当前位置:文档之家› 基体归一定量技术在激光烧蚀_等离子体质谱...

基体归一定量技术在激光烧蚀_等离子体质谱...

基体归一定量技术在激光烧蚀_等离子体质谱...
基体归一定量技术在激光烧蚀_等离子体质谱...

赛默飞(thermofisher)X2-ICP-MS电感耦合等离子体质谱技术参数及价格

赛默飞(thermofisher)X2 ICP-MS 电感耦合等离子体质谱技术参数品牌:赛默飞(thermofisher) 型号:X2 价格(含税价):120万 1 货物名称:电感耦合等离子体质谱仪 2 生产地:德国 3主要用途:适用于应用领域广泛的各种样品的元素分析和同位素分析任务,包括生活饮用水、食品和(血液)生物样品等。 4 工作条件: 3.1 温度: 15℃~30℃ 3.2 相对湿度: <80% 3.3 电源:220 V (±10%),单相,50Hz (±1%) 5 电感耦合等离子体质谱主要技术指标5.1仪器硬件要求 5.1.1 雾化器:PFA-ST MicroFlow雾化器。 5.1.2 雾化室:小体积的撞击球或旋流型雾化室。 *5.1.3 接口:拥有两种不同类型的接口技术,截取锥口径必须>0.6 mm。 5.1.4 质量流量计:有等离子体气,辅助气,雾化气三路质量流量计 *5.1.5 ICP 源:固体晶体稳频RF 发生器,频率27.12 MHz,稳定性<±0.01% 5.1.6 RF功率稳定性<0.01% *5.1.7 真空系统:要求从大气压开始抽至可工作的真空度的时间小于30分-8钟。滑动阀关闭后,静态真空度维持在<6×10mbar(滑阀关闭),

要求提供证明文件。 5.1.8 离子光学:离轴四极杆质谱仪系统。*5.1.9 四极杆:纯Mo质四极杆。*5.1.10 质谱仪要求是的免拆洗系统,透镜系统(包括提取透镜和偏转透镜或其它透镜组件以及碰撞反应池)均为免维护清洗,且非消耗品,在使用过程中无需任何定期清洗维护工作。 5.1.11 如果仪器的离子透镜以及碰撞反应池组件需要定期维护或定期更换,请提供额外的离子透镜组或者碰撞反应池组件备品至少1套,以满足仪器日常分析不停机工作的需要。5.1.12 等离子体炬位调整: 由计算机三维(X,Y, Z 方向)控制。 5.1.13 数据采集:要求拥有60000道以上的多通道数据分析系统,以适应瞬间信号采集要求。 5.1.14 质谱范围:2-255amu。 *5.1.15 仪器分辨率:具有高分辨和标准分辨率两种模式,可以对不同元素进行不同分辨率的设定,要求在一次样品测试中,四级杆在不同分辨率下自动切换,请提供文献证明。*5.1.16 要求带等离子体屏蔽技术附件(包括冷焰屏蔽和热焰屏蔽高灵敏度模式技术) 5.1.17 要求配置多级杆碰撞反应池,配置2路MFC质量流量计,碰撞池条件和标准条件的切换为全自动化. 要求在同一个试验方法中可以同时使用多种气体,包括:简单碰撞气体(氦气)以及各种反应性气体(氢气,氨

等离子体概述

一、等离子体概述 物质有几个状态?学过初中物理的会很快回答固态、液态、气态。其实,等离子态是物质存在的又一种聚集态,称为物质的第四态。它是由大量的自由电子和离子组成,整体上呈现电中性的电离气体。 在一定条件下,物质的各态之间是可以相互转化的,当有足够的能量施予固体,使得粒子的平均动能超过粒子在晶格中的结合能,晶体被破坏,固体变成液体。若向液体施加足够的能量,使粒子的结合键破坏,液体就变成了气体。若对气体分子施加足够的能量,使电子脱离分子或原子的束缚成为自由电子,失去电子的原子成为带正电的离子时,中性气体就变成了等离子体。物质的状态对应了物质中粒子的有序程度,等离子内物质中的粒子有序程度是最差的。相应的,等离子体内的粒子具有较高的能量、较高的温度。实际上,宇宙中99.9%的物质处于等离子态,它是宇宙中物质存在的普遍形式,不过地球上,等离子体多是人造的。 人工如何造出等离子体呢?从上面的论述可以看出,等离子体的能量是很高的,任何物质加热到足够高的温度,都会成为电离态,形成等离子体。在太阳和恒星的内部,都存在着大量的高温产生的等离子体。太阳和恒星的热辐射和紫外辐射能使星际空间的稀薄气体产生电离,形成等离子体,如地球上空的电离层就是这样来的。各种直流、交流、脉冲放电等均可用来产生等离子体。利用激光也可以产生等离子体。 等离子体如何描述?温度。等离子体有两种状态:平衡状态和非平衡状态。等离子体中的带电粒子之间存在库伦力的作用,但是此作用力远小于粒子运动的热运动能。当讨论处于热平衡状态的等离子体时,常将等离子体当做理想气体处理,而忽略粒子间的相互作用。在热平衡状态下,粒子能量服从麦克斯韦分布。每个粒子的平均动能32 E kT =。对于处于非平衡状态下的等离子体,一般认为不同粒子成分各自处于热平衡态,分别用e T 、i T 、n T 表示电子气、离子气和中性气体的温度,并表示各自的平均动能。可以用动力学温度E T (eV )表示等离子体的温度,E T 的单位是能量单位,由粒子的动能公式可得 2133222 E E mv kT T ===,E T 就是粒子的等效能量kT 值(1eV 的能量温度,相应的开氏绝对温度为1T k ==11600K )。 温度是描述等离子体能量的,还有其它的一些概念来表述。(1)高温等离子体,低温等离子体,冷等离子体。高温等离子体也是完全电离体,温度68 10~10K ,核反应、恒星的等离子体是这类。低温等离子体是部分电离体, 463410~10,310~310e i T K T K ==??,电弧等离子体、燃烧等离子体是这种。冷等离子体是410,e i T K T >约等于室温的等离子体。 (2)电离度。强电离等离子体指电离度η>10-4的等离子体,弱电离等离子体η<10-4。η是电离度,0=n n n η+,n 是两种异电荷粒子中任何一种密度,0n 为中性粒子密度。粒子密度是表示单位体积中所含粒子的数目。(3)稠密等离子体和稀薄等离子体。具体区分度不详。

电感耦合等离子体质谱

电感耦合等离子体质谱 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15L/min。 最常用的进样方式是利用同心型或直角型气动雾化器产生气溶胶,在载气载带下喷入焰炬,样品进样量大约为1ml/min,是靠蠕动泵送入雾化器的。 在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV 的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。 ICP-MS由ICP焰炬,接口装置和质谱仪三部分组成;若使其具有好的工作状态,必须设置各部分的工作条件。 ICP工作条件 主要包括ICP功率,载气、辅助气和冷却气流量。样品提升量等,ICP功率一般为1KW 左右,冷却气流量为15L/min,辅助气流量和载气流量约为1L/min,调节载气流量会影响测量灵敏度。样品提升量为1ml/min。 接口装置工作条件 ICP产生的离子通过接口装置进入质谱仪,接口装置的主要参数是采样深度,也即采样锥孔与焰炬的距离,要调整两个锥孔的距离和对中,同时要调整透镜电压,使离子有很好的聚焦。 质谱仪工作条件 主要是设置扫描的范围。为了减少空气中成分的干扰,一般要避免采集N2、O2、Ar 等离子,进行定量分析时,质谱扫描要挑选没有其它元素及氧化物干扰的质量。同时还要有合适的倍增器电压。 事实上,在每次分析之前,需要用多元素标准溶液对仪器整体性能进行测试,如果仪器灵敏度能达到预期水平,则仪器不再需要调整,如果灵敏度偏低,则需要调节载气流量,锥孔位置和透镜电压等参数。

激光诱导等离子体光谱分析

激光诱导等离子体光谱分析

激光光谱分析与联用技术 读书报告 日期:2011年5月25日 激光诱导等离子体光谱法

摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展 前言: 激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-induced plasma spectroscopy或者 laser-induced breakdown spectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。 1.发展概况 LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、

环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA 的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。 LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。 近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,

电感耦合等离子体质谱仪

电感耦合等离子体质谱仪 1 仪器总体要求 *1.1 电感耦合等离子体质谱仪要求为“三重四极杆串联质谱仪或“双重四级杆+单八级杆”的串联四级杆质谱仪,而非普通的单极四极杆质谱仪; *1.2 第一重四极杆-四级杆离子选择偏转器,可以实现将所需的特定质荷比的离子依次进入第二重四极杆的反应池内; 1.3 第二重四极杆-通用池,通过反应气与待分析离子相同质荷比的干扰离子反应产生新的不同质荷 比的离子,通过四极杆质量扫描过滤,彻底消除干扰物和反应副产物,只允许待分析的离子进入第三重四极杆; 1.4 第三重四极杆-质量分析器,将待分析的单原子离子依次分开进行检测; 1.5 具有彩色等离子体观测窗,无需打开仪器,可对锥、炬管和负载线圈进行观测,使等离子体采 样深度的优化和有机物的分析简单、方便。同时可实时监测锥孔及喷射管孔样品沉积情况,便于维护和清洗; 1.6 电感耦合等离子体质谱仪具有与高效液相色谱技术联机进行元素价态、结合形态的分析能力, 具有专业的形态分析软件; 1.7 仪器要求能进行样品定性、半定量、定量、同位素比、同位素稀释、单颗粒分析、单细胞分析。 1.8 至少能用于硫和磷同位素标记的定量研究; 1.9 能够分析纳米材料的元素组成与浓度、尺寸及其尺寸分布。 2 仪器工作环境 2.1 工作环境温度:15-30℃。 2.2 工作环境湿度:<80% (无冷凝)。 2.3电源:单相200-240V,50 Hz。 3 技术要求 3.1 仪器硬件 3.1.1 雾化器:高效石英或PFA同心雾化器; 3.1.2 雾化室:小体积石英旋流雾化室; *3.1.3 全基体进样系统控制气路:可实现样品气体稀释,稀释倍数大于100倍;可通入氧气,实现有机样品的直接进样分析;可通入甲烷气,实现难电离元素,如砷、硒等元素的超痕量分析; 3.1.4 等离子体可视系统:可以从实际观测窗中实时监控等离子体状态; *3.1.5 接口设计:为实现对离子射束紧凑控制,接口至少采用三级锥设计,应至少包括一个采样锥、一个截取锥和一个超级锥或嵌片。锥接口设计要求具高灵敏度、高复杂基体耐受和低干扰水平的大锥口设计。采样锥口径要求必须≥1.0mm,所有截取锥或超级锥要求必须≥0.75mm,从而保证长期分析高基体、高盐样品的稳定性,并延长了锥体的使用寿命。投标设备如在接口设计上采用简单两锥设计时,必须额外提供样品锥及截取锥各3套备用;

电感耦合等离子体质谱仪技术参数

仪器技术参数 技术规格 1.仪器应用要求 1.1本仪器要求能适用于应用领域广泛的各种样品的元素分析、同位素分析和元素形态分析任务,满足环保、食品、地质、金属、生物样品、化工材料分析等等。 2.仪器工作环境 2.1工作环境温度: 15-30℃. 2.2工作环境湿度: < 80% (无冷凝) 2.3电源:单相200-240V ,50 Hz 3. 仪器规格要求: 3.1 仪器硬件; 3.1.1 雾化器:高效率PFA同心雾化器,提供最佳的雾化效率。 3.1.2 雾化室:小体积旋流型雾化室,死体积小,低记忆效应, 带半导体制冷装置,对雾化室制冷控温范围-10~20℃,用于精确控制雾化室温度,消除由于实验室条件的波动所引起的任何漂移,并提升仪器长期的稳定性。 *3.1.3 等离子体可视系统:具有Plasma TV功能,可以实时监控等离子体状态。 3.1.4 接口:拥有两种不同类型的接口技术,接口采用耐高盐设计,截取锥口径范围0.5~0.75mm,保证长期分析高盐样品的稳定性,满足高通量分析与大进样量的要求。 3.1.5 仪器主机ICP部分,配置质量流量计:包括等离子体气,辅助气,雾化气3路质量流量计。 *3.1.6 离子源:自激式全固态RF发生器,频率为27.12 MHz,采用变频技术快速匹配,适用乙腈等有机试剂直接进样。 *3.1.7 真空系统:要求从大气压开始抽至可工作的真空度的时间小于15分钟。滑动阀关闭后,静态真空度维持在<6×10-8mbar(滑阀关闭)。 *3.1.8 离子光学:低背景的90度偏转加离轴偏转透镜或双离轴偏转透镜设计。 3.1.9 四极杆材料:纯Mo材料四极杆。 3.1.10偏转透镜、碰撞反应池和四极杆质量分析器均为免拆洗维护。 3.1.11脉冲模拟双模式同时型电子倍增器,必须可以在一次进样过程中同时完成扫描和跳

激光等离子体中一些基本过程及其应用

激光等离子体中一些基本过程及 其应用 郑春阳 北京应用物理与计算数学研究所 2008年10月16日北大

I.基本概念 II.黑腔激光等离子体相互作用过程(LPI)III.强场与“快点火”中LPI IV.激光天体物理

I.基本概念(1) 激光与非磁化等离子体相互作用主要涉及三种波:激光(电磁波)、电子等离子体波(Langmuir波)及离子声波 (1)电磁波:ω2=ωp 2+k 2c 2(光子似乎得到“质量”m*c 2=h ωp ) ωL = ωp 对应n c =1.1×1021/λL 2cm -3(稀薄或稠密)(2)Langmuir 波: ω2=ωp 2+3k 2λD 2(λD =v th,e / ωp ) 存在条件:v ph =ω/k ﹥﹥v th,e (Landau 阻尼) (3)离子声波:ω=c ia k, c ia =(Zk B T e /m i )1/2 (ZT e /T i )1/2>1 在实际应用中,对等离子体中存在的大量集体模式(波、不稳定性)的激发、非线性耦合、时空演化的理解是至关重要的。

I.基本概念(2) 不同强度、波长的激光等离子体相互作用性质差异可以很大。我们关心的是电子在激光电场中的振荡能量与它们的热能量可比较 ≈1021cm-3,T e≈1keV 考虑:n e I L~c|E L|2/8π~cn e K B T~1015W/cm2 v osc>v e 激光惯性约束聚变(ICF)激光装置产生的强度范围 激光强度I ~1018W/cm2,v osc~c属于相对论强场物理范围。 L 激光等离子体过程为高度非线性,必须动力学手段描述。

电感耦合等离子体质谱法

电感耦合等离子体质谱法 2015年版《药典》四部通则0412 本法是以等离子体为离子源的一种质谱型元素分析方法。主要用于进行多种元素的同时测定,并可与其他色谱分离技术联用,进行元素形态及其价态分析。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体中心区,在高温和惰性气氛中被去溶剂化、汽化解离和电离,转化成带正电荷的正离子,经离子采集系统进入质量分析器,质量分析器根据质荷比进行分离,根据元素质谱峰强度测定样品中相应元素的含量。 本法灵敏度高,适用于各类药品从痕量到微量的元素分析,尤其是痕量重金属元素的测定。 1.仪器的一般要求 电感耦合等离子体质谱仪由样品引入系统、电感耦合等离子体(ICP)离子源、接口、离子透镜系统、四极杆质量分析器、检测器等构成,其他支持系统有真空系统、冷却系统、气体控制系统、计算机控制及数据处理系统等。 样品引入系统按样品的状态不同分为液体、气体或固体进样,通常采用液体进样方式。样品引入系统主要由样品导入和雾化两个部分组成。样品导入部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速泵入,废液顺畅排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体离子源。要求雾化器雾化效率高,雾化稳定性好,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并应经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中应根据样品基质、待测元素、灵敏度等因素选择合适的雾化器和雾化室。

前沿物理讲座--浅析激光等离子体相互作用原理

浅析激光等离子体相互作用原理 一、摘要 超强激光脉冲与等离子体相互作用是近几年新兴的前沿学科,它在激光蒸发沉积、激光推进、新型的粒子加速器、超快高能X射线光源和“快点火”惯性约束聚变等方面,都有着广泛的应用前景。因此,激光等离子体相互作用的研究是十分必要的。 论文中我们阐述了激光等离子体的性质相互作用。通过建立简化的物理模型,即将部分电离的等离子体简化为类氢离子讨论了激光等离子体相互作用物理和超短超强激光等离子体相互作用。最后,我们根据得到的一些相关结论简单的描述了激光等离子体的一些应用。 关键词:激光等离子体 二、介绍 人类对等离子体的研究从气体放电开始。1879年,英国的Crookes首先发现气体放电管中的电离气体区别于固、液、气三态,将之称为“物质第四态”。1928年,美国的Tonks和Langmuir采用等离子体(Plasma)来描述这种新的物质形态。随后,Vlasov和Landau等人建立了等离子体的动力学描述,这也标志了等离子体物理学的正式建立。到了二十世纪五十年代,在受控热核聚变和空间技术发展的推动下,等离子体物理逐渐发展成熟,成为一个新的、独立的物理学分支。等离子体是一种由大量电子、离子等带电粒子和中性粒子(原子,分子,微粒等)组成的,并具有一定集体行为的、准中性的、非束缚态的宏观体系。与通常的固、液、气三态相比,等离子体的基本特征主要是“准电中性”和“集体行为”。 自1960年Maiman研制成功第一台红宝石激光器以来,激光技术的每一次发展都极大的拓展了物理学的研究领域。图1给出了激光强度随年代的增长及相关的物理学进展。 图1

激光等离子体物理,是随着超短超强激光脉冲技术发展而形成的一个新的分支学科。激光技术的每一次革命,都为激光与等离子体作用的研究开辟新的领域。随着激光强度的不断增强,激光等离子体物理经历了从线性响应到非线性光学,再到相对论的非线性作用的研究历程。在现有激光技术的推动下(强度S 1023VI//cm2,脉宽/S 量级),超短超强激光脉冲同等离子体的作用更是成为了当今物理学研究前沿的一个重要分支。 现代激光技术的发展,引发了人们研究超短超强激光脉冲同等离子体作用的浓厚兴趣。这一方面是出于探索自然物理规律特别是非线性问题的需要,另一方面则是源于激光等离子体作用可以用来充当各种光子、电子和离子源气由于激光的高能量密度,这些产生的粒子源具有更好的紧凑性和其它一些非常优秀的束流性质,如高亮度、低散射度、短脉冲等。而这样的粒子源存在很多新颖的实际应用,比如在离子束治疗癌症、生物照相、超快探测、快点火聚变等方面将会产生巨大的作用。目前,国际上激光等离子体物理的主要研究领域在如下几个方面:激光驱动的可控惯性约束核聚变,粒子桌面加速器,基于激光等离子体作用的电磁波辐射源研究,如X 射线源P 气阿秒脉冲,高次谐波和太赫兹辐射等。另外,利用超短脉冲激光在大气中传播形成的超长等离子通道来实现激光雷达和激光引雷等研究也得到了人们越来越多的关注。 三、激光等离子体相互作用原理 高功率激光束照射靶物质时,部分激光能量被吸收,导致靶物质被加热、电离而产生热等离子体,从而激光直接与等离子体相互作用。激光等离子体相互作用与激光参数、等离子体的材料特性和状态参数等密切相关,其中最具决定性因素的是激光强度人和等离子体密度,。激光强度(激光的聚焦功率密度)为: L L E I S τ= (1) 其中L E 是打到靶面的激光能量,S 是激光束辐照在靶上的面积(焦斑),r 是激光脉冲的时间宽度。激光强度也可以用电场来表示: 20012 L I c E ε= (2) 其中0ε是真空中的介电常数,c 为“光速。另一个常用来表示激光强度的物理量是激光场的无量纲化振幅002e eA a m c =,其中0A 为激光矢势A 的幅值, e m 为电子质量, e 为电子电量,对于线极化激光有: 0A =(3) 圆极化激光有: 0A = (4) 其中0λ为激光波长。强度不同的激光发生相互作用的机理可能完全不同,强度超过1016瓦特的激光称为相对论激光,这是由于电子在激光电场中的高速振荡速

电感耦合等离子体飞行时间质谱仪 icp-tof-ms简介

ICP-MS 的质量分析器系统的作用是将离子束中的离子按质荷比的大小而分开。根据离子束的特点和分析工作的要求,质量分析器系统应具有足够的离子传输效率和分辨本领。通常,这两者是相互矛盾的。完善质量分析器离子光学系统的设计,就是要保证足够分辨本领的条件下,达到最高的离子传输效率。目前,飞行时间质量分析器系统的离子传输效率已接近100%。 相比之下四极杆只是一个质量选择器,而不是一个质量分析器,在一个离子通过四极杆时,其它质荷比的离子将被过滤掉。ICP-MS 的联用技术是当前进行价态、形态研究的热点技术,四极杆ICP -MS 由于其单道扫描特性,不适于监测联用技术中的瞬时多元素信号。 飞行时间质谱仪的基本原理 飞行时间质谱仪作为一种带电粒子的质量鉴定方法,很早就已经得到采用,它的工作原理十分简单,这就是,初始能量相同的带电原子或者带电分子,漂移一段固定的路程所用的时间与它本身的质量有关。测定漂移时间的差别,即可对不同质量的离子进行鉴别。1932 年,斯迈思和马赫建造了第一台基于飞行时间原理的质谱计,并成功地进行了氧同位素丰度的分析。这是历史上第一台动态质谱仪器。二次世界大战后,由于脉冲技术的发展,促进了飞行时间质谱技术的发展进程。1946 年,斯蒂芬斯提出了直线脉冲飞行时间质谱仪器的设想,而在1948 年,卡梅伦和埃格斯从实验上给以实现。1955 年,威利和麦克伦完成了这种质谱仪器的系统设计,使之成为近代商品飞行时间质谱仪器的原型。 ICP-oa-TOF-MS 相当于全谱直读的仪器,特别适合获取瞬时信号的信息,是进行FI、ETV、LA 和多种色谱方法进行样品引入研究的强大工具。这种方法也非常适合同位素稀释法的应用或者其它内标校准方法。 飞行时间质谱仪具有一系列显著的特点。其中包括:仪器的分析部分只是一支漂移管,机械结构简单;仪器性能指标主要依靠调节电参数而获得,机械调整方面不多,因此使用方便,能实现快速扫描,可用于监控极短的瞬时事件;在短时间内能记录任一反应过程的全部质谱,给出反应的全部信息。 1973 年,马米林把静电离子反射技术引入飞行时间质谱计。当质量相同而能量存在发散的离子进入静电离子反射区域时,能量较高的离子会比能量较低的离子穿透较深距离,因此能量较高离子将比能量较低离子飞行时间更长,而在漂移区间则刚好相反,因此它们最终可以同时到达接收器,因而实现了时间聚焦,从而使仪器的分辨本领大为提高。

等离子体

3.空心阴极效应如何产生的? 两平行平板阴极置于真空设备中,当满足气体点燃电压时,这两个阴极都产生辉光放电,在阴极附近形成阴极暗区,当两阴极靠近或气压降低时,两 个负辉区合并。此时从阴极K1发射出电子在K1 的阴极位降区加速,当它进入阴极K2的阴极位降 区又被减速,因此如果这些电子没有产生电离和 激发,则电子在K1和K2之间来回振动,增加了 电子和气体分子的碰撞几率,可以引起更多的激 发和电离过程。电离密度增加,负辉光强度增加, 这种现象称为空心阴极效应。 4.辉光放电和弧光放电的特点各是? 5.低于和高于共析温度渗氮时组织是如何形成的?1首先是α相被氮所饱和,当氮含量达到饱和极限时,便通过非扩散性的晶格重构方式,形成γ’相;随着时间的延长,当γ’相的氮含量达到饱和极限时,在铁的表层,同样以晶格重构方式形成ε相。γ’相和ε相均按扩散方式长大。因此,纯铁经充分渗氮后,表层组织依次为ε、γ’以及α相 2在高于共析温度时纯铁渗氮,在渗氮温度下生成的组织,由表及里依次为:ε,,γ,α。当缓冷至室温时,低浓度的ε相会析出。γ相在590发生共析转变(),相降低了其饱和含氢量而析出。若快冷时,则含氮奥氏体发生氮马氏体转变,故表层组织依次为:ε,,,α 6.三种渗氮理论分别是什么?1射与沉积理论:离子渗氮时,渗氮层是通过反应阴极溅射而形成。在真空炉体内,工件为阴极,炉体为阳极,加上直流高压后,稀薄气体电离,形成等离子体2子离子理论:在离子渗氮中,虽然溅射很明显,然而不是主要的控制因素,对渗氮起决定作用的是氮氢分子离子化的结果3性氮原子模型:对离子渗氮其作用的实际上是中性氮原子,分子离子的作用是次要的 7.简述离子渗氮的特点:优点a渗氮速度快b渗氮层组织易控制,脆性小c无公害热处理d节约能源、气源e变形小;f适用于不锈钢渗氮。缺点:1不同形状、尺寸、材料的零件混合装炉渗氮时,要使工件温度均匀一致比较困难2.离子渗氮设备较复杂,价格也比气体渗氮炉贵3.准确测定零件温度较困难。 8.简述渗氮过程中脉状组织形成受什么影响?a合金元素在晶界偏聚严重的,则脉状组织明显;b工艺参数的影响:渗氮温度高,保温时间越长,NH3渗氮时炉内;压强越高,均促进脉状组织的形成;c零件棱角的影响:棱角处的脉状组织比其他部位严重得多 9.讨论渗氮材料选择有哪些原则? 1碳钢渗氮效果极差,表面硬度低,硬化层浅。为了提高碳氮的硬化效果,可以采用离子软化工艺2合金结构钢。根据使用条件,选择不同的钢种进行离子渗氮,预先处理一般为调制处理,有的低碳合金钢可以用正火处理。而渗氮温度必须略低于调制回火温度,以保证心部强度不致降低。3工模具渗氮。常用离子渗氮提高工模具使用寿命。4不锈耐酸钢的离子渗氮。离子渗氮可以大幅度提高铁素体型,马氏体型和奥氏体不锈钢的硬度和耐磨性。对于表面要求耐磨,往往由于磨损报废,又要求耐酸蚀的零件可以选用不锈耐酸钢进行离子渗氮处理。5铸铁的离子渗氮。铸铁由于含碳量及含硅量较高,阻止氮的扩散,常采用离子软化的方法渗氮,或选用球墨铸铁合金铸铁,也加快渗速6钛及钛合金的渗氮。由于钛及钛合金具有优异的特性,有广泛的应用。 10.试举例说明如何提高离子渗层的耐蚀性能与耐磨性能: 提高耐蚀性:加入适量的合金元素。提高耐磨性:控制好渗氮温度(较低为宜),选择合适气体比例(减少CO2)。 11.检测渗氮层厚度的方法有哪些?1金相法2硬度梯度法3用X射线衍射法测化合物层厚度4淬火法; 12.检测渗氮层硬度的方法有哪些?1表面硬度:表面硬度的测定以负荷5~10kg的维氏硬度计为准;2硬度梯度:用50~100g现为硬度计进行测定,从边缘往中心每隔一定距离打一硬度值,然后作出硬度分布曲线。 13.元素Al和Cr对渗层有什么影响 1)形成合金氮化物,使硬度、耐磨性增加2)溶入а-Fe中,提高а-Fe的溶氮能力,产生固溶强化作用3)影响氮在铁中的扩散系数及表面吸氮能力4)改变钢的临界点,从而改变渗氮温度

电感耦合等离子体质谱法(ICP-MS)

(六)电感耦合等离子体质谱法(ICP-MS) ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS 检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、 Fe 、K、 Se)在ICP-MS 中有严重的干扰,也将恶化其检出限。 ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。 ICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后进入由射频能量激发的处于大气压下的氩等离子体中心区,等离子体的高温使样品去溶剂化,汽化解离和电离。部分等离子体经过不同的压力区进入真空系统,在真空系统内,正离子被拉出并按照其质荷比分离。在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

电感耦合等离子体质谱的应用

电感耦合等离子体质谱的应用 摘要:随着对新的无机元素分析测试的需要,一种新型的元素和同位素分析技术—电感耦合等离子体质谱(ICP-MS)迅速发展起来。目前该技术已经成为无机元素分析领域不可缺少的技术之一,已被广泛应用于环境、化工、卫生防疫等各个领域。ICP-MS相比其他无机分析方法具有可分析元素种类多、灵敏度高、线性范围宽、分析速度快、分析成本低的特点。 关键词:电感耦合等离子体质谱;元素分析;方法;应用 Abstract: With the need for analysis and testing new inorganic elements, a new type of elemental and isotopic analysis - Inductively Coupled Plasma Mass Spectrometry (ICP-MS) rapidly developed. The technology has become indispensable in the field of inorganic elemental analysis technology; it has been widely used in various fields of environmental, chemical, health and epidemic prevention. ICP-MS compared to other inorganic analytical methods can be analyzed and many kinds of elements, high sensitivity, wide linear range, rapid analysis, low-cost analysis. Key words: inductively coupled plasma mass spectrometry; elemental analysis;; application 1 引言 目前,痕量元素分析尤其是对毒性较大的重金属元素和一些有益微量元素的分析,已成为各种生产、卫生法规的重要规定,占据着日常工作中相当大的分析工作量,在环境领域中具有不可替代的作用。灵敏、快速、准确的无机元素分析仪器是环境领域最重要的装备之一。 ICP-MS是80年代发展起来的新的无机元素分析测试技术。它以独特的接口技术将ICP的高温(8000K)电离特性与四极杆质谱计的高灵敏、快速扫描的优点相结合,可同时分析几乎地球上所有元素。被广泛应用于环境、化工、卫生防疫等样品中的多元素同时分析。 2 目前几种常用的无机分析技术以及ICP-MS的优势 目前无机分析所用的仪器主要有火焰吸收光谱法(FAAS)、石墨炉吸收光谱(GF-AAS)、氢化物原子荧光光谱法(HG-AFS)、电感耦合等离子体发射光谱法(ICP-AES)以及电感耦合等离子体质谱法(ICP-MS)几大类。其中: 火焰吸收光谱法(FAAS)的灵敏度差, 线性范围窄, 不能满足环境中重金属元素的测定要求。

激光等离子体的受激Brillouin散射

第12卷 第1期 强激光与粒子束V o l .12,N o .1 2000年2月H IGH POW ER LA SER AND PA R T I CL E B EAM S Feb .,2000 文章编号: 1001—4322(2000)01—048—03 激光等离子体的受激Br illou i n 散射 Ξ 蒋小华, 郑志坚, 李文洪, 刘永刚(中国工程物理研究院核物理与化学研究所,高温高密度等离子体物理实验室,绵阳919-218信箱,621900) 郑 坚, 王以超 (中国科学技术大学近代物理系,合肥,230027) 摘 要: 研究了激光等离子体背向和侧向受激B rillou in 散射光谱结构。激光等离子体相互作用时,受激B rillou in 散射光谱受激光等离子体状态的影响而产生Dopp ler 效应。当激光以45°入射不同材料的平面靶时,等离子体运动产生不同的二维效应,高Z 材料产生的等离子体冕区主要沿靶法向运动,受激B rillou in 散射光谱在侧向产生较大蓝移,而低Z 材料则主要在激光入射方向产生较大蓝移。 关键词: 激光等离子体; 受激B rillou in 散射; Dopp ler 效应 中图分类号: O 437.2 文献标识码: A 受激B rillou in 散射(SB S )是激光等离子体中一个入射激光光波衰变为一个散射光波和一个离子声波的参量不稳定过程,它可发生在激光等离子体的整个次临界区[1,2]。在惯性约束聚变物理研究中,SB S 会带来不利的影响,另外它的发生和激光等离子体的状态密切相关,由SB S 产生的散射光将为诊断激光等离子体状态提供依据[1,3]。选择合适的激光2靶耦合方式控制激光等离子体状态的演变,将能有效降低聚变对激光器件的要求。因此,通过对不同角度的SB S 光谱结构的观测,来研究0.351Λm 激光与不同靶材作用对SB S 光谱结构的影响。 1 实验条件和结果 F ig .1 Experi m ent setup s 图1 实验装置布置图 星光 钕玻璃激光装置以三倍频输出,激光输 出波长为0.351Λm ,激光输出能量为70J ,激光脉冲 宽度为800p s ,激光入射靶面功率密度约为1×1014 W c m 2,激光以45°入射<600Λm 的平面盘靶,靶材 料分别为CH ,CH +A u 的多层靶(10层8nmA u + 3nm CH )及A u ,实验利用两台OM A 4光谱仪分别 在激光背向和侧向30°探测了SB S 的光谱结构。实 验布置如图1所示。 图2给出0.351Λm 激光作用平面CH 材料靶 时,在激光入射背向和侧向得到的红移SB S 光谱,在两方向上散射光谱结构完全一致,只是相对有一个平移,其中背向散射光谱相对侧向有0.4nm 的蓝移。 图3和图4是0.351激光与A u 盘靶和多层靶作用时,在背向和侧向得到的散射光谱,与CH 靶作用一样,各方向散射光谱结构相似,只是散射光谱变窄,但是侧向光谱相对背向出现了约0.1nm 的蓝移。 Ξ国家自然科学基金资助课题(19735002) 1999年7月28日收到原稿,2000年2月12日收到修改稿。 蒋小华,男,1968年8月出生,硕士,助研

电感耦合等离子体质谱仪技术要求及参数

电感耦合等离子体质谱仪技术要求及参数 、主机检测性能及要求 用于钢铁、铁合金、耐火材料、黏土质材料、矿石等样品的金属、非金属、氧化物的元素检测,也可以进行各种元素形态及价态的分析,分析速度快,分析元素多,线性范围宽,检出限低和稳定性高的特点,可对待测样品进行主量、微量及痕量元素的定性、半定量和定量分析。 、仪器参数要求 蠕动泵:≥通道,泵速可调 雾化器:同心圆雾化器,提供最佳的雾化效率 雾化室:带半导体制冷装置,降低记忆效应 矩管:可拆卸式石英炬管或一体式炬管,预准直的炬管座内置式自动气路连接接口:采用两锥设计或三锥设计,采样锥口径≥,截取锥口径≥, 气体控制:包括等离子体气,辅助气,雾化气和碰撞反应气 离子传输系统:将待分析离子°方向偏转,彻底与光子以及未电离的中性粒子分离,保证主四极杆质量分析器最佳的分析信噪比 碰撞反应池:要求配置有多极杆设计,可选择性地去除干扰离子,比如、、等低质量元素,确保在足够高的灵敏度下获得最佳的干扰去除效果。碰撞池条件和标准条件的切换为全自动化,用单一氦气碰撞气体可适用于绝大多数应用。 四极杆材料:性能稳定的四极杆,保证最佳的质量轴稳定性,不接受镀层四级杆设计。 灵敏度: 低质量数(): ≥; 中质量数 (): ≥; 高质量数(): ≥; 检出限: 低质量数(): ≤; 中质量数(): ≤ 高质量数(): ≤ 氧化物干扰:≦ 双电荷产率():≤

质量范围: 高盐分析性能指标: 高盐分析性能指标的溶液中,,,,,等目标元素,连续进样大于小时,分析测定次数大于次(每次个重复测定),最终各目标元素结果≦ 、辅助配置设备及配件 仪器必备的其他辅助设备 电源:国产纯在线式电源一台,功率电压电流等与设备匹配。 计算机控制系统与操作系统:配备计算机系统(包括激光打印机),满足仪器操作系统软件运行的要求,计算机全自动化控制,仪器设置和参数选择可自动完成。 具有自动安全连锁系统,技术服务部门和应用支持部门能够对仪器实现完全远程控制和维修诊断。 氩气钢瓶(含高纯氩气、减压阀)瓶、氦气(含高纯氦气、减压阀)瓶(钢瓶为标准瓶),双瓶气瓶柜个。

电感耦合等离子体质谱仪工作原理详解

电感耦合等离子体质谱仪工作原理详解 电感耦合等离子体质谱仪是一种常用的质谱仪产品,主要由等离子体发生器、雾化室、矩管、四极质谱仪和一个快速通道电子倍增管等部件组成,在多个行业中都有一定的应用。电感耦合等离子体质谱仪工作原理是什么呢?下面 小编就来具体介绍一下,希望可以帮助到大家。电感耦合等离子体质谱仪工作原理工作原理是根据被测元素通过一定形式进入高频等离子体中,在高温下电离成离子,产生的离子经过离子光学透镜聚焦后进人四极杆质谱分析器按照荷质比分离,既可以按照荷质比进行半定量分析,也可以按照特定荷质比的离子数目进行定量分析。该类型质谱仪主要由离子源、质量分析器和检测器三部分组成,还配有数据处理系统、真空系统、供电控制系统等。样品从引入到得到最终结果的流程如下:样品通常以液态形式以1mL/min的速率泵入雾化器,用大约1L/min的氩气将样品转变成细颗粒的气溶胶。气溶胶中细颗粒的雾滴仅 占样品的1%~2%,通过雾室后,大颗粒的雾滴成为废液被排出。从雾室出口出来的细颗粒气溶胶通过样品喷射管被传输到等离子体炬中。ICP-MS中等离子体炬的作用与ICP-AES中的作用有所不同。在铜线圈中输入高频(RF)电流产生强的磁场,同时在同心行英管(炬管)沿炬管切线方向输入流速大约为15L/min 的气体(一般为氩气),磁场与气体的相互作用形成等离子体。当使用高电压电火花产生电子源时,这些电子就像种子一样会形成气体电离的效应,在炬管的开口端形成一个温度非常高(大约10000K)的等离子体放电。但是,ICP-MS与ICP-AES的相似之处也仅此而已。在ICP-AES中,炬管通常是垂直放置的,等离子体激发基态原了的电了至较高能级,当较高能级的电子落回基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中

电感耦合等离子体质谱ICP-MS的原理与操作

电感耦合等离子体质谱ICP-MS 1.ICP-MS仪器介绍 测定超痕量元素和同位素比值的仪器。由样品引入系统、等离子体离子源系统、离子聚焦和传输系统、质量分析器系统和离子检测系统组成。 工作原理: 样品经预处理后,采用电感耦合等离子体质谱进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。样品由载气带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的正离子,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。 仪器优点: 具有很低的检出限(达ng/ml或更低),基体效应小、谱线简单,能同时测定许多元素,动态线性范围宽及能快速测定同位素比值。地质学中用于测定岩石、矿石、矿物、包裹体,地下水中微量、痕量和超痕量的金属元素,某些卤素元素、非金属元素及元素的同位素比值。

2.ICP产生原理 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k 的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1 L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15 L/min。

相关主题
相关文档 最新文档