钛光催化影响因素
第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素

目前主要针对TiO

2

进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金

属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO

2

形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。

表面缺陷结构

通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。

颗粒大小与比表面积

研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。

贵金属沉积的影响

电中性的并相互分开的贵金属的Fermi能级小于TiO

2

的费米(Fermi)能级,

即贵金属内部与TiO

2相应的能级上,电子密度小于TiO

2

导带的电子密度,因此

当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO

2

向贵金属

迁移,一直到二者的Fermi能级相等时为止, 如图。在TiO

表面沉积适量的贵

2

表面的电子密度,有利于光生电子和空穴的金属有两个作用:一是减少了TiO

2

有效分离,二是降低还原反应(质子的还原、溶解氧的还原)的超电压,从而大大提高了催化剂的活性。研究较多的为Pt[8,9]的沉积,应用其它贵金属如Ag[10-12Au[13]、Ru[14]、Pd[15]等共沉积修饰的也有报道。

图由金属-半导体产生的Schottky能垒的原理和作用图[16]

表面光敏化的影响

)通过化学或物理吸附一些光活性化合物,利用光敏宽禁带的半导体(TiO

2

剂对可见光有较好的吸收来拓展激发波长范围,如Pd、Pt、Rh的氯化物,及各种有机染料包括玫瑰红、紫菜碱、赤鲜红B(ery throsin B)、硫因(thionine)2+、叶绿酸等,而使表面增敏。在可见光的照射下,颜料分子中电子

和Ru(bpy)

3

的激发可以导致生成分子的激发单重态和三重态。若颜料分子激发态的氧化能级相对半导体的导带能级更负(活性物质激发态电势比半导体导带电势更负),那么颜料分子就能向半导体的导带转移电子。这时表面从激发的颜料分子接受一个电子,并可将其转移到吸附在表面的有机受体。这类光敏化物质在可见光下有较大的激发因子,使光催化反应延伸至可见光区域,扩大激发波长范围,从而更多地利用太阳能。表面光敏化现象常受到半导体的能级、色素的最高占有能级以及最低空能级的支配。只有色素的最低空能级的电位比半导体的导带能级的电位更负时,才会产生电子输入的光敏化。半导体的能隙高于色素,所以在这种情况下,

色素可被激发而半导体则不能被激发[17-18]。符合光敏剂的基本天津是其能够牢固

的吸附在TiO

2

表面,岁太阳光有较强的吸收能力,光敏剂的氧化态和激发态稳定性较高。同时激发态具有足够负的电势和基态尽可能具有正电势,且激发态寿命长。王振领等[19]和Sun Aihua等[20]都用此方法提高了其光催化性能。

过渡金属离子掺杂的影响

过渡金属离子的掺杂对n型半导体TiO

2

光催化性质影响显著。当有微量过渡

金属离子掺入半导体晶体之中,能级处于TiO

2

价带和导带之间的过渡金属离子能降低半导体的带隙能,它不仅可以接受半导体价带上的激发电子,也可以吸收光子使电子跃迁到半导体的导带上,增强对可见光的吸收,从而扩展吸收光谱的范围。从而可在其表面引入缺陷位置或改变结晶度,缺陷对催化剂的活性起着重要作用,可成为电子或空穴的陷阱,阻碍电子—空穴对的再结合,而延长寿命;可以造成晶格缺陷,有利于形成更多的Ti3+活性中心[21]而增加反应活性。Choi 等人[22]较早时候即对包括Sn4+、Fe3+、Zr4+、Ru3+、Os3+、Ga3+、Sb5+、Re5+、Nb5+、Ta5+、

Mo5+、V5+和Rh3+等在内的21种金属离子对TiO

2

的掺杂效果进行了系统的研究。

Litter[23]等对Fe3+掺杂的TiO

2

光催化性质作了较为详细的介绍。Kanga等[24]在

FexOy/TiO

2

催化剂降解三氯甲烷是发现,通过水热法过渡金属Fe可以适当的结合在锐钛矿结果框架中,是吸收光波长红移。

复合半导体的影响

半导体复合从本质上就是一种修饰过程,其复合方式有组合、多层结构、导相组合、掺杂等。通过半导体复合可提高系统的光诱导电荷分离效率,扩展其光谱相应范围,从而提高光催化体系的太阳光利用率。半导体复合纳米粒子的复合方式有核-壳结构、偶联结构和固溶体结构等几种形式,利用其粒子之间的耦合作用,使两种半导体的能带宽度发生交叠,从而使两者之间发生光生载流子的输送与分离,扩大半导体的激发波长的范围。从复合组分的不同性质看,复合半导

体可分为半导体-半导体及半导体-绝缘体复合物。选取TiO

2

做为基准的复合物的原则为Spanhel等[25]提出的“夹心结构”:(1)复合物的禁带宽度要窄,从而

扩大复合TiO

2吸收光谱,提高TiO

2

的光催化活性和可见光的利用率;(2)复合物

要有合适的导带位置,能有效地促进光生电子和空穴的分离,提高光量

图复合半导体CdS-TiO2光催化剂中的光激发过程示意图[16]

子效率,如图。目前关于复合TiO

2光催化剂的研究有TiO

2

-SnO

2

[26]、TiO

2

-ZnO、

TiO

2-CdS[27][28]、TiO

2

-WO3[29][30]、TiO

2

-CdSe[31]、TiO

2

-SnO

2

[32]、TiO

2

-PbS等等。这些

复合半导体几乎都表现出高于单一半导体的光催化活性。电子捕获剂的影响

在室实验研究光催化反应中经常在体系中额外加入KBrO

3、NaIO

4

、H

2

O

2

、K

2

S

2

O

8

O 3、O

2

等具有强氧化性的物质,这些氧化剂能够有效的俘获氧化剂表面的光生电

子,降低了电子/空穴复合的机率,提高光催化效率[33]。

表面螯合及衍生的影响

表面衍生作用是指在表面吸附的具有螯合作用物质从而影响光催化剂的催

化活性。Uchihana等[34]报道,含EDTA(乙二胺四乙酸)、硫化合物、OHˉ等螯合剂能使半导体的能带导带移向更负的位置。正辛基衍生的TiO

2

光催化剂在非水

溶液中降解2-甲基苯乙烯的效率比Pt/TiO

2

体系高2-3倍[35]。

形貌的影响

随着人们的TiO

2研究的不断深入,人们也合成出多种不同形貌的TiO

2

催化

剂。主要包括球形,孔型,线状,核壳(core-shell)状。核壳材料一般由中心的

核和包覆在外部的壳组成[36]。Li[37]等人用TiOSO

4获得介空的TiO

2

微球,他们认

为他们合成的核壳式的微球由于其能使紫外光在其壳内部多层次的反射使其光

催化活性提高。Song[38]等人合成了TiO

2@SiO

2

@PS的多层的核壳微球,在紫外可见

光的照射下,其催化效果几乎超过了P25。通过互沉积的方法得到的TiO

2

与其他氧化物的双层膜,这种结构能使电子在层与层之间转移。很多文献都描写到直行孔道结构由于其有利于光的直接传播,所以此种结构有更高的光催化活性。如:

多级介孔结构的TiO

2催化剂具有好的光催化活性,用直接法合成的TiO

2

大孔/介

孔材料进行光催化实验,证明其对光催化有积极作用。Li[39]等人合成了带有平行

孔道TiO

2

材料,并证明了孔结构对紫外光起到了理想的通道的作用,平行孔道

更有利于光吸收进而提供了其光催化活性。垂直两边相通纳米管的TiO

2

膜,对光催化活性也有提高。

晶形的影响

TiO

2

有三种常见的晶型结构:板钛矿相(Brookite)、锐钛矿相(Anatase)和金红石相(Rutile)。它们都是由煅烧无定型的二氧化钛粉体转变而来,在煅烧过程中粒子在高温作用下,颗粒持续长大,表面积急剧下降,发生了不可逆的脱羟

基反应。锐钛矿和板钛矿都是TiO

2的低温相,金红石是TiO

2

的高温相,在实验

条件下,锐钛矿和板钛矿都可以向金红石相转化,而金红石相却不能向锐钛矿或

板钛矿相转化。板钛矿相几乎不具有光催化活性,且热稳定性较差,因此研究价值不高。常用的TiO

2

光催化剂都是金红石和锐钛矿相, 在性质方面金红石相比

锐钛矿相稳定,有较高的折射率、介电常数和硬度,而且金红石相TiO

2

对紫外线吸收能力较强,着色力和遮盖力也比较强,而锐钛矿相对可见光短波部分反射率

a b

图二氧化钛晶体结构:a锐钛矿相b金红石相[40]

较金红石相强,所以其对紫外线吸收能力较差。在锐钛矿相和金红石相TiO

2

晶相结构单元中,如图所示,钛原与六个氧原子配位,同时一个氧原子与三个钛原子相连,组成相互联接的Ti–O八面体。两者的差异在于八面体间相互联接的方

式和八面体的畸变程度不同。金红石相TiO

2的八面体微显斜方晶,锐钛矿相TiO

2

的八面体扭曲的更加严重[41-42]呈明显的斜方晶系畸变,其对称性远低于金红石

相。锐钛矿相TiO

2

的Ti–Ti键长比金红石大,而Ti–O键长又比金红石相小[43]。

锐钛矿相TiO

2

中,每个八面体都与周围八基本单元相联(四个共边,四个共角),

金红石相TiO

2

中,每个八面体与周围十个基本单元相联(两个共边,八个共角)。正是因为锐钛矿相和金红石相的结构上的差异致使两种晶相具有不同的电子能

带结构和密度。锐钛矿相TiO

2

的密度略小于金红石相,带隙能()稍大于金红

石相()。锐钛矿相二氧化钛晶格内比金红石相TiO

2

有更多的缺陷,从而产生较

多的氧空位来俘获更多电子,所以锐钛矿相TiO

2在多数情况下比金红石相TiO

2

具有更高的光催化活性。但是近年来对广泛应用于工业催化的P-25的研究表明,其高效的光催化活性的主要是因为锐钛矿相与金红石相的混晶化合物。据Bicklcy等[44]研究表明,混合晶相具有高催化活性的原因在于锐钛矿相晶体的表面生长了薄的金红石相结晶层,金红石相结晶层的掺杂有效地促进了锐钛矿相晶体中光生电子-空穴的分离。Kawahara等[45]合成了半暴露的锐钛矿和金红石混合晶型的催化剂,其催化效果明显的高于非混合晶型的催化剂。

非金属掺杂的影响

非金属掺杂主要是通过非金属的2p轨道与TiO

2

催化剂中的O的2p轨道杂化

或引入掺杂能级来提高TiO

2催化剂的光催化活性。其中,杂化后可以提高TiO

2

的价带位置,使得TiO

2的能带变窄,并且在TiO

2

的能带中产生了新的的能级,

可以使催化剂的吸收光谱向可见光区红移。常见的非金属掺杂有S-N[46]共掺杂、S-C[47]共掺杂、P-N[48]共掺杂、F-N[49]共掺杂。

实验条件对光催化活性的影响

实验条件主要包括光照强度和被降解液的酸碱度。随着光强的增加,照射到催化剂表面的光量子数增多,激发出的电了-空穴对也就增多,降解效果也越好。但有实验研究[50]表明,速率常数是随入射光强的升高而增加的,而表观吸附常数却与其相反。这说明提高光强虽然可增加光降解速率,相反的也会降低其能量利用率。如何选择适中的光强是一个亟待解决的问题。溶液的酸碱度主要使二氧化钛表面带电状态发生变化。当pH<时,溶液中存在大量的H+,催化剂颗粒表面容

易吸附正电荷,有利于光生电子向催化剂表面转移,与吸附的O

反应以抑制电

2

子与空穴的复合;而当pH>时,溶液中存在大量的OH-,催化剂表面容易吸附负电荷,有利于光生空穴向催化剂表面转移,与吸附的H

O或OH-反应产生羟基自

2

由基,促进光催化反应的进行。所以在低pH值和高pH值时都可能会出现较高的

粉末对一些有机物光催化反应活性。另外,还有大量研究表明pH增大时,TiO

2

的吸附性能增强,所以降解有机物时一般在碱性条件下进行。

催化剂用量的影响

大量研究表明,催化剂的用量越多催化反应速率越快,但加到一定量时催化速率反而会有下降趋势。出现这种现象的原因在于在一定的光照条件下,当催化剂的量太小时,产生的光生电子与空穴的量比较少,催化速率较慢;当催化剂的量达到一定值时,光生电子与空穴已经达到饱和,这时的催化效果最好;但当催化剂量过多时,过量的催化剂不但不会激发出更多的光生电子反而会引起光散射,影响溶液的光的透过率。同时,过量的催化剂在溶液中可能还会发生凝聚,使催化剂的比表面积下降,也会减小反应速率。因此,催化剂的量存在一个最佳值[51-52]。

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比 O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系 XXX XXX 摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。 关键词纳米二氧化钛; 光催化; 结构; 掺杂 自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。[1] 1、纳米二氧化钛结构及其光催化机理 1.1 二氧化钛晶型 纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。其晶胞结构如下(其中红色为O,白色为Ti): 锐钛矿型: 板钛矿型:

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

二氧化钛光催化剂

Ti O2纳米颗粒的制备及表征 在关于有关Ti O2纳米颗粒的研究中,制备方法的研究是很多的,同时,采用溶胶-凝胶法合成纳米Ti O2的文献报道比较多,通常采用溶胶-凝胶法合成的前驱物为无定形结构的,经过进一步的热处理后或者水热晶化才能得到晶型产物[49]。烧结过程能促使晶型转变,但是往往引起颗粒之间的团聚和颗粒的生长[50]。一般情况下,在大于300℃温度烧结处理得 到锐钛矿型Ti O2、大于600℃的温度烧结处理得到金红石型Ti O2。Ti O2的很多种性质取决于颗粒尺寸和晶化度。优化制备条件,得到分散性良好,催化性能好的光催化剂是很有研究意义的。 实验原理 溶胶-凝胶法是从材料制备的湿化学法中发展起来的一种新方法,是以金属醇盐或无机 盐为原料,其反应过程是将金属醇盐或无机盐在有机介质中进行水解、缩聚反应,使溶液形成溶胶,继而形成凝胶。凝胶经陈化、干燥、煅烧、研磨得到粉体产品。其中由于较多研究者以醇盐为原料,故也将其称为醇盐水解法。在溶胶-凝胶法中,溶胶通常是指固体分散在 液体中形成胶体溶液,凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或部分介质,是一种相当稠厚的物质。 本文中,钛酸四丁酯(Ti(OC4H9)4)在水中水解,并发生缩聚反应,生成含有氢氧化钛(Ti(OH)4)粒子的溶胶溶液,反应继续进行变成凝胶,反应方程式如下: 水解Ti(OC4H9)4+4 H2O →Ti (OH)4+ 4HO C4H9 (2-1) 缩聚2Ti (OH)4→[Ti (OH)3]2O+H2O (2-2) 总反应式表示为: Ti(OC4H9)4+ 2H2O→Ti O2 + 4 C4H10O (2-3) 上式表示反应物全部参加反应的情况,实际上,水解和缩聚的方式随反应条 件的变化而变化。反应过程为: (1) 水解反应:可能包含对金属离子的配位,水分子的氢可能与OR 基的氧通过氢键引起 水解。 (2) 缩聚反应:在溶液中,原钛酸和负一价的原钛酸反应,生成钛酸二聚体,此二聚体进 一步作用生成三聚体、四聚体等多钛酸。在形成多钛酸时Ti-O-Ti 键也可以在链的中部形成,这样可得到支链多钛酸,多钛酸进一步聚合形成胶态Ti O2,这就是通常所说的 Ti O2溶胶的胶凝过程[53]。 本论文选用价格较低、使用较为普遍的钛酸四丁酯(Ti(OC4H9)4)作为钛源,选用乙醇为 溶剂,乙醇在钛酸四丁酯的水解反应过程中并不直接参与水解和缩聚反应,但它作为溶剂对体系起着稀释作用,它在Ti(OC4H9)4分子与水分子周围均形成由乙醇分子组成的包覆层, 阻碍反应物分子的碰撞,并在溶胶粒子周围形成“溶剂笼”,从而阻碍了溶胶粒子的生长以及溶胶团簇间的键合,使得干燥后的干凝胶能保持疏松多孔的状态,经焙烧后所得粒子比表面积较大。此外,在制备溶胶的过程中还要加入适量的冰乙酸,冰乙酸在反应过程中可能有两种作用:一是抑制水解,二是使胶体粒子带有正电荷,阻止胶粒凝聚,从而避免干凝胶粒尺寸过大。根据上述机理分析和本实验室前人研究的基础上,确定制备Ti O2溶胶的各物料组分摩尔比为Ti(OC4H9)4:HAc:H2O:Et OH:(NH4)2CO3 =1:2:15:18:X,其中X值变化的范围是0~4,加入碳酸铵的目的是使反应过程中产生气体和微小的固体载体,但又不会对生成的Ti O2造成掺杂等影响,使颗粒分散更均匀,细小。

NiCr-LDHs的制备及光催化性能研究..

化学工程学院 新产品开发训练报告 2014-12 课题名称: CoCr-LDHs的制备及光催化性能研究 课题类型:论文 班级:应化 1102 姓名:周柳 学号: 1112083076 指导教师:薛莉 (使用说明:设计/论文请选一使用,左侧装订)

第一部分文献综述 1.1 水滑石的定义及研究背景 层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)[1]。 水滑石材料属于阴离子型层状化合物。层状化合物是指具有层状结构、层间离子具有可交换性的一类化合物,利用层状化合物主体在强极性分子作用下所具有的可插层性和层间离子的可交换性,将一些功能性客体物质引入层间空隙并将层板距离撑开从而形成层柱化合物。水滑石类化合物(LDHs) 是一类具有层状结构的新型无机功能材料, LDHs的主体层板化学组成与其层板阳离子特性、层板电荷密度或者阴离子交换量、超分子插层结构等因素密切相关。 LDHs的发展已经历了一百多年的历史,但直到二十世纪六十年代才引起物理学家和化学家的极大兴趣。1842年,Hochstetter首先在片岩矿层中发现了天然水滑石矿物。[2]后来又相继在挪威的Sunarum地区以及俄罗斯的Ural地区发现了少量的天然水滑石矿。在二十世纪初,人们发现了LDH对氢加成反应具有催化作用,并由此开始了对LDH结构的研究。1942年,Feitknecht等首次通过金属盐溶液与碱金属氢氧化物反应人工合成出了LDH,并提出了双层结构模型的设想。1966年,Kyowa公司首先将LDH的合成工业化。1969年,Allmann等通过测定LDH单晶结构,首次确认了LDH的层状结构。[3,4]七八十年代时,Miyata等对其结构进行了详细研究,并对其作为新型催化材料的应用进行了探索性的工作。在此阶段,Taylor和Rouxhet 还对LDH热分解产物的催化性质进行了研究,发现它是一种性能良好的催化剂和催化剂载体。Reichle等研究了LDH及其焙烧产物在有机催化反应中的应用,指出它在碱催化、氧化还原催化过程中有重要的价值。 进入二十世纪九十年代,人们对LDHs的研究更为迅速。随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化,对LDHs层状结构的认识加深,其层状晶体结构的灵活多变性被充分揭示。特别是近年来,基于超分子化学定义及插层组装概念,有关LDHs的研究工作获得了更深层次上的理论支持,在层状前体制备、结构表征、超分子结构模型建立、插层组装动力学和机理、插层组装体的功能开发等诸方面得到了许多具有理论

二氧化钛的光催化性能

二氧化钛的光催化性能 摘要:以廉价易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛,工艺 过程简单、易控制、污染少,是一种制备二氧化钛的理想方法。同时研究了催化剂用量和时间对TiO2 光催化降解甲基橙的降解率的影响,实验结果表明当催化剂用量为4 g/L,光催化时间为60 min时,降解率可达到90%以上。 关键词: 二氧化钛,制备,甲基橙,光催化 TiO2 具有化学性质稳定、催化活性高、催化简单有机物彻底、不引起二次污染等优点,在污水处理、空气净化等领域被广泛研究。它利用半导体氧化物材料在光照时表面能受激活化的特性,利用光能可有效地氧化分解有机物、还原重金属离子、杀灭细菌和消除异味,无二次污染,不仅经济,而且自身无毒、无害及无腐蚀性,还可反复使用,并可望用太阳光为反应光源等特点而被广泛地应用到光催化降解有机污染物,是一种具有广阔应用前景的绿色环境治理技术。 目前,制备二氧化钛的方法很多,分类方法也有所不同。根据物理性质,分为气相法、固相法和液相法。气相法制备出的TiO2纯度高、分散性好、团聚少、比表面活性大,但是气相法的反应要求在高温条件下瞬间完成,对反应器的选择、设备的材质,加热方法等均有很高的要求,欲达到工业化生产还要解决一系列工程问题和设备材质问题。与气相法相比,液相法具有原料廉价、无毒、常温下可以反应、工艺过程简单、易控制、污染少、产品质量稳定等优点。因此,以廉价、易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛是一种具有工业发展潜力的理想方法。其他实验方法 1实验部分 1.1实验试剂 99.9%的四氯化钛(分析纯)(天津市科密欧化学试剂有限公司),28%的氨水,97%的乙醇(洛阳市化学试剂厂),0.1mol/L的浓硫酸,0.1mol/L的氢氧化钠,0.1mol/L的硝酸银溶液,去离子水,二次蒸馏水 1.2 实验仪器 抽滤器烘箱 1.3 实验原理 将四氯化钛加入乙醇的水溶液中,让TiCl4水解后再加入含羟基或可释放出羟基的化合物(本实验用氨水),使其缩合,逐渐凝胶化后经干燥和煅烧可得二氧化钛粉末,反应如下: 水解反应: TiCl4 + 4C2H5OH = Ti(OC2H5)4 + 4HCl Ti(OC2H5)4 + 4H2O = Ti(OH)4↓+ 4C2H5OH 煅烧反应:

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

二氧化钛的制备与光催化性能研究

合肥学院学生专题训练实验报告 合肥学院化学与材料工程系 二氧化钛光催化剂的制备及光催化性能的研究实验 实验目的: 让化学本科生尽早了解和掌握光催化原理,熟悉光催化剂的制备和光催化反应,在大量研究工作的基础上,设计涉及纳米光催化剂的制备、催化剂的简单表征和催化活性评价的综合性实验。让学生能够对光催化具有较好的了解。 实验原理: 当光子能量高于半导体带隙能(如TiO2,其带隙能为3.2eV)的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带。从而使导带产生高活性的电子(e),而价带上则生成带正电的空穴(h+),形成氧化还原体系,挤在表面产生具有高活性的羟基自由基。具有很强的氧化性,可以氧化很多难降解的有机化合物(R)。 粉体的制备可采用许多方法,如溶胶-凝胶法,水热合成法等。 本次试验采用溶胶-凝胶法。 仪器与试剂: 表1 实验药品 药品名称化学式纯度生产厂家 浓硝酸HNO3AR 上海化学试剂有限公司

无水乙醇CH2CH2OH AR 上海中试化工总公司 钛酸丁酯(TBT)[CH3(CH2)3O]4Ti AR 天津市光复精细化工研究所冰醋酸CH3COOH AR 上海振企化学试剂有限公司亚甲基蓝 表2 实验仪器 仪器设备名称型号生产厂家主要用途磁力加热搅拌器85-2 江苏金坛市精达仪器制造厂搅拌反应液电子天平ER-180A 广州市艾安得仪器有限公司准确称量 超声波清洗器KQ-400K DE 昆山市超声仪器有限公司超声分散 高速离心机TG16G 盐城凯特实验仪器有限公司高速离心 电热恒温鼓风干燥箱DHG-902 3A 上海市精宏实验设备有限公司样品干燥 紫外可见分光光度计TU-1901 北京普析通用仪器有限责任公司性能测试 图1 实验装置图 实验过程: 一:TiO2的制备 量取17mL钛酸丁酯,在磁力搅拌器搅拌下滴加入到22mL的无水乙醇中,制得钛酸丁酯/乙醇溶液(A);将22mL无水乙醇和一定量蒸馏水混合,并加入一定量的浓硝酸和冰醋酸,调节pH值在2~3之间(B)。将B以2d/s的速度在磁力搅拌器快速搅拌下滴入A中;滴完后继续搅拌,形成均匀溶胶之后,持续快速搅拌至反应器中无气泡产生;将混合后的溶胶抽虑;所得样品至于电热恒温鼓风干燥箱中于95℃干燥三个小时。将干燥后的样品研磨放入马弗炉中于500℃下煅烧处理,升温速率为3℃/min,保温时间为2h,自然冷却至室温,研磨,即得所需产品,待用。二:实验现象

相关主题
文本预览
相关文档 最新文档