当前位置:文档之家› 通风_过氧乙酸和臭氧氧化降低室内空气微生物

通风_过氧乙酸和臭氧氧化降低室内空气微生物

通风_过氧乙酸和臭氧氧化降低室内空气微生物
通风_过氧乙酸和臭氧氧化降低室内空气微生物

通风、过氧乙酸和臭氧氧化降低室内空气微生物

王 琨 吕春梅

(哈尔滨工业大学市政环境工程学院,黑龙江150090) 

李宏伟

(哈尔滨市环境监测中心站,黑龙江150076)

陈战利

(哈尔滨工业大学市政环境工程学院,黑龙江150090)

摘要 为了防止室内空气微生物导致的传染病发生,对某校园室内的空气进行通风、过氧乙酸和臭氧灭菌降低微生物的实验研究结果表明,通风可以有效地降低室内微生物的浓度,是最为经济和易行的措施;过氧乙酸灭菌效果好,持续时间较长,可在不易实施通风情况下采用过氧乙酸灭菌;臭氧具有迅速杀菌的效果,使用时要与人保持一定距离,最好超出1m。本研究为合理实施改善室内空气卫生环境提供了参考数据,3种降低室内空气微生物的方法各有其效和特点,使用时应根据具体情况选定。

关键词 室内空气 菌落数 通风 过氧乙酸 臭氧

1 引言

空气中的微生物与人体健康密切相关[1]。空气中细菌个数大致为100~500个Πm3,霉是10~50个Πm3左右[2]。因此,室内空气微生物的控制极其重要。针对常用的通风、过氧乙酸和臭氧灭菌降低室内空气微生物的方法,进行控制效果的研究,探寻各自不同的控制特点,为合理有效的改善室内空气卫生环境提供参考数据。

2 室内空气微生物采样与检测方法

实验采用营养琼脂平板培养基沉降法测定室内空气中的细菌总数[3]。实验场所的居室、学生宿舍每次设5个测定点,每个测定点采2个平行样,共10个平皿;教学实验室较大,平均设置12个平皿进行测定。采样10min,将平皿翻转在37℃恒温生物培养箱中培养繁殖48h,计菌落数。依据(G BΠT170932 1997)《室内空气中细菌总数卫生标准》沉降法的菌落数≤45cfuΠ皿,来评价室内空气菌落数是否超标。

3 实验结果与讨论

实验时间为2003年4~5月,正处于S ARS(非典型性肺炎)病毒流行期间。根据当时情况,进行了通风、过氧乙酸和臭氧降低室内空气细菌总数的实验研究。实验对象选取了住宅区某居室的卧室(使用面积14m2)、学生宿舍(某4人房间)和某教学实验室。311 通风室内空气中菌落数的影响

对居室卧室(有2人)和宿舍(有4人)的居住者早晨开窗前和通风30min后进行测定。实验结果见图1和图2

图1 通风前后居室(2人)空气菌落数

 

图2 通风前后宿舍(4人)空气菌落数

 

从图1和图2中可以看到,菌落数无论是单皿的

58环 境 工 程

2004年10月第22卷第5期

最大值、最小值还是10个皿的平均值,通风后的都明显低于通风前的。11日室外风大,通风时室内空气扰动强,室内空气降尘多,使得通风降低室内空气菌落数的效果比其它几天差。通风前居室内空气平均菌落数为9~14cfuΠ皿,宿舍为10~44cfuΠ皿;通风30min后分别降到5~11cfuΠ皿和5~12cfuΠ皿,表明通风后不同房间空气菌落数差别很小。

312 过氧乙酸消毒灭菌效果

过氧乙酸的主要成分是冰乙酸和双氧水,利用双氧水的氧化能力和冰乙酸提供的酸性环境进行杀菌灭毒。在室内采用018m LΠm3的喷药量,向空气中喷洒,过氧乙酸能将空气中的微生物截住、裹带,使其沉降,并将其杀灭。在4人的宿舍中进行实验。采样时间分别为灭菌前1次、灭菌中1次、灭菌后30min和60min各1次,室温24~27℃,相对湿度60%~68%。实验结果见表1。

表1 学生宿舍过氧乙酸灭菌结果

日期天气灭菌操作

10个平皿中菌落数统计Πcfu?皿-1

最小值最大值平均值

灭菌前 —32100353133

灭菌中 —105233717 5118扬沙

灭菌后30m in8171112

灭菌后60m in48612

灭菌前 —9271617

灭菌中 —8211517 5122晴

灭菌后30m in313717

灭菌后60m in25313

灭菌前 —85632313

灭菌中 —212616 5123晴

灭菌后30m in210315

灭菌后60m in08218

灭菌前 —14282015

灭菌中 —17412 5124晴

灭菌后30m in27318

灭菌后60m in29511

灭菌前 —51811

灭菌中 —712916 5125晴

灭菌后30m in27416

灭菌后60m in16217

注:3菌落数>45cfuΠ皿。

从表1中可见,室外出现扬沙天气时,室内空气质量会有影响,每皿菌落数平均值>45cfuΠ皿。经过过氧乙酸空气灭菌后,室内空气明显改善。喷洒过氧乙酸30min和60min后,按每皿平均菌落数计,灭菌率分别为7817%、5319%、8510%、8115%、5812%和8814%、8012%、8810%、7511%、7515%(按表中时间顺序),表明60min后的灭菌效果普遍好于30min后的(除5月24日结果外)。

313 教学实验室通风和过氧乙酸灭菌效果比较教学实验室,使用面积为48m2左右,每次实验人数30人左右,实验持续1~115h。5月27日上午学生进入实验室前、学生实验进行1h后和学生离开实验室通风30min后进行3次室内空气菌落数测定;当日下午分别在实验前、实验进行中、学生离开后进行室内空气过氧乙酸灭菌消毒30min后、消毒60min 后进行了4次测定。室温23~24℃,相对湿度18%~22%,测定结果见表2。

表2 教学实验室细菌总数测定结果

日期天气实验条件

12个平皿中菌落数统计Πcfu?皿-1

最小值最大值平均值5127晴,轻风

实验前152

上午

实验60m in后33916

通风30m in后052

5127晴,轻风

实验前153

下午

实验60m in后43621

消毒30m in后083

消毒60m in后021

从表2中可以看出,实验进行中室内人员多,活动频繁,造成的菌落数急剧上升,每皿平均值由2cfuΠ皿增至16cfuΠ皿。在通风之后,细菌数量明显下降,并恢复到实验前水平。下午实验课期间空气菌落数与上午差别不大。过氧乙酸灭菌消毒30min 后,细菌总数水平大幅下降,60min后菌落数低于实验前的测定值。另外,从表2还可以看出,即使是菌落数量较多的时候,单皿的最小值都在一个较低的水平,为3~4cfuΠ皿。其原因是学生未进入实验室前,室内空气微生物总数少,为1cfuΠ皿,出现最小值的平皿距人员集中活动的地方有一定距离。这说明,空气细菌的增多主要是人的介入而增多的,再者室内原有的沉降了的细菌由于人的频繁活动被扰动带起,进入

68

环 境 工 程2004年10月第22卷第5期

到空气中,以悬浮状态的气溶胶形式存在。大量研究也表明

[4]

,在公共场合,特别在教室活动、学生食堂就

餐高峰时,火车站、电影院和商场等人口集中地区,空气卫生至关重要。经常通风,适当消毒,及时清理环境卫生是保证空气清洁的关键。314 臭氧灭菌效果

实验在一办公室内进行,实验期间除采样外没有人员在室内工作。进一步确定室内空气微生物的影

响因素。使用臭氧发生器(臭氧产量为3L Πmin ),利用臭氧杀灭细菌。臭氧发生器开启20min ,在灭菌前、灭菌中、灭菌后20min 各采样1次,检测臭氧对空气中细菌的杀灭效果。其结果见图3所示

图3 O 3灭菌前后某办公室内细菌的变化情况 

由图3可以看出,臭氧灭菌的第1天(4月22日)效果比较好,每皿最大值从42cfu Π皿降到18cfu Π皿,平均值从17cfu Π皿降到11cfu Π皿,平均灭菌率3513%。室内无人员活动情况下,从随后的连续4d

每天1次的臭氧灭菌结果看,经过第2d 灭菌后,每皿最大值降到10cfu Π皿以下,24h 内细菌几乎没有增加,这与教学实验室上课时菌落数剧增相对照,可见室内空气菌落数增加主要是人为造成。另外,考虑到臭氧的强氧化性对人体有害,在臭氧灭菌过程中也进

行了臭氧浓度的检测,其结果未发现超过国家规定的浓度011mg Πm 3

。4 结论

该研究的3种降低室内空气微生物的方法各有其效和特点,使用时应根据具体情况选择使用。

通风是最经济、易行、应用广泛的降低室内空气微生物的措施,实验结果也表明其效果比较好。但通风仅仅是将室内的微生物通过新鲜空气换气方式稀释和排除室内,并没有杀灭病菌,并且寒冷地区冬季和风沙天气情况下不易实施。

过氧乙酸灭菌效果好,持续时间较长,但是该药剂为酸性试剂,对室内的物品有腐蚀作用,操作使用要遵照使用说明。它不稳定、不易存放,灭菌过程中人员不应在室内停留。可在不易实施通风情况下采用过氧乙酸灭菌。

臭氧具有迅速灭杀细菌的效果,使用方便,但是臭氧发生器价格较高。由于臭氧是强氧化剂,过量的使用会对人体健康有不利影响,因此使用时要与人保持一定距离(超出1m 以外),不要正对人体。

参考文献

1 L.D.R oberston.M onitring Viable Dungal and Bacterial Bioaeeeros ol

C oncentrations to

Identify Acceptable Levels for C omm on Indoor

Environments.M yconthech Biological.1998.58(9):102.

2 秋元肇等编著.张可喜,赖玉芳译.室内空气质量—你知多少?北

京:机械工业出版社,2003.20.

3 陈敏学主编.环境卫生学实习指导.北京:人民卫生出版社,2001.

75~76.

4 李娟.住宅室内细菌污染现状与分析.重庆建筑大学学报,1999.21

(6):60~64.

作者通讯处 王琨 150090 黑龙江省哈尔滨市南岗区海河路204号 哈尔滨工业大学二校区2603#电话 (0451)86282371

E 2m ail peng94@https://www.doczj.com/doc/1b13976037.html,

2004-03-24收稿

7

8环 境 工 程

2004年10月第22卷第5期

were examined and the distribution of chlorine at the agent bed was als o simulated mathematically.

K eyw ords high tem perature coal gas ,dechlorinating agent ,breakthrough chlorine content and chlorine distribution

EXPLORATION OF K ———AN I MPORT ANT FACTOR I NF LUENCI N G PERMAN G ANATE I NDEX

Xu Zhi et al (78)……………………………………………………………………………………………………………………Abstract The permanganate index is a routine parameter of water quality m onitoring.This K can in fluence directly the measuring process during actual measurement ,therefore it is discussed and a s olution is als o proposed.

K eyw ords permanganate index ,dilution ,K value and relative deviation

STUDY ON THE ECOLO GICA L BEDS FOR DOMESTIC SLUD GE TREATMENT

Chang Guanqin et al (80)……………………

…………………………………………………………………………………………………………Abstract The domestic sludge is treated by em ploying both natural zeolite and gravel as the artificial substrate of ecological beds at the same conditions.The results show that for m ost ecological beds with natural zeolite substrates ,the disposal effects are better than those of the ecological beds with gravel substrates.

K eyw ords artificial substrate ,zeolite ,ecological beds system and gravel

STUDY OF BIODEGRADABI LITY OF NITROBENZENE WITH WARBUR G RESPIROMETER

Chen Hua et al (83)…

…………………………………………………………………………………………………………………Abstract The biodegradability of nitrobenzene was studied with Warburg respirometer measuring the oxygen demand by microbe.The result showed that pretreatment ,concentration of waste water and acclimation of activated sludge were im portant to im proving the biodegradability of waste water.A fter flocculation by iron 2carbon inner electrolysis ,the biodegradability of waste water has been im proved clearly.Acclimation of activated sludge is als o helpful for im proving the biodegradability of waste water.Inhibitory concentration of nitrobenzene is 200~400mg ΠL.The experiment testified that the way to measure the biodegradability of nitrobenzene wastewater is effective ,quick and clear with Warburg respirometer.

K eyw ords Warburg respirometer ,nitrobenzene ,concentration and biodegradability

REDUCTION OF I NDOOR AIR MICROOR G ANISMS BY VENTI LATION ,PERACETIC ACI D AND OZONIZ ATION Wang Kun et al (85)

……………………………………………………………………………………………Abstract T o prevent epidemical disease prevalence caused by microorganisms in indoor air ,a study was carried out to investigate the effect of ventilation ,peracetic acid and ozonization on microorganisms reduction in the indoor air within a cam pus.The experimental results indicated that ventilation was an effective measure in reducing indoor air microorganisms with economy and sim ple operation.Peracetic acid could inactivate microorganisms efficiently with long duration and it might be used when ventilation was im possible.Ozone could kill bacteria prom ptly but a distance above 1m should be kept from human body.Valuable data were provided in this study for rational im provement of indoor air sanitation quality.Because ventilation ,peracetic acid and ozonization have their own unique features in the inactivation of indoor air microorganisms ,local situation should be referred when any of the measures is applied.

K eyw ords indoor air ,bacterial colonies ,ventilation ,peracetic acid and ozone

APPLICATION OF PYRITE I N G AN G UE TO TREATMENT OF WASTEWATER CONT AI NI N G

CHROMI UM (Ⅵ

)Ding Jianchu et al (88)………………………………………………………………………………………Abstract An experimental study on treating wastewater containing Cr 6+

by pyrite in gangue is conducted and relative process parameters are

determined ,whose industrial experiment is als o carried out.This technology features sim ple process ,convenient operation and low cost ,which is w orth popularizing.

K eyw ords pyrite in gangue ,wastewater containing Cr 6+

and pH

Manager : Central Research Institute of Building and C onstruction of MCC G roup Editor : The Editorial Department of Environmental Engineering Publisher : Industrial C onstruction M agazine Agency

(33,X itucheng R oad ,Haidian District ,Beijing 100088,China )

T elephone : (010)82227637、82227638F ax : (010)82227637 Chief Editor :W eng Zhongying

Domestic : All Local P osts

Distributor :China International Book T rading

C orporation (P.O.Box 399,Beijing

China )

Journalistic Code : 

ISS N1000-8942

CN11-2097ΠX

E -m ail Address :hjgc @https://www.doczj.com/doc/1b13976037.html, WWW Address :http :ΠΠw w https://www.doczj.com/doc/1b13976037.html,

6

E NVIRONME NT A L E NGINEERING

V ol 122,N o 15,Oct.,2004

实验 臭氧氧化法处理有机废水

实验一臭氧氧化法处理有机废水 一实验目的 1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。 2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。 二实验理论基础与方法要点 臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。 臭氧在水溶液中的强烈氧化作用,不是O 本身引起的,而主要是由臭氧在 3 基引起的。很多有机物都容易与臭氧发生反应。水中分解的中间产物OH基及HO 2 例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。 工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气。 三实验装置器材与药品 设备与器材: (1)臭氧发生器 1台 (2)臭氧氧化反应器 1套,如无现成的需自行安装代替500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个 (3)医用乳胶管,与乳胶管配套的玻璃管 (4)气体转子流量计 1个 (5)酸滴管(50mL) 1个 (6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品: (1)配制含酚废水,含酚浓度50—100mg/L,供除酚实验用。

臭氧处理染料废水

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 1 前言 印染废水一直是工业废水的主要来源之一,具有水量大、组分复杂、有机污染物含量高、水质变化大、pH值变化大、可生化性差等特点[1]。近年来,随着纺织印染行业的发展、仿真丝的兴起和印染后整理技术的进步,PV A 浆料、人造丝碱解物(主要是邻苯二甲酸类物质)、新型助剂等难生化降解有机物大量进入印染废水。印染废水中不但COD的质量分数由原来的每升数百毫克左右上升了10倍左右,而且BOD5与COD 的质量比也由原来的0.4~0.5下降到0.3,甚至是0.2以下[2]。由于染料的稳定性越来越大,废水的色度值也越来越高而且不容易去除。如果不能去除这些偶氮化合物,也会污染自然水域的颜色和其他方面。这就使得原有的二级处理工艺效果大大降低,不能满足现在的排放标准。 2 印染废水的特点 印染废水的成分主要与加工纤维的种类、所用染料助剂、机器设备及操作方法的不同而有所差异[3]。废水的种类大体可以分为以下几类:退浆废水、煮练废水、漂白废水、丝光废水、染色废水、印花废水、整理工艺废水等。而其中较难处理的就是退浆废水,煮练废水和染色废水。其中都含有大量的难以处理的有机物,如纤维屑、酸、淀粉碱,酶类污染物,含氮化合物和使用染料时的有毒物质(硫化碱、吐酒石、苯胺、硫酸铜、酚等),其COD和BOD较高,且可生化性较差。 印染废水成分复杂,主要是以芳烃和杂环化合物为母体,并带有显色基团(如—N═N—、—N═O)及极性基团(如—SO3Na、—OH、—NH2)。染料分子中含较多能与水分子形成氢键的—SO3H、—COOH、—OH基团如活性染料和中性染料等,染料分子就能全溶于废水中;不含或少含—SO3H、—COOH、—OH等亲水基团的染料分子以疏水性悬浮微粒形式存在于废水中;含少量亲水基团但分子量很大或完全不含亲水基团的染料分子,在水中常以胶体形式存在。 错误!未指定书签。- 0 -

臭氧消毒管理规定(新)

1.目的 为规范物料班臭氧发生器使用管理程序,保证工艺卫生,预防微生物污染。 2.范围 本管理规定适用于南京来一口食品有限公司生产车间物料臭氧灭菌管理。 3.职责 3.1生产部: 物料班长负责对臭氧消毒操作培训及表单审核; 物料员负责对本规定执行及改善建议; 3.3品管部: 负责对臭氧消毒作业进行监督; 负责对不符合要求的按相关制度处理; 4.管理细则 4.空气臭氧灭菌由物料班成员操作完成。 4.1臭氧灭菌操作之前,确保所有人员全部离开灭菌区,保证生产人员安全。 4.1.1操作人员根据规定灭菌时间进行灭菌区的物料灭菌。 4.1.2操作人员日常检查灭菌区的生产环境,发现故障及时报修,保证洁净区相对密闭,预防 臭氧泄漏,以确保臭氧在空间均匀分布和作用效率。 4.1.3灭菌区空气灭菌时间、灭菌频次: 4.1.4 灭菌区空气灭菌时间为每转运一次物料开启臭氧发生器,时间为30分钟。 4.1. 5.灭菌区空气臭氧灭菌技术规则: 4.1.6 臭氧对微生物作用的原理:类似于生物化学氧化反应,可分为抑菌、杀菌和溶菌。 4.1.7 臭氧氧化分解细菌内部氧化葡萄糖所必需的葡萄糖氧化酶; 4.1.8 臭氧可直接与细菌、病毒发生作用,破坏其细胞器和核糖核酸、大分子聚合物等,使细 菌的新陈代谢和繁殖过程遭到破坏。 4.1.9 臭氧可以渗透细胞膜组织,侵入细胞膜内作用于外膜脂蛋白和内部的脂多糖,使细胞发 生通透性畸变,导致细胞的溶解; 4.1.10臭氧能将细菌尸体内遗传基因、寄生菌粒、病毒粒子、噬菌体、支原 体及热原(内毒素)等溶解、变性,使之失去生理活性。 4.2洁净区空气臭氧灭菌操作要求: 4.2.1灭菌区空气臭氧灭菌操作前,操作人员必须先关闭灭菌区所有对外的门和窗,防止臭氧 外泄。

第五章 室内空气品质

第五章室内空气品质 1、室内空气环境包括室内热湿环境和室内空气品质。 2、对室内空气品质纯客观的定义是把室内空气品质几乎完全等价为一系列污染物浓度的指标。 3、美国供热制冷空调工程师学会颁布的<<满足可接受室内空气品质的通风>>中的定义“良好的室内空气品质:应该是空气中没有已知的污染物达到公认的权威机构所确定的有害浓度指标,并且处于这种空气中的绝大多数人(≥80%)对此没有表示不满意。 4、可接受的室内空气品质是:空调空间中绝大多数人没有对室内空气表示不满意,并且空气中没有已知的污染物达到了可能对人体产生严重健康威胁的浓度。 5、可感受到的可接受的室内空气品质是:空调房间中绝大多数人没有因为气味或刺激性而表示不满。 6、影响室内空气品质的污染源从性质上可分为:化学污染、物理污染和生物污染。 7、甲醛是一种挥发性有机化合物,无色,具有强烈刺激性气味。空气中的年平均浓度大约为0.005~0.01mg/m3 ,一般不超过0.03mg/m3。 8、《民用建筑室内污染环境控制规范》GB50325-2001规定甲醛的I类民用建筑的标准为≤0.08mg/m3 II类民用建筑≤0.12mg/m3。 9、《民用建筑室内污染环境控制规范》GB50325-2001规定I类民用建筑包括住宅楼、医院、老年建筑、幼儿园、学校教室。II类民用建筑包括办公楼、文化娱乐场所、书店、图书馆、体育馆。 10、VOC是(美国环境署)除了CO、碳酸、金属碳化物、碳酸盐以及碳酸氨等一些参与大气中光化学反应之外的含碳化合物。 11、VOC总称VOCs,以TVOC表示其总量。其中《民用建筑室内污染环境控制规范》GB50325-2001规定I类民用建筑≤0.5mg/m3,II类民用建筑≤0.6mg/m3。 12、氡对人体的辐射伤害占人体所收到的全部环境辐射中的55%以上。 13、世界约15%的肺癌患者与氡有关。 14、每立方米空气中氡平均浓度增加100贝克,肺癌发病率可增高19%至31%。 15、世界卫生组织已经把它列为19种主要的环境致癌物质之一。 16、氡致肺癌的发病潜伏期大多都在15年以上。 17、《民用建筑室内污染环境控制规范》GB50325-2001规定氡的I类民用建筑的标准为≤200Bq/m3,II类民用建筑的标准为≤400Bq/m3 18、室内空气污染的控制方法包括:源头治理、通新风稀释合理组织气流、空气净化。 19、物理性吸附的主要吸附剂有:活性炭、人造沸石、分子筛。 20、浸泽高锰酸钾的氧化铝对NO、SO2、甲醛、H2S的去除效果较好。 21、表征过滤器的主要指标有:过滤效率、压力损失和容尘量。 22、颗粒物浓度表示方法:计质浓度和计量浓度。 23、氧化铝对NO2和甲苯去除效果比较好。 24、病态建筑综合症没有明显的发病原因,只是和某一特定建筑相关的一类症状的总称。 25、病态建筑综合症的病因尚不完全清楚,其中可能涉及到40多个相关因素。 26、病态建筑综合症的原因很大可能性有:低通风率、空调、工作压力过大或对工作不满意、过敏或哮喘患者。 27、病态建筑综合症的原因原因可能有:地毯、办公室人员过多、使用显示器、女性等原因。

臭氧高级氧化废水处理实验

臭氧高级氧化废水处理实验 实验目的 掌握臭氧氧化处理废水的原理和方法 熟悉臭氧氧化处理废水技术的应用 实验原理 利用臭氧的强氧化性将废水中的有机物降解或部分降解 1. 臭氧的基本性质 臭氧(O3)由三个氧原子构成的,是氧气O2的同素异构体,常温常压下是具有鱼腥味的淡紫色气体。臭氧很不稳定,在常温下即可分解为氧气。 臭氧共振杂化分子的四种典形型式 2.臭氧对有机物的氧化机理 ν夺取氢原子,并使链烃羰基化,生成醛、酮、醇或酸;芳香化合物先被氧化成酚,再氧化为酸。ν打开双键,发生加成反应。 ν氧原子进入芳香环发生取代反应。 臭氧的应用 ν臭氧氧化反应之后的生成物是氧气,所以臭氧是高效的无二次污染的氧化剂。 ν去除水中的锰、铁、芳香族化合物、酚和胺类等。 ν灭活病毒 ν杀菌 实验主要装置

制氧机 臭氧发生器 电控箱 可见紫外分光光度计 COD快速消解测定仪 酸度计 影响反应系统的主要参数(臭氧在水中的利用率大概有多少?) ν温度 ν压力 ν反应器的体积 ν反应器中臭氧在气相、液相中的浓度 ν液相中的pH值 ν气液流速 ν污染物的种类、浓度、以及液相的组成 实验步骤 ν依次打开进水阀门,水泵,流量计,调节进水流量(可考虑连续和间歇操作两种情况); ν打开制氧机,臭氧发生器,调节氧气和臭氧流量; ν测定进水浓度,COD。 根据进水水质,每隔一段时间从取样口取样一次,测定pH值,COD,至浓度和COD值基本稳定为止;ν结束实验,关闭气体流量计,制氧机和臭氧发生器; ν关闭液体流量计,水泵,进水水阀; ν排出反应器中的水。 实验结果与整理 ν绘制出水水质随时间变化曲线:浓度—时间曲线;COD—时间曲线;pH值—时间曲线; ν计算浓度、COD去除率。

全球气候变化对农业的影响

全球气候变化对农业的影响 摘要:全球大气中CO2浓度升高、气温升高及降水量的变化等是全球气候变化对农业生产和农业生态系统影响最为重要的几个生态因子,其影响主要表现在对农作物产量、生长发育、病虫害等方面。在过去的几十年,全球气候变化已对农业造成重大影响,其中不少影响是负面的或不利的。本文综述了全球气候变化的特点、趋势,对农作物生产、种植制度、病虫害的影响和应对气候变化的农业对策。 关键词:气候变化农作物温度降水病虫害 引言 近百年来,以全球变暖为主要特征,全球的气候与环境发生了重大的变化。由于气候变化加剧而引起的水资源短缺,生态系统退化,土壤侵蚀加剧,生物多样性锐减,臭氧层耗损,大气成分改变等等,对人类的生存和社会经济的发展构成了严重威胁。农业是对天气变化最为敏感的部门之一,因为气候始终是影响农业生产的重要决定因素,到目前为止,农业还没有改变靠天吃饭的局面。农业是国民经济的基础,气候变化对农业所带来的不利影响,特别是极端天气气候事件诱发的自然灾害将造成农业生产的波动、危及粮食安全、社会的稳定和经济的可持续发展。及早开展气候变化对农业影响的研究,发现可能存在的问题,提前采取适应性对策具有极其重要的战略意义。 一、气候变化的特点和趋势 气候变化是气候平均状态出现统计意义上的显著变化或者持续较长一段时间(10 年或更长时间)的变动,具体指气候平均值和离差值两者中的一个或两者同时随时间出现了统计意义上的显著变化。 1.气候变化的特点 (1)平均温度明显上升 由于大气中二氧化碳、甲烷、氧化亚氮等温室气体浓度明显增加,造成地球表面温度上升全球气候变暖,进而引起全球的气候变化。自1860年有气象仪器观测记录以来,全球地表平均气温升高了0.44~0.80℃。中国近100 年来年平均气温明显增加,达到0.5 ~0.8度,比同期全球增温平均值略高。如果年平均温度上升1度,大于或等于10度积温的持续日数全国平均可延长15天左右,这对于农作物生产来讲具有重大影响。 (2)降水出现区域性与季节性不均衡 温度的提高会加快地表水的蒸发,导致水循环加剧,暴雨出现的概率增加,虽然降水量很大,却不能得到有效利用。各地的降水量和蒸发量的时空分布也会显著改变。降水既会出现区域性不均衡, 也会出现季节性不均衡,即在农作物最需要水的时候出现季节性干旱,从而给农业生产带来严重影响。过去的概念是中国西北部缺水,今后在中国南方也可能出现季节性干旱,水资源短缺将成为一个严峻的问题。 (3)极端气候现象增多趋强 极端气候现象指一些在特定地区和时间的罕见事件,极端气候现象的罕见程度一般相当于观察 到的概率密度函数小于10%,这些极端气候现象包括干旱、洪涝、低温暴雪、飓风、致命热浪等。极端天气气候事件的发生和全球变暖有关,也是气候变化的表现方面之一。在全球气候变暖的总趋势下,大气的环流特征和要素发生了改变,引发复杂的大气——海洋——陆面相互作用,大气水分循环加剧,气候变化幅度加大,不稳定因素增多,导致这些小概率、高影响天气气候事件的发生机会增加。极端气候事件对农业系统的影响往往大于气候平均变率所带来的影响。 (4)冰川消融导致海平面上升,海水入侵 在内陆地区增温造成冰川退缩导致雪线上升,在南极冰川逐步融化、冰架面临坍塌,而北极冰帽正在持续消融中,漂浮在北冰洋上的成年厚冰块不断融化,这些因素再加上海水受热膨胀将会使海平面上升。海平面上升会带来一系列问题。例如沿海地区洪水泛滥及严重破坏、侵蚀海岸线、海水入

卫生部《臭氧消毒技术规范》

臭氧用量可增至3-6 mg/L 。对污水处理,污水中使用的臭氧浓度为100-200 mg/L ,作用30分钟,在多数情况下可杀灭或破坏其中所有微生物及其毒素,并能改善水质。作用时间越长,效果越好。 2、消毒空气:对密空间的空气用5-10 mg/ m3浓度的臭氧作用30分钟。 九、注意事项:由于臭氧为强氧化剂,对物品损害较大,很少用作熏蒸消毒,规定大气中允许0.2 mg/ m3,故消毒宜在无人条件下进行。 十、含量测定:在500ml 锥形带塞玻璃瓶中,加入350ml 蒸馏水和20ml20%KI 溶液,在排气管分流取臭氧气2L 通入锥形瓶,再滴5ml 浓度为3mol/L 的H2S O 4溶液,静置5分钟后用0.1000mol/L 的Na2S 2O 3滴定,反应至浅黄色时加1ml0.5%的淀粉指示剂,滴定至无色,计算消耗的量,每毫升mol/l 的Na2S 2O 3溶液相当于48.00mg 的O 3。 O 3浓度(毫克/升)=M×V×48×1000/2×2×100=12MV 式中:M=克分子浓度,应标定小数点后四位;V=消耗毫升数。 当O 3浓度较高时,可以取1升臭氧化气,则计算公式为O 3浓度(毫克/升)=24MV 臭氧灭菌原理 "臭氧(O3)的消毒原理是:臭氧在常温、常压下分子结构不稳定,很快自行分解成氧气(O2)和单个氧原子(O );后者具有很强的活性,对细菌有极强的氧化作用,将其杀死,多余的氧原子则会自行重新结合成为普通氧原子(O2),不存在任何有毒残留物,故称无污染消毒剂,它不但对各种细菌(包括肝炎病毒,大肠杆菌,绿浓杆菌及杂菌等)有极强的杀灭能力,而且对杀死霉素也很有效。"1、臭氧的灭菌机制及过程类属于生物化反应学过程。臭氧氧化分解了细菌内部氧化葡萄糖所必须的葡萄糖氧化酶。2、可直接与细菌、病毒发生作用,破坏其细胞器和核糖核酸,分解DNA 、RNA ,蛋白质、脂质类和多糖等大分子聚合物,使细菌的物质代谢生产和繁殖过程到破坏。3、渗透胞膜组织,侵入细胞膜内作用于外膜脂蛋白和内部的脂多糖,使细胞发生通透畸变,导致细胞溶解死亡。并且将死亡菌体内遗传基因、寄生菌种、寄生病毒粒子、噬菌体、枝原体及热原(细菌病毒代谢 产物、内毒素)等溶解变性灭亡。 综观无菌技术对微生物作用的原理可分为抑菌、杀菌和溶菌三种。应用臭氧作灭菌、消毒是属于溶菌。所谓溶菌,即可达到“彻底、永久地消灭空气及物体表面所有微生物”的效果。 传统灭菌与臭氧灭菌的比较 1.我国GMP 条例对药品生产(特别是无菌产品)、食品生产、医疗单位有着极其严格的要求,在GMP 验证过程中大力推荐臭氧灭菌、消毒方法,与各种传统灭菌、消毒方法相比臭氧灭菌、消毒有许多特点。那么在食品生产中同样如此: 交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

室内空气品质评价标准

室内空气品质评价标准 分析了室内空气品质的现状,危害,对人体健康及生产效率的影响和改善室内空气品质的解决办法。本文主要从引发室内空气品质恶化的原因方面,探讨如何防止病态建筑的产生,提高室内空气品质,及如何解决已经产生空气品质问题的建筑,从而使人们享受舒适现代生活的同时,不会被病态建筑综合症侵扰。文章在以下几个方面展开讨论: ●建筑物室内空气存在的问题 ●影响室内空气品质的因素 ●解决被污染的空气办法 1引言 近年来由于人们生活水平的提高,在满足空间和舒适度要求后,人们逐渐的关注室内空气的健康状况。而由于采用了不合适的装修方法以及使用装修材料的化学产品质量不达标,现在居民室内空气品质状况令人担忧。人们往往关注于大楼内的空调系统制冷制热能力而忽略了对影响人体健康有着关键联系的室内空气品质(IAQ)问题,使得被污染的室内空气成为威胁人们身体健康的一大杀手。同时全球能源危机,使制冷空调系统这一能源消耗大户面临严重考验,节能降耗成为空调系统设计的关键环节。为了节能或降低造价而尽可能减少新风量,使室内产生有害气体和种种污染物(如造成居住和办公环境空气品质下降的元凶:室内的挥发性有机物,悬浮微生物和漂浮在空气中的微粒)。不能及时合理

的稀释和排出,使室内空气品质劣化。新风通风换气次数不足, 没有充足的室外新鲜空气稀释室内污染的空气,从而导致了室内空气进一步恶化。因此关注公共健康,不断提高室内空气品质,为公众提供健康、安全、舒适的生活产环境,便成为我们所应积极投入的研究课题。 2.室内空气品质的评价及标准(引用相关规范) 室内污染物种类繁多,目前检测到的有毒有害物质达数百种,它们当中有的会引起人体某种不愉快的感觉,如长期在室内工作的人们,出现眼、喉刺激、鼻塞、头痛、头晕、恶心、胸闷、乏力、皮肤干燥、嗜睡、烦躁等症状,统称为“病态建筑综合症”。有的被认为对健康造成一定程度的损害,据调查,约49.8%的人体疾病与室内污染物有关。还有一些其特性目前还不为人类所认识.如此种类繁多的污染物其存在是造成室内空气品质不良的重要原因。 2.1室内空气品质的评价目的 1. 掌握室内空气品质状况和变化趋势,以开展室内污染的预测。 2. 评价室内空气污染对健康的影响,以及室内人员接受的程度,为制 订室内空气品质标准提供依据。 3. 弄清污染源(如建材、涂料)与室内空气品质的状况关系,为建筑设计、卫生防疫、控制污染提供依据。

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水 在我国工业废水中,印染废水占的比例较高,因其有机物含量高、碱性大、水质变化大、废水量大,而成为极难处理的工业废水之因具有很强的氧化能力(酸性溶液中氧化还原电位高达2.07V),一。O 3 成为诸多难降解工业废水处理工艺的首选氧化剂。Khadhraoui等在利用臭氧处理刚果红的研究中发现,在氧化初期,臭氧本身可以将刚果红完全氧化脱色,且该实验结果符合假一级反应动力学模型。臭氧对直接、酸性、碱性、活性等亲水性染料脱色速度快,效果好;对于还原、纳夫妥、氧化、硫化、分散性染料等疏水性染料脱色效果较差,臭氧用量大;对于含铬染料废水,反而会生成六价铬离子,毒性更强。通过高级氧化和活性炭负载催化剂来提高臭氧催化氧化性能。 1.臭氧氧化机理 臭氧氧化有机物的途径有两种:直接反应和间接反应。直接反应是臭氧通过环加成、亲电或亲核作用直接与污染物反应;间接反应是臭氧在碱、光照或其它因素作用下,生成氧化性更强(氧化还原电位为2.8eV)的羟基自由基(·OH),·OH可以通过不同的反应使溶解态无机物和有机物氧化,主要包括:电子转移反应、抽氢反应和·OH 加成反应。臭氧直接作用于有机物时反应具有选择性,速度慢。而臭氧溶于水后形成的·OH,可以无选择性地将水中的有机物矿化,或使结构复杂、有毒的大分子有机物发生断链、开环等反应,生成结构简单、无毒或低毒的小分子化合物,且速度较快。 臭氧的强氧化性能破坏染料分子中的—N==N—、C==C、C

==O、—N==O等发色基团,使印染废水脱色。费庆志等采用臭氧氧化法降解酸性嫩黄染料,发现在酸性条件下(pH=4)臭氧对该染料的脱色效果较好。Zhang Hui等采用臭氧氧化法降解酸性橙7模拟染料废水时,加入氯化物屏蔽·OH,并未对染料的脱色率造成影响,从而得出了臭氧对该染料的脱色以直接氧化为主的结论。而章飞芳等用臭氧氧化活性艳红KE-3B模拟染料废水,发现在碱性条件下(pH=10)脱色效果好,且脱色速度较快。这可能是因为不同种类的染料,其分子结构有很大差异,有些染料与臭氧的反应活性较强,直接反应就能使其脱色。在碱性条件下虽然产生氧化性更强的·OH,但·OH可以无选择性地与染料发色基团之外的其它结构反应,导致在相同臭氧投加量下染料的脱色率降低。对于一些不易被直接氧化的染料,则需要依靠·OH来破坏其发色基团,以达到脱色的效果。 2.臭氧高级氧化处理印染废水 用复合氧化剂分解水中的有机污染物比单一氧化剂O3或H2O2 的处理速率显著加快,其原因是复合氧化剂产生的氧化作用不同于单一O3或H2O2自身的氧化作用。在O3水溶液中添加H2O可提高O3进入水中的质量迁移(提高因子为1.7),增强了O3分解产生·OH的能力,提高氧化效率。由于·OH的发生量取决于O3和H2O2的用量,因而直接影响到CODCr的脱除效果。 Glaze等的研究表明,增加O3水溶液的pH值或向其中添加H2O2能极大提高·OH的产生量和速率,并能将水溶液中的·OH物质的量浓度维持在较高的水平。随pH值增加,氧化速率增大,在pH<7时,反应

臭氧的主要特性和消毒机理

臭氧的主要特性和消毒机理 臭氧活性碳技术是目前国际上最先进的自来水处理工艺,在日、美、欧等发达国家已广泛采用,目前我国昆明,大庆的自来水厂已开始采用该技术,取得了明显的效果,上海、杭州等地也在实施中,采用臭氧消毒处理是水厂消毒的发展趋势。一、对臭氧在水处理中的应用世纪90年代起,由于怀疑水中的有机物和天然物质与氯发生反应形成的三卤甲烷具有致癌性,美国、日本和英国等国家也逐渐对臭氧在水处理中的应用产生了兴趣,并逐步在一些饮用水处理系统中采用或增设了臭氧处理工艺。由于臭氧比氯有较高的氧化电位,因此它比氯消毒具有更强的杀菌作用。对细菌的作用也比氯快,消耗量明显较小,且在很大程度上不受PH的影响。有关资料报道,在0.45mg/L臭氧作用下,经过2min,脊髓灰质炎病毒即死亡;如用氯消毒,则剂量为2mg/L时需经过3h。当1mL水中含有274~325个大肠菌,在臭氧剂量为1mg/L时可降低在肠菌数86%;剂量为2mg/L时,水几乎可以完全被消毒。 较之传统的氯消毒方法,臭氧消毒还有如下优点:(1)消毒的同时可改善水的性质,且较少产生附加的化学物质污染。(2)不会产生如氯酚那样的臭味。(3)不会产生三卤甲烷等氯消毒的消毒副产物。(4)臭氧可就地制造

获得,它只需要电能,不需任何辅料和添加剂。(5)某些特定的用水中,如食品加工,饮料生产以及微电子工业等,臭氧消毒不需要从已净化的水中除去过剩杀菌剂的附加工序,如用氯消毒时的脱氯工序。由于臭氧在水中很不稳定,容易分解,如接触池口处水中剩余臭氧尚有0.4mg/L,但经过水厂清水池的停留后,水中的剩余臭氧已完全分解,没有剩余消毒剂的水将进入管网。因此,经过臭氧消毒的自来水通常在其进入管网前还要加入少量的氯或氯胺,以维持水中一定的消毒剂剩余水平。二、臭氧的主要特性和消毒机理 1)臭氧的主要物理、化学特性臭氧是一种高活性的气体,通过对氧气的放电而形成,其分子式是O3,是氧的同素异形体。臭氧最显著的特性是具有强烈的气味,臭氧的英文词为“OZONE”,来源于希腊语,意为“味道”。在常温常压下,臭氧是淡蓝色的具有强烈刺激性气味的气体。臭氧具有很高的氧化电位(2.076V),比氯(1.36V)高出50%以上,因此它具有比氯更强的氧化能力。臭氧是由氧按以下热化学方程式形成:3O3 →2O3-69kcal 由上式可见臭氧的形成是吸热过程,因此,臭氧分子极不稳定,可自行分解,伴 随着分解过程全放出能量因此,臭氧比氧具有更高的活性和氧化能力。2)臭氧气体向水中的传递能力也可表示为:单位时间内的传递能力=传递系数×交换面积×交换电位这里所指的交换电位不仅与气液的浓度差有关,而且与臭氧和

臭氧污染对中国植物生产力的影响

臭氧污染对中国植物生产力的影响 目录 臭氧污染简介及研究现状.......................................................................................................................... 臭氧的产生和分布................................................................................................................................... 臭氧的危害和作用机理..................................................................................................................... 模型模拟和方法 .......................................................................................................................................

臭氧污染对中国植物生产力的影响 臭氧概述 臭氧是氧的同素异形体分子式为O3。有极强的氧化性,稳定性极差,常温下会自行分解,通常以稀薄的状态混合于大气之中。臭氧是引起气候变化的重要因子之一,是平流层和对流层中第三重要的温室气体。平流层臭氧能够全吸收波长290nm以下的紫外线辐射(UV-C),对290-320nm波长的紫外线吸收率达到近90%,极大减弱了地表紫外线辐射强度。因此,臭氧层成为保护地球免遭紫外辐射伤害的重要屏障。另一方面,臭氧也是重要的氧化剂,在大气光化学过程中起着重要作用。臭氧的强氧化性对细胞,植物等都具有危害。由于人类生活排放到空气中的氮氧化物,一氧化碳等易于受光辐射作用产生臭氧,从而引起对流层臭氧浓度的变化,造成空气污染(王春已 2007)。 平流层中臭氧层高度在20km-50km之间,虽然臭氧以稀薄的状态存在于平流层中,却起到了很强的保护作用(Andrews 1987)。自然条件下平流层臭氧一般难以到达近地面环境,对流层臭氧中仅20%来自于平流层入侵,剩下部分主要来自于光化学反应和生物排放(Bridgman 1990)。Altshuller等计算认为,自然界的本底臭氧浓度包含生物排放和平流层入侵,浓度大约在20ppb(Puxbaum 1991)。 但是伴随着人类工业和生产生活动,臭氧浓度发生了急剧变化。20世纪80年代左右,美国、欧洲的部分重污染城市其臭氧最大小时浓度已经接近200 pbb 以上,部分时间段甚至超过400 pbb(Appo 1985),见表 1。20世纪末,对流层臭氧浓度预计会以每年0.5%的速度增长,近地层臭氧也会有明显增加(Fishiman 1991,Flower 1999)。McCurdy等人(1994)针对一些国家地区的进行了检测,公布了部分国家地区的臭氧浓度监测结果,见表 2。Arif (2011)等人总结了北半球多国观测数据,计算出从1950年到2000年这50年来,臭氧浓度按照逐年0.06-3.1%的速度增加。到了21世纪初,大气臭氧浓度已增加到50-60 ppb,而部分城市地区甚至达到了100 ppb或更高。模型预测指出,依据现有的增长速度,在2020年,臭氧浓度会比2000年高出50%,2050年的臭氧浓度会比2020年高出20%-25%(Meehl 2007,Sitch 2007)。届时,全球24 小时平均地面臭氧浓度会从工业革命之前的24~35 ppb 升高至2100 年的 40~70ppb (Sitch et al., 2007)。 在1990年之前,中国城市的臭氧浓度一直低于美国和欧洲,但自那以后,由于汽车尾气排放的增加,以及发电和工业中化石燃料的使用,臭氧浓度迅速上升。区域O3污染已经成为中国首要的环境问题之一,特别是在那些经济活跃和人口稠密的地区。中国的一些主要城市,如北京、上海、济南、香港和广州都面临着光化学威胁。高表面O3浓度在中国各地经常被报道(例如,Lu 2002,Zhang 2000,Shan 2006 2009,Streets 2007,Tang 2009 1995 1989,Wang 2007)。作为臭氧的主要前体,氮氧化物排放在过去二三十年中是中国所有空气

室内空气质量标准(GBT 18883-2002)

室内空气质量标准(GB/T 18883-2002) 1、范围 本标准规定了室内空气质量参数及检验方法。 本标准适用于住宅和办公建筑物,其它室内环境可参照本标准执行。 2、规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 9801 空气质量一氧化碳的测定非分散红外法 GB/T 11737 居住区大气中苯、甲苯和二甲苯卫生检验标准方法气相色谱法 GB/T 12372 居住区大气中二氧化氮检验标准方法改进的Saltzman法 GB/T 14582 环境空气中氡的标准测量方法 GB/T 14668 空气质量氨的测定纳氏试剂比色法 GB/T 14669 空气质量氨的测定离子选择电极法 GB 14677 空气质量甲苯、二甲苯、苯乙烯的测定气相色谱法 GB/T 14679 空气质量氨的测定次氯酸钠-水杨酸分光光度法 GB/T 15262 环境空气二氧化硫的测定甲醛吸收-副玫瑰苯胺分光光度法GB/T 15435 环境空气二氧化氮的测定 Saltzman法 GB/T 15437 环境空气臭氧的测定靛蓝二磺酸钠分光光度法 GB/T 15438 环境空气臭氧的测定紫外光度法 GB/T 15439 环境空气苯并[a]芘测定高效液相色谱法 GB/T 15516 空气质量甲醛的测定乙酰丙酮分光光度法 GB/T 16128 居住区大气中二氧化硫卫生检验标准方法甲醛溶液吸收-盐酸副玫瑰苯胺分光光度法 GB/T 16129 居住区大气中甲醛卫生检验标准方法分光光度法 GB/T 16147 空气中氡浓度的闪烁瓶测量方法 GB/T 17095 室内空气中可吸入颗粒物卫生标准 GB/T 18204.13 公共场所空气温度测定方法 GB/T 18204.14 公共场所空气湿度测定方法 GB/T 18204.15 公共场所风速测定方法 GB/T 18204.18 公共场所室内新风量测定方法 GB/T 18204.23 公共场所空气中一氧化碳测定方法 GB/T 18204.24 公共场所空气中二氧化碳测定方法 GB/T 18204.25 公共场所空气中氨测定方法 GB/T 18204.26 公共场所空气中甲醛测定方法 GB/T 18204.27 公共场所空气中臭氧测定方法 3、术语和定义 3.1 室内空气质量参数 indoor air quality parameter 指室内空气中与人体健康有关的物理、化学、生物和放射性参数。

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水 实验指导书 所属课程名称: 环境工程综合实验 实验属性: 综合实验 实验学时: 4 一实验目的 1、了解臭氧发生器的基本结构、原理、操作方法、观察电压和空气流量对臭氧产率的影响。 2、通过臭氧氧化法处理:印染废水、有机含酚废水、生活污水的脱色、除臭、消毒、降解COD、降酚等实验,掌握臭氧氧化法处理工业废水的基本过程、方法和特点。 二实验理论基础与方法要点 臭氧是一种强氧化剂,它的氧化能力在天然元素中仅次于氟。臭氧在污水处理中可用于除臭、脱色、杀菌、消毒、降酚、降解COD、BOD等有机物。 臭氧在水溶液中的强烈氧化作用,不是O3本身引起的,而主要是由臭氧在水中分解的中间产物·OH基及HO2基引起的。很多有机物都容易与臭氧发生反应。例如臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 臭氧氧化的优点:(1)臭氧能氧化其它化学氧化,生物氧化不易处理的污染物,对除臭、脱色、杀菌、降解有机物和无机物都有显著效果(2)污水经处理后污水中剩余的臭氧易分解,不产生二次污染,且能增加水中的溶解氧(3)制备臭氧利用空气作原料,操作简便。 工业上采用高压(1.5—3万伏)高频放电制取臭氧,通常制得的是含1—4%臭氧的混合气体,称为臭氧化气体。 三实验装置器材与药品 设备与器材: (1)臭氧发生器 1台 (2)臭氧氧化反应器 1套,如无现成的需自行安装代替 500mL锥形瓶3个,与锥形瓶配套的橡皮塞3个 (3)医用乳胶管,与乳胶管配套的玻璃管

(4)气体转子流量计 1个 (5)酸滴管(50mL ) 1个 (6)气体吸收瓶(如无现成的,可用锥形瓶代替) 500mL 锥形瓶2个 (7)量筒100mL 1个 (8)洗气瓶1000mL 2个 材料药品: (1)配制含酚废水,含酚浓度50—100mg/L ,供除酚实验用。 (2)配制印染废水,含染料10—20mg/L ,供脱色用(亚甲蓝) (3)2% KI 溶液:称取20克分析纯碘化钾溶于1升新煮沸并冷却的蒸馏水中,贮于棕色瓶中。 (4)硫代硫酸钠标准贮备液:称取24.8克Na 2S 2O 3·5H 2O ,溶于煮沸并放冷的蒸馏水中,用水稀释至1000mL ,并贮于棕色瓶中备用,其浓度应为0.100mol/L ,必须标定。 标定:在碘量瓶中(250mL)加入1克碘化钾及50mL 纯水,用移液管移取20.00mL 重铬酸钾标准溶液(0.100mol/L 6 1K 2Cr 2O 7)加入碘量瓶中,并加入5 mL 硫酸(6mol/L 2 1 H 2SO 4),暗处静置5min 后,用硫代硫酸钠溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为止。记录用量 227223223 20.00 K Cr O Na S O Na S O C C V ?= (5)硫代硫酸钠标准使用液:将上述标准贮备液稀释为0.005mol/L 的标准使用液。此溶液1mL 相当于120μg 臭氧,临前用配制。 (6)1%淀粉指示剂 (7)碘标准贮备液:称取13.0克碘及40克碘化钾溶于纯水中,稀释至1000mL ,用砂芯漏斗过滤,贮于棕色瓶中。 标定:准确移取该溶液25.00mL 于碘量瓶中加水至150mL ,用0.100mol/L 硫代硫酸钠标准溶液滴定至淡黄色,加入1mL 淀粉溶液,继续滴定至蓝色刚好消失为终点。同时作空白试验:取150mL 纯水,加0.05mL 浓度为0.100mol/L 碘标准溶液、1mL 1%淀粉溶液,用0.100mol/L 硫代硫酸钠标准溶液滴定至蓝色消失为终点。 按下式计算碘标准溶液的浓度: 01()25.000.05 V V C C -?= - C 1——碘标准溶液的浓度,mol/L V O ——空白试验Na 2S 2O 3用量,mL

制药行业臭氧灭菌技术

制药行业臭氧灭菌技术 (中国原子能科学院中原科工业应用技术研究所) 要达到GMP认证要求,微生物的杀灭程序必不可少,而要达到这一要求,臭氧灭菌已体现出传统的化学熏蒸、紫外灯以及加热等方法所不可比拟的优越性。 由于科研院所专家教授和有关行业工程技术人员对臭氧技术应用的探讨、研究,人们对应臭氧的优越性已逐渐认识了解。臭氧具有消毒灭菌力强,不产生残余污染,可直接对空气、生产的原辅材料及设备、工作服等进行消毒灭菌的性能,在医药、电子、化工、光学等工业生产及生物制品、遗传工程等行业中得到广泛的应用。臭氧发生器作洁净室微生物灭活检测结果,验证了臭氧灭菌的显著效果和可靠性,清华大学李汉忠教授在《洁净消毒剂-臭氧》论文中、解放军军事医学科学院消毒研究员刘育京教授在《在电子消毒灭菌器应用推广会议上的报告》、第二军医大薛广波教授、史江等文献中对臭氧灭菌的效果和可靠性作出了肯定的评价。并对臭氧发生器的综合性能给予一致好评。 1臭氧在制药行业中的应用 尽管在我国的GMP验证中早已推荐了臭氧灭菌方法,但臭氧在药品生产的应用是在近几年才得到一个蓬勃发展的机会。使用成功的主要有以下几个方面:1.1容器的消毒灭菌 在药品生产中,坛坛罐罐用得很多,分别用管道阀门,仪表连接起来,组成一个生产单元。对它的消毒,传统方法中比较好的是用酒精浸泡。反应罐,贮存罐小的一吨半吨,大的十吨几十吨,都要灌满酒精,酒精用量之多可想而知。消毒完毕后,再将酒精放掉,但在转弯抹角处,仪表阀门的接头处,还会有酒精的残留,去除这些残留酒精,要用氮气吹,直到吹干为止。酒精用量多,消毒时间长,操作过程复杂。用高压蒸汽也存在同样的问题,都很费力。 现在用臭氧消毒技术来代替,相对来说要省事得多。具体方法是:将高浓度的臭氧直接打入管道容器,保持臭氧尾气有一定的浓度,就可以达到消毒灭菌的要求。因为是对管道容器进行内表层的消毒,所以臭氧浓度要控制的高一点,一般设计浓度大于50ppm。 用臭氧对管道容器做消毒灭菌的优点非常明显,臭氧发生器可以流动使用,对不同的罐进行消毒,每个生产单元在每次换料前,都可以及时得到消毒,使

大气污染对农业的影响及措施

摘要:中国是世界上最大的煤炭生产国和消费国。大约78% 的电力、60% 的民用商品能源以及70% 的化工原料均靠煤。煤的直接燃烧是中国最重要的人为空气污染源。本人主要从大气污染对农业的影响及途径的基础上,合理地提出大气污染防治的一些措施。 关键词:大气污染;酸雨;措施 前言:在提及农业环境污染时,我们往往关注于化肥污染、水污染等能够切实感受以及对于农作物生长产生直接影响的污染源,而对于植物生长必须的依赖因素大气却较少关注,很大程度上这是由于大气污染和农作物之间的关系以及大气污染的特性决定的。首先,大气污染具有复杂性。受污染的大气对于农作物的影响一般会通过很多途径产生作用,日光中的紫外线可使工厂和汽车排出的碳氢化合物、氮氧化合物等发生化学变化,产生有毒的光化学烟雾,使植物不能正常进行光合作用;干旱情况下,植物对氯气污染的抵抗力增强,而高温、高湿条件则常加剧二氧化硫、氯化氢等对谷类作物,特别是处于抽穗扬花期作物,危害尤其严重。其次,大气污染具有传递性。气象的因素左右着大气中污染物的传送、积累以及扩散的时间和深度。更为严重的是,空气中的污染物会跟随者气象条件的变化,通过降水转变为土壤污染以及水体污染,这样就从一次污染转变为了二次污染。 正是由于这些原因,大气污染对于农业生产的影响更加不易

察觉,造成的污染面也更加广泛。 正文:农田大气污染是指向空气中排放的污染物数量超过了大气的自身净化和吸收能力,使得大气质量恶化,进而对农作物生长造成不利的影响。 我们常见的和熟知的就是空气中二氧化硫污染,即"酸雨"对于农作物造成的危害。"酸雨"几乎对于农田中的植物都会产生影响,受到"酸雨"影响的水稻,叶片变成淡绿色或灰绿色,上面有小白斑,随后全叶变白,叶尖卷曲萎蔫,茎杆稻粒也变白,形成枯熟,甚至全株死亡。小麦受二氧化硫危害后,叶片症状与水稻相似,典型症状是麦芒变成白色。而蔬菜以及果树的叶子都会受到二氧化硫的影响,致使落叶,严重情况下可造成植物死亡或者果实脱落等症状。虽然说可能因为植物本身特性的差异,不同植物对二氧化硫的敏感程度不同,但是,"酸雨"必然会对植物健康生长过程产生不利的作用。 一、大气污染污染的来源: 大气污染源可分为自然的和人为的两大类。自然污染源是由于自然原因(如火山爆发,森林火灾等)而形成,人为污染源是由于人们从事生产和生活活动而形成。在人为污染源中,又可分为固定的(如烟囱、工业排气筒)和移动的(如汽车、火车、飞机、轮船)两种。由于人为污染源普通和经常地存在,所以比起自然污染源来更为人们所密切关注。大气主要污染源有:⑴工业企业工业企业是大气污染的主要来源,也是大气卫生防护工

臭氧空气消毒时应注意的事项

臭氧空气消毒时应注意的事项 参考资料:https://www.doczj.com/doc/1b13976037.html, 臭氧的灭菌效果在湿度为70-80%条件下效果最理想,在湿度低于45%时效果较差,所以一般使用中,特别是制药车间无菌室、病房等使用应注意在环境中适当增加湿度。 空气消毒型臭氧发生器选型。由于臭氧只能就地生产,目前最经济也是技术成熟的产生臭氧的方式为电晕放电,而用于空气消毒用一体化臭氧发生器多是使用陶瓷片高频放电的模式,它具有结构简单、性能可靠、运行费用低及调节灵活等优点。 应用臭氧进行空气消毒时应注意:臭氧的杀菌效果K为臭氧实际浓度C与作用时间T 的乘积即K=C×T,而臭氧实际浓度C为达到杀菌阀值浓度Cmin时,即使延长时间,在实际运行中,恐怕也是没有杀菌效果的。臭氧用作空气消毒应按不同应用空间、不同的杀菌消毒目的,而配置不同的臭氧产量和臭氧发生浓度的臭氧发生装置,臭氧发生浓度是指以自然扩散方式的按固定体积内30分钟的浓度计,单位为mg/M3,臭氧产量是由臭氧发生浓度与时间累积计算出来的,臭氧产量、臭氧发生浓度是最基本的参数标准。所以以空气消毒为目的的臭氧消毒产品应标注消毒浓度与消毒时间指标。还有两个通用指标,即应用空间的臭氧安全指标和产品使用寿命指标等,也是需要向使用者注明的。如一般的除味、除臭等,浓度掌握一般不超过0.05ppm。如果用于室内灭菌消毒则一般掌握在0.1-1ppm;物体表面或病房区一般需要浓度都较高。 臭氧消毒灭菌独特的优点: 杀菌能力强:臭氧杀菌能力与过氧乙酸相当,高于其它消毒剂。 广谱性:适合多种致病微生物,对大肠杆菌、沙门氏菌、金黄色葡萄球菌及甲乙型肝炎病毒、真菌等多种微生物均有很好的杀灭作用。 较高的扩散性:臭氧为气体,扩散性好,无死角,浓度分布均匀。 原料易得:臭氧制备是利用我们周围的大气制取,不需储藏设施。 环保性:臭氧能快速分解成氧气和单原子氧,单原子氧又可自身结合成氧分子,故没有二次污染的问题。被公认为是绿色消毒剂。 臭氧空气消毒的安全性。臭氧安全性在广泛的动物和人体试验中,主要暴露途径为吸入法,持续、长期的吸入试验显示臭氧不致癌(NTP,1995);但是对动物和人体的呼吸系统有明显的刺激作用,在暴露环境中,可影响呼吸功能。所以,我们建议,使用臭氧消毒空气,应在无人环境下进行,在消毒完毕半小时后,人员方可进入。 另外在我国卫生部1991年颁布的"消毒技术规范"中。对臭氧的杀菌作用,使用范围及使用方法都有明确的规定。其中对臭氧的杀菌作用作了明确的肯定:臭氧是一种广谱杀菌剂,可杀灭细菌繁体和芽孢,病毒、真菌等,可破坏肉毒杆菌毒素和毒素及立克次氏体等,同时

相关主题
文本预览
相关文档 最新文档