当前位置:文档之家› LNA仿真实验教程

LNA仿真实验教程

LNA仿真实验教程
LNA仿真实验教程

实验四 GPS LNA前仿真实验

实验目的

通过本实验掌握使用在Cadence ADE环境中使用SpectreRF对LNA的仿真方法

LNA介绍

LNA处在射频接收机的最前端,要求具有最低的噪声系数。LNA需要具有较高的增益,以抑制后级电路的噪声。LNA还应具备较高的线性度,降低带外干扰信号对接收机的影响。

设计实例:源级电感负反馈LNA

本实验中的LNA可应用于GPS接收机,工作频率为1.575GHz左右。

(1) LNA核心电路:lna2_cell

LNA采用源级电感负反馈结构,(源级负反馈电感由bonding wire实现),电路图如下。

图中,M0和M1为两个并联的NMOS管,作为LNA的输入管,并联的目的是增加版图中联线的宽度。M3和M4是两个并联的NMOS管,作为共源共栅管,增加LNA的隔离度。电感L0和C1组成谐振网络,是LNA在1.57GHz处具有较大的增益。

M5、M7、R0和C0组成LNA的偏置电路,R0和C0用来减小偏置电路的噪声对LNA噪声系数的影响。电容C2作为RF输入端RFIN的隔直电容。电容C4为输出端的隔直电容。电感L3和电容C5作为输出端的L型匹配电路。

为了防止其它电路的噪声通过地线串扰影响LNA的噪声系数,在电路中设置了3种地线:GND1为主电路的地、GND2为其它电路的地线,SUB为所有器件衬底的接地点。

(2) 考虑各接出点的ESD以后的电路图lna2_cell_WPAD

每个PIN都需要考虑ESD,本实验中,我们采用TSMC提供的标准RFIO作为各PIN的ESD器件,LNA一共有7个IO,所以共有7个ESD器件。其中LNA的电源采用电源ESD器件(PVDD3AC);SUB引出采用地线ESD器件(PVSS3AC);RFIN、RFOUT 采用最小寄生电容的ESD器件PDB1AC;其余的IBIAS和GND2、GND1采用PDB3AC.

(3)各种ESD器件的电路原理和在版图中的连接方法

PDB1AC、PDB3AC、PVSS3AC和PVDD3AC都在tsmc18io库中。

a)电源IO(PVDD3AC)

电路图如下图所示,该IO为芯片提供电压,并为ESD保护环路供电,TACVDD 端,连接到外部,A VDD端连接到芯片内部。TACVDD与VSS之间的电路为ESD 防护电路,当TACVDD上有较大的电压时,M0导通,泄放电流。

PVDD3AC在版图上的连接方法如下图所示。

b)地IO (PVSS3AC)

电路图如下:

该IO的A VSS端接到外部,与内部的地直通,在ESD的保护电压之间,用3个2级管实现ESD防护。

PVSS3AC在版图中的连接方法如下图所示

c)RFIO (PDB1AC和 PDB3AC)

两种IO的电路结构相同,只是采用的二极管个数不同,PDB1AC只有一组二极管,而PDB3AC具有6组二极管。PDB1AC所能提供的ESD保护在1000V左右,而PDB3AC能达到2000V。

寄生电容方面,PDB1AC只有100fF,是所有IO中最小的最适合LNA的输入和输出端。PDB3AC的寄生电容则达到600fF。

PDB1AC PDB3AC

PDB1AC和PDB3AC在版图中的连接都一样,直通到内部电路如下图所示。

(3) LNA的仿真电路图

LNA的仿真电路图如下图所示。电阻R0、L0模拟RFIN端Bonding线上的寄生电感和电阻。电感L5和C0外片外匹配元件,实现输入端的匹配。R1、L1模拟RFOUT端Bonding线上的寄生电感,该端口的匹配在片内实现。电压源V0提供电源电压,PORT0为RF输入端口,PORT1为RF输出端口,电流源I6为LNA提供600uA的偏置电流。矩形框内的电路分别用来模拟GND1、GND2和SUB的Bonding 线上的寄生电感和寄生电阻。

射频输入PORT1的设置:(在电路图中选中PORT1,快捷键q)

LNA的仿真

开始仿真LNA之前,执行以下动作:

1) 启动IC51:

在终端中输入以下命令:

cd work_20 --进入工作目录

cds.setup --设置Cadence的环境变量

calibre.setup --设置Calibre的环境变量

icfb& --IC51的启动命令

2) 打开sim_lna2_cell_WPAD电路图:

在icfb窗口中,菜单Tools?Library Manager,找到Library为lab20,cell为sim_lna2_cell_WPAD, view为schematic,双击打开。

3)启动ADE并进行变量的初始化设置

在schematic窗口中,菜单Tools?Analog Environment,弹出ADE的界面。

在ADE的界面中,菜单Variables?Copy from Cellview,将各变量拷贝至ADE的变量栏中,双击各变量,vdd设为1.8,prf设为-50,frf设为1.57G,a设为1nH。

仿真实验1:小信号增益(sp)

用sp可以分析LNA的S参数,NF,稳定性等。

1)电路图设置

z在schematic窗口中,将PORT0的source type设为dc;

z保存电路图,在schematic中点击。

2)设置sp:

在ADE中,菜单Analyses?Choose,在弹出的对话框中选择sp,并做如下设置:

z在port栏中点select,并在schematic中分别点击PORT0和PORT1;

z Sweep Variable,点Frequency

z Sweep Range点Start-Stop,Start填1G,Stop填3G

z Sweep type选linear;

z Step Size填50;

z Do Noise点Yes;

z Output port,点select在schematic中选PORT1;

z Input port,点select在schematic中选PORT0;

z点击Enabled;

z填好的SP表如下图所示

z在右上角点OK;

填好的ADE窗口如下图所示:

在ADE的右下角点击绿色的按钮,开始仿真,等待结束。3)观察LNA的增益特性

z在ADE中点击菜单Results?Direct Plot?Main Form;

z在弹出的Direct Plot对话框中,做如下设置:

z Analysis选择sp;

z Function选择GT(Transducer Gain)

z Modifier选择dB10;

如下图

z点击Plot;

z在回到Direct Plot 表格中

z Function选择GA;(Available Gain)

z Modifier选择dB10;

z点击plot,输出资用功率增益;

z再回到Direct Plot 表格中

z Function 选择GP;(Power Gain)

z在波形窗口中,点击new subwindow

z在回到Direct Plot 表格中

z Function选择Gmax;(最大功率增益)

z Modifier选择dB10;

z点击plot,输出资用功率增益;

z再回到Direct Plot 表格中

z Function 选择Gmsg;(最大稳定功率增益)

z Modifier选择dB10;

z点击plot;

z再回到Direct Plot 表格中

z Function 选择Gumx;(Maximum unilateral power gain)

z Modifier选择dB10;

z点击plot,输出资用功率增益

输出波形窗口如下:

关闭波形窗口

4)观察LNA的等增益源

z回到Direct Plot 表格中,Function 选GAC(Available Gain Circle);z Plot type选择,Z-Smith;

z其余下图填写

z点击Plot

z在波形窗口中,点击new subwindow ;z再回到Direct Plot 表格中

z Function 选择GPC;(Gain Circle)

z点击plot

z资用功率增益圆和增益圆如下图所示

z关闭波形窗口

5)观察LNA的稳定性

z再回到Direct Plot 表格中;

z Function选择Kf;(增益因子)

z点击Plot;

z K值大于1,LNA稳定

z关闭波形窗口;

z再回到Direct Plot 表格中;

z Function选择LSB;(负载稳定圆)

z Plot type选择Z-smith;

z其余按下图填写

z在波形窗口中,点击new subwindow ;z再回到Direct Plot 表格中

z Function 选择SSB;(Source Stable Circle)z点击plot

z负载稳定圆与源稳定圆如下图所示

z关闭波形窗口

z再回到Direct Plot 表格中;

z Function选择NF;

z Modifier选dB10

z点击Plot;

z在波形窗口中,点击new subwindow ;

z再回到Direct Plot 表格中

z Function 选择NC;(Noise Circle)

z其余按左图填写

z点击Plot

z噪声系数和等噪声系数圆如下图所示

z关闭波形窗口

z再回到Direct Plot 表格中;

z Function选择VSWR;

z Modifier选dB20

z分别点击VSWR1和VSWR2;

z波形如下图所示

z关闭波形窗口

8)观察LNA的S参数

z再回到Direct Plot 表格中;

z Function选择sp;

z Plotting type选择 Rectangular

z Modifier选dB20

z分别点击S11,S12、S21和S22

z关闭波形窗口

z保存仿真State,在ADE中菜单Session?Save state,在save as中填入sp,点击ok 仿真实验2:大信号噪声分析(PSS+pnoise)

1)电路图设置

z在schematic窗口中,将PORT0的source type设为sine;

z保存电路图,在schematic中点击。

2)PSS设置

z在ADE中,点击菜单Analyses?Choose,点击pss,并按下图进行设置

z

z

z设置好后,点击Enabled;

z左上方点击apply;

3)pnoise设置

z在Choose Analyses对话框中,点击pnoise;

z并按下图设置

z设置好后,点击Enabled;z左上方点击apply;

3)ADE设置

z在ADE界面中,双击prf将其设为-20,并点击ok;

z填好的ADE窗口如下图所示:

在ADE的右下角点击绿色的按钮,开始仿真,等待结束。

4)观察结果

z在ADE中点击Tools?Direct Plot?Main Form

z Analysis选择pnoise

z Function选择noise figure

z点击plot,如下图,大信号下的噪声系数比sp小信号分析的略微大一些,因为电路已经有一些失真。

z关闭波形窗口

z保存state,保存仿真State,在ADE中菜单Session?Save state,在save as中填入pss_pnoise,点击ok

仿真实验3:增益压缩和THD(Sweep PSS)

1)电路图设置

z在schematic窗口中,将PORT0的source type仍设为sine;

2)PSS设置

z在ADE窗口中,鼠标单击noise,将其删除(在右边点删除按钮)

z在ADE中,双击pss,并按下图进行设置

z设置好后,点Enabled

z点击左上方Ok;

3)ADE设置

z填好的ADE窗口如下图所示:

在ADE的右下角点击绿色的按钮,开始仿真,等待结束。

4)观察结果

z在ADE中点击Tools?Direct Plot?Main Form

z Analysis选择pss

z Function选择compression point;

z其余如下图所示:

z设置好后,在schematic中点击PORT1;即可打印出1dB压缩点的波形图,见下下页图z输入为-30dBm时,LNA的增益为18(-12-(-30)),与小信号仿真吻合。

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

电工技术与电子技术实验教程讲诉

学生实验守则 一、参加实验时应衣冠整洁。进入实验室后应保持安静,不要大声喧哗和打闹,妨碍他人学习和实验。不准吸烟,不准随地吐痰,不准乱扔纸屑与杂物。 二、进行实验时必须严格遵守实验室的规章制度和仪器操作规程。爱护仪器设备,节约实验器材,未经许可不得乱动实验室的仪器设备。 三、注意人身安全和设备安全。若仪器出现故障,要立即切断电源并立即向指导教师报告,以防故障扩大。待查明原因、排除故障之后才可继续进行实验。 四、要以严格、认真的科学态度进行实验,结合所学理论,独立思考,分析研究实验现象和数据。 五、实验完毕后必须收拾整理好自己使用的仪器设备,保持实验台整洁,填写实验仪器使用记录。在归还实验仪器后,才能离开。 六、违反实验室规章制度和仪器设备操作规程造成事故、导致仪器设备损坏者,将视情节轻重按实验室设备管理制度处理及赔偿。

电工电子实验室安全制度 一、每个实验室要有专人担任安全员,负责本室的各项安全工作。并定期进行安全检查,发现问题及时向领导和有关部门汇报。 二、实验室总电源应有专人负责,各分室电源应有指示灯指示。 三、实验室内不准吸烟。要经常检查室内电源设备状况。各种用电设备使用完毕后要断开电源。 四、实验室钥匙不能出借他人,实验室所有仪器设备的配置、维修、拆卸等都必须做好记录并严格遵守操作规程,非经有关人员许可不得擅自动用。 五、每个实验室要配备必要的消防器材(灭火器、灭火栓),消防器材必须定期检查更换。任何人不得随意搬动、拆卸消防器材。 六、工作人员离开时必须断开室内电源、水源,关好门窗。 匪警电话 110 火警电话 119 校保卫处电话 83209110

vissim交叉口仿真教学教程(新手教学活动,步骤截图全过程)

VISSIM交叉口仿真教程(新手版)适合:第一次接触者使用 概述:如今交通信息化已经成为当下交通工程发展的新方向,而vissim作为一种重要的交通仿真软件,已经越来越多的应用在交通仿真的各个方面。 交叉口的制作: 第一步:加入背景 图表1 选取编辑选项

图表2 如图读取背景图片 图表3 选取比例选项,之后在背景上选取对应的车道宽度 第二步:绘制路网:

使用最左边工具栏里的进行路网的绘制,按照车流前进的方向点死鼠标右键拉线,确定link的起终点,之后进行link参数的选择(包括车道等) 如此,将背景图中的所有道路一一覆盖 第三步:连接各个link 选取要连接的link点击在其上点击右键然后拉向要被连接的link,之后显示出参数界面(包括可以取的曲线点的数目、link里的不同车道等),之后就有了link之间的连接线

依此连接所有可行的link,为下一步输入车流打好基础。 第四步:加入交通量 使用最左边工具栏里的进行车流的放入,在link的远端起点(交叉口的进口道远端)选中该link后点击右键,得到下图所显示的车辆输入界面: 作为实验可以如图输入参数,表示该link编号为1,一个仿真周期输入车流量1111,车辆类型及种类选取了默认。 第五步:给出车辆运行的路径:

使用最左边工具栏里的进行路径的给出。首先左键选取起始的link,在其上点击右键,然后左键选取想要去的link,在其上点击右键,则可以得到图示的效果: 图中的红线和绿线即为点击右键的位置。如此,车辆可以向三个方向运行了。当然,必须之前连好的link之间才可以设置路径。 第六步:给出信号灯配时: 首先选取最上边菜单栏的信号控制中的编辑信号控制机选项,得到下图:

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

电力电子技术实验教程审

电工电子实验中心 实验指导书 电力电子技术实验教程

二零零九年三月

高等学校电工电子实验系列 电力电子技术实验教程 主编王利华周荣富

攀枝花学院电气信息工程学院电工电子实验中心

内容简介 本书是根据高等院校理工科本(专)科的电力电子技术实验课程的基本要求编写的。 全书包含三个部分。第一部分对基本实验的目的、内容、原理、实验仪器和实验方法进行了阐述。第二部分对DKSZ-1电机控制系统实验装置进行了简述。第三部分是对实验装置控制组件介绍。 本书可作为我校电类和非电类专业本科生、专科生实验教学用书,还可作为从事电力电子技术的工程技术人员的参考书。

前言 电力电子技术是电气工程学科的基础课程,由电力电子器件、电力电子电路、电力电子系统及其控制三部分组成,是电力电子装置、开关电源技术、自动控制系统、变频调速应用、柔性输电系统等课程的先行课程。同时,也是电气信息类其他相关专业的重要基础课之一。 电力电子技术作为21 世纪解决能源危机的必备技术之一而受到重视。本书依据应用型人才培养目标,遵循“面向就业,突出应用”的原则,注重教材的“科学性、实用性、通用性、新颖性”,力求做到学科体系完整、理论联系实际、夯实基础知识、突出时代气息,具备科学性及新颖性,并强调知识的渐进性,兼顾知识的系统性,注重培养学生的实践能力。本书着重讲授各种电能变换电路的基本工作原理、电路结构、电气性能、波形分析方法和参数计算等。通过对本课程的学习,学生能理解并掌握电力电子技术领域的相关基础知识,培养其分析问题、解决问题的能力,了解电力电子学科领域的发展方向。 本书由三部分组成。

vissim交叉口仿真教程(新手教学,步骤截图全过程)

v i s s i m交叉口仿真教程(新手教学,步骤截 图全过程) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

VISSIM交叉口仿真教程(新手版) 适合:第一次接触者使用 概述:如今交通信息化已经成为当下交通工程发展的新方向,而vissim作为一种重要的交通仿真软件,已经越来越多的应用在交通仿真的各个方面。 交叉口的制作: 第一步:加入背景 图表 1 选取编辑选项 图表 2 如图读取背景图片

图表 3 选取比例选项,之后在背景上选取对应的车道宽度 第二步:绘制路网: 使用最左边工具栏里的进行路网的绘制,按照车流前进的方向点死鼠标右键拉线,确定link的起终点,之后进行link参数的选择(包括车道等) 如此,将背景图中的所有道路一一覆盖

第三步:连接各个link 选取要连接的link点击在其上点击右键然后拉向要被连接的link,之后显示出参数界面(包括可以取的曲线点的数目、link里的不同车道等),之后就有了link之间的连接线

依此连接所有可行的link,为下一步输入车流打好基础。 第四步:加入交通量 使用最左边工具栏里的进行车流的放入,在link的远端起点(交叉口的进口道远端)选中该link后点击右键,得到下图所显示的车辆输入界面: 作为实验可以如图输入参数,表示该link编号为1,一个仿真周期输入车流量1111,车辆类型及种类选取了默认。 第五步:给出车辆运行的路径: 使用最左边工具栏里的进行路径的给出。首先左键选取起始的link,在其上点击右键,然后左键选取想要去的link,在其上点击右键,则可以得到图示的效果:

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

电子技术应用实验教程实验报告综合篇(含答案) 电子科技大学-大三上

第一部分常用电子测量仪器的使用 本部分主要涉及实验要用到的三种仪器:数字示波器、信号发生器和稳压电源。学生在自学了《电子技术应用实验教程综合篇》(后称教材)第一章内容后,填空完成这部分的内容。 一、学习示波器的应用,填空完成下面的内容 示波器能够将电信号转换为可以观察的视觉图形,便于人们观测。示波器可分为模拟示波器和数字示波器两大类。其中,模拟示波器以连续方式将被测信号显示出来;而数字示波器首先将被测信号抽样和量化,变为二进制信号存储起来,再从存储器中取出信号的离散值,通过算法将离散的被测信号以连续的形式在屏幕上显示出来。我们使用的是数字示波器。 使用双踪示波器,能够同时观测两个时间相关的信号。信号通过探头从面板上的通道1 和通道2 端送入,分别称为CH1和CH2。 在使用示波器时,需要注意以下几点: (1)正确选择触发源和触发方式 触发源的选择:如果观测的是单通道信号,就应选择该信号作为触发源;如果同时观测两个时间相关的信号,则应选择信号周期大(大/小)的通道作为触发源。 (2)正确选择输入耦合方式 应根据被观测信号的性质来选择正确的输入耦合方式。如图1.1所示,输入耦合方式若设为交流(AC),将阻挡输入信号的直流成分,示波器只显示输入的交流成分;耦合方式设为直流(DC),输入信号的交流和直流成分都通过,示波器显示输入的实际波形;耦合方式设为接地(GND),将断开输入信号。 0U 1V 5V (A) 0U 1V 5V 图1.2 被测信号实际波形 t 0 U (B) t 0 U -2V 2V (C) DC 图1.1 输入耦合开关示意图 图1.3 不同输入耦合方式时的波形

交通仿真课程设计

《交通仿真A》 ——上机任务书 适用专业:交通运输、物流工程课程名称:交通仿真 课程性质:专业必修 指导老师:李顺 2014年9月

一、预备工作 学生上机前得准备工作主要有复习交通专业导论、道路工程、道路交通管理与控制、道路交通设计、交通规划等课程得基本概念及相关内容,并且认真阅读vissim使用手册。 (一)上机相关内容: 认真参照《交通仿真实验教程》及其配套《交通仿真实验工程文件》进行入门操作练习。针对信号交叉口、无信号交叉口、环形交叉口进行分别仿真。 (二)数据设计及相关准备 数据设计与准备得内容主要包括以下三方面:道路几何尺寸、信号配时现状及交通流量数据。 道路几何尺寸数据: 交叉口形状,包括T 型、Y 型、十字型或不规则型等。 路段状况,包括车道类型、车道宽度、车道数目、车道流向、有无分隔设施、渠化状况、行人过街横道、停车带、公交专用道、公交停靠站、自行车道等。 交叉口处得进口道、出口道数据,特别注意左转、右转专用车道与调头车道状况;交叉口内导流线、导流岛等。 信号配时数据: 信号类型(固定周期信号、自适应信号、半自适应信号)、信号周期、绿灯时间、红灯时间、绿灯间隔时间、有效绿灯时间、全红时间、绿信比、信号相位、信号相序等。 交通流数据: 各方向进口得机动车、非机动车得时段(例如15 分钟)流量、流向数据,高峰期流量、流向数据,交通组成状况(重型车比例、公交车线路),过街行人数据,饱与车头时距、平均延误时间、排队长度等。 二、上机作业及考核内容 本课程上机环节要求学生至少完成一个典型平面信号交叉口(十字、环形、T 型均可)得仿真建模工作,需要完成车道设计、信号配时与交通流量输入工作,并且可以通过动画演示。鼓励学生针对信号交叉口进行实地调查后建立模型,如果条件有限,可参照“上机实验案例数据”来完成。

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

电子技术应用实验教程实验报告综合篇含答案UESTC大三上(供参考)

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 第一部分常用电子测量仪器的使用 本部分主要涉及实验要用到的三种仪器:数字示波器、信号发生器和稳压电源。学生在自学了《电子技术应用实验教程综合篇》(后称教材)第一章内容后,填空完成这部分的内容。 一、学习示波器的应用,填空完成下面的内容 示波器能够将电信号转换为可以观察的视觉图形,便于人们观测。示波器可分为模拟示波器和数字示波器两大类。其中,模拟示波器以连续方式将被测信号显示出来;而数字示波器首先将被测信号抽样和量化,变为二进制信号存储起来,再从存储器中取出信号的离散值,通过算法将离散的被测信号以连续的形式在屏幕上显示出来。我们使用的是数字示波器。 使用双踪示波器,能够同时观测两个时间相关的信号。信号通过探头从面板上的通道1 和通道2 端送入,分别称为CH1和CH2。 在使用示波器时,需要注意以下几点: (1)正确选择触发源和触发方式 触发源的选择:如果观测的是单通道信号,就应选择该信号作为触发源;如果同时观测两个时间相关的信号,则应选择信号周期大(大/小)的通道作为触发源。 (2)正确选择输入耦合方式 应根据被观测信号的性质来选择正确的输入耦合方式。如图1.1所示,输入耦合方式若设为交流(AC),将阻挡输入信号的直流成分,示波器只显示输入的交流成分;耦合方式设为直流(DC),输入信号的交流和直流成分都通过,示波器显示输入的实际波形;耦合方式设为接地(GND),将断开输入信号。 已知被测信号波形如图1.2所示,则在图1.3中, C 为输入耦合方式为交流(AC)时的波形, A 为输入耦合方式为直流(DC)时的波形, B 为输入耦合方式为接地(GND)时的波形。 (3)合理调整扫描速度 调节扫描速度旋钮,可以改变荧光屏上显示波形的个数。提高扫描速度,显示的波形少;降低扫描速度,显示的波形多。在实际测试时,显示的波形不应过多,以保证时间测量的精度。 (4)波形位置和几何尺寸的调整 观测信号时,波形应尽可能处于荧光屏的中心位置,以获得较好的测量线性。正确调整垂直衰减旋钮,尽可能使波形幅度占一半以上,以提高电压测量的精度。为便于读数,一般我们调节Y轴位移使0V位置位于示波器显示窗口中的暗格上。 数字示波器中被测信号0V标志位于示波器屏幕显示区的左侧。 在使用示波器前,需要检查示波器探头的好坏。简述检查的方法。 1文档来源为:从网络收集整理.word版本可编辑.

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

电子技术应用实验教程实验报告综合篇(含答案)电子科技大学-大三上

. . .. .v .. .. 第一部分 常用电子测量仪器的使用 本部分主要涉及实验要用到的三种仪器:数字示波器、信号发生器和稳压电源。学生在自学了《电子技术应用实验教程 综合篇》(后称教材)第一章内容后,填空完成这部分的内容。 一、学习示波器的应用,填空完成下面的内容 示波器能够将电信号转换为可以观察的视觉图形,便于人们观测。示波器可分为 模拟示波器 和 数字示波器 两大类。其中, 模拟示波器 以连续方式将被测信号显示出来;而 数字示波器 首先将被测信号抽样和量化,变为二进制信号存储起来,再从存储器中取出信号的离散值,通过算法将离散的被测信号以连续的形式在屏幕上显示出来。我们使用的是 数字示波器 。 使用双踪示波器,能够同时观测两个时间相关的信号。信号通过探头从面板上的 通道1 和 通道2 端送入,分别称为CH1和CH2。 在使用示波器时,需要注意以下几点: (1)正确选择触发源和触发方式 触发源的选择:如果观测的是单通道信号,就应选择 该信号 作为触发源;如果同时观测两个时间相关的信号,则应选择信号周期 大 (大/小)的通道作为触发源。 (2)正确选择输入耦合方式 应根据被观测信号的性质来选择正确的输入耦合方式。如图1.1所示,输入耦合方式若设为交流(AC ),将阻挡输入信号的直流成分,示波器只显示输入的交流成分;耦合方式设为直流(DC ),输入信号的交流和直流成分都通过,示波器显示输入的实际波形;耦合方式设为接地(GND ),将断开输入信号。 0U 1V 5V (A ) t U 1V 5V 图1.2 被测信号实际波形 t U (B ) t 0U -2V 2V (C ) DC 图1.1 输入耦合开关示意图 图1.3 不同输入耦合方式时的波形 已知被测信号波形如图1.2所示,则在图1.3中, C 为输入耦合方式为交流(AC )

虚拟仿真实验平台在土木工程的应用

虚拟仿真实验平台在土木工程的应用 摘要:开展虚拟仿真教学是国家教育信息化的具体体现,是未来高校实践教学发展的必由之路。首先,本文总结土木工程专业课程相关教学实验的特点,阐述进行虚拟仿真实验平台建设的必要性。其次,分析虚拟仿真实验平台在土木工程教学中的优势及作用,并提出虚拟仿真实验平台用于土木专业教学的具体举措。最后,阐述虚拟仿真教学存在的共性问题及解决策略,为今后高校土工工程专业课程开展虚拟仿真实验平台建设提供参考。 关键词:虚拟仿真;教育信息化;土木工程;实践教学 土木工程具有十分鲜明的行业背景和特点,随着社会的发展和技术进步,工程结构越来越大型化、复杂化,超高层建筑、特大型桥梁、巨型大坝、复杂的地铁系统不断涌现,满足了人们的生活需求,同时也演变为社会实力的象征。在土木工程专业的人才培养中,实验教学对学生实践能力、工程素质和创新精神的培养占有非常重要地位,由于开展实习、实践、实验等教学活动所需场地、时间和经费等诸多因素的制约,传统的实验形式单一、内容较少、知识分散,不能很好地适应工程建设快速发展对人才培养提出的新要求,迫切需要开展虚拟仿真实验,以弥补实体实验教学的不足。同时,《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,"信息技术对教育发展具有革命性影响,必须予以髙度重视";。为此教育部加强了对实验教学信息化工作的宏观指导,先后出台《教育信息化十年发展规划(2011-2020年)》《2017年教育信息化工作要点》《关于2017-2020年开展示范性虚拟仿真实验教学项目建设的通知》和《教育部关于开展国家虚拟仿真实验教学项目建设工作的通知》等相关文件,旨在深入推进信息技术与高等教育实验教学的深度融合,拓展实验教学内容广度和深度,延伸实验教学时间和空间,提升实验教学质量和水平,其迫切性和重要性毋庸置疑。 一、土木工程专业实验的特点 土木工程是基于实践经验发展而来的学科,其核心课程如《混凝土结构设计原理》《桥梁工程》《钢结构设计基本原理》《隧道工程》《基础工程》《工程结构抗震》等,所涉及的教学实验普遍存在以下特点。 1.实验构件体量大、周期长 实体的房屋建筑、桥梁、隧道等工程,一般体量都很大,如高层结构中的剪力墙、大跨度桥梁的墩柱等,对这些大体量的结构或构件,在实验室完成其实体实验几乎是不可能的,同时,土木工程专业实验还存在成本髙、实验周期长等特点,如钢筋混凝土梁、柱构件实体实验模型,从试件设计,钢筋下料、模板制作、混凝土浇筑、养护直至加载试验不仅耗费大量资源,实验周期也很长,制约了学生的全程直接参与。

电子技术实验教程实验实验二

实验二:电路元器件的认识与测量 系别: 姓名: 学号: 实验日期: 一、实验目的 1.认识电路元、器件的性能和规格,学会正确选用元、器件; 2.掌握电路元、器件的测量方法,了解它们的特性和参数; 3.了解晶体管特性图示仪基本原理和使用方法。 二、实验仪器 1.数字万用表(四位半)1台 2.晶体管特性图示仪1台 3.多功能实验箱1台 三、实验原理 在电子线路中,电阻、电位器、电容、电感和变压器等称为电路元件;二极管、稳压管、三极管、场效应管、可控硅以及集成电路等称为电路器件。本实验仅对实验室常用的电阻、电容、电感、晶体管等电子元器件作简要介绍。 (一) 电阻器 1.电阻器、电位器的型号命名方法. 2.电阻器、电位器的主要特性指标: (1)标称阻值: 电阻器表面所标注的阻值为标称阻值。不同精度等级的电阻器,其阻值系列不同,标称 阻值是按国家规定的电阻器标称阻值系列选定,通用电阻器、电位器的标称阻值系列见表2。 (2)容许误差: 电阻器、电位器的容许误差指电阻器、电位器的实际阻值对于标称阻值的允许最大误差范围,它标志着电阻器、电位器的阻值精度。表3为精度等级与容许误差关系。 (3)额定功率: 电阻器、电位器通电工作时,本身要发热,若温度过高,则电阻器,电位器将会损坏。在规定的环境温度中允许电阻器、电位器承受的最大功率,即在此功率限度下,电阻器可以长期稳定地工作,不会显著改变其性能,不会损坏的最大

功率限度称为额定功率。 3.电阻器的规格标注方法: 由于电阻器表面积的限制,通常电阻器表面只标注电阻器的类别、标称阻值、精度等级和额定功率,对于额定功率小于0.5W的电阻器,一般只标注标称阻值和精度等级,材料类型和功率常从其外观尺寸判断。电阻器的规格标注通常采用文字符号直标法和色标法两种,对于额定功率小于0. 5 W电阻器,目前均采用色标法,色标所代表的意义如表1。 表1色标所代表的数字 颜色A第一位数 字B第二位数 字 C倍乘数D容许误差工作电压 黑0 0 31 棕 1 1 310 ±1% 红 2 2 310^2 ±2% 4 橙 3 3 310^3 6.3 黄 4 4 310^4 10 绿 5 5 310^5 ±5% 16 兰 6 6 310^6 ±0.2% 25 紫7 7 310^7 ±0.1% 32 灰8 8 40 白9 9 +5 -20 50 金30.1 ±5% 63 银30.01 ±10% 无色±20% 色环电阻一般为四环(普通电阻)、五环(精密电阻)两种标法。 四环电阻器:A、B环为有效数字,C环为10n,D环为精密等级。 五环色标电阻器:A、B、C三环为有效数字,D环为10n,E环为精密等级。 4.电阻器的性能测量: 电阻器的主要参数位一般都标注在电阻器一上,电阻器的阻值,在保证测试的精度条件下,可用多种仪器进行测址2也可采用电流表、电压表或比较法。仪器的测量误差应比被测电阻器允许偏差至少小两个等级。对通用电阻器,一般可采用万用表进行测量。若采用机械表测量,应根据阻值大小选择不同量程,并进行调零,使指针尽可能指示在表盘中间;测量时,不能双手接触电阻引线,防止人体电阻与被测电阻并联。若采用数字式万用表,则测量精度要高于万用表。6使用常识: 电阻器在使用前应采用测量仪器检查其阻值是否与标称值相符。实际使用时在阻值和额定功率不能满足要求时,可采用电阻串、并联方法解决。但应注意,除了计算电阻值是否符合要求外,还要注意每个电阻所承受的功率是否合适,即额定功率要比承受功率大于一倍以上,使用电阻器时,除了不能超过额定功率防止受热损坏外,还应注意不超过最高工作,否则电阻内部会产生火花引起噪声。 电阻器种类繁多,性能各有不同,应用范围也有很大差别。应根据电路不同要求选择不同种类的电阻器。在耐热性、稳定性、可靠性要求较高的电路中应选用金属膜或金属氧化膜电阻;在要求功率大、耐热性好、对无特殊要求的一般电路,可使用线绕电阻;工作频率不高的电路中,可使用碳膜电阻,以降低成本。

虚拟仿真实验技术材料文件

虚拟仿真实验解决方案 上海华一风景观艺术工程有限公司 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务内容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育内容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,北京公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继北京重磅发布此消息后,河南教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;安徽省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;山西省理化实验操作10分。

虚拟仿真虚拟现实实验室解决方案

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。 【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成: 虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系

统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,而虚拟三维投影显示系统则是目前应用最为广泛的系统,因为虚拟现实技术要求应用系统具备沉浸性,而在这些所有的显示系统或设备中,虚拟三维投影显示系统是最能满足这项功能要求的系统,因此,该种系统也最受广大专业仿真用户的欢迎。虚拟三维投影显示系统是目前国际上普遍采用的虚拟现实和视景仿真实现手段和方式,也是一种最典型、最实用、最高级别的投入型虚拟现实显示系统。这些高度逼真三维显示系统的高度临场感和高度参与性最终使参与者真正实现与虚拟空间的信息交流与现实构想。 虚拟现实交互系统 多自由度实时交互是虚拟现实技术最本质的特征和要求之一,也是虚拟现实技术的精髓,离开实时交互,虚拟现实应用将失去其存在的价值和意义,这也是虚拟现实技术与三维动画和多媒体应用的最根本的区别。在虚拟现实交互应用中通常会借助于一些面向特定应用的特殊虚拟外设,它们主要是6自

电子技术基础实验仿真报告

学院:微电子与固体电子学院指导老师: 学生: 学号:

3.16多级放大电路设计及测试 一、实验目的 1.理解多级直接耦合放大电路的工作原理和设计方法。 2.学习并熟悉设计高增益的多级直接耦合放大电路的方法。 3.掌握多级放大器性能指标的测试方法。 4.掌握在放大电路中引入负反馈的方法。 二、设计要求 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V,VEE=-12V,要求设计差分放大器恒流源的射极电流 IEQ=2~3mA;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大器的不失真电压增益不少于100倍; 三、电路原理. 直接耦合式多级放大器的主要设计任务是模仿运行运算放大器op07的等效内部结构,简化部分电路,采用差分放大,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。实验原理图如下:

各部分原件参数如下: R1=5KΩ;R2=9KΩ;R3=10KΩ;R4=500Ω;R5=10KΩ;R6=10KΩ;R7=1kΩ;R8=1Ω; R9=1Ω;R10=1Ω P1=10KΩ, P2=20KΩ V1=1mV,VCC=+12V,VEE=-12V, C1=0.01PF C2=4uF C3=0.01PF 晶体管为2SC1815和2SA1015 二极管为1N3208 四、实验内容:

所测得各数据如图 性能指标一:IEQ3=1~2mA。 如上图所示,IEQ3=1.143mA符合要求。 性能指标二:IEQ4=2~3mA 如上图所示IEQ4=2.209mA,符合要求。 性能指标三:差分放大器的单端输入单端输出不失真电压增益至少大于10倍。 如上图所示,vpp=26.476mV相对于1mV放大约26倍符合要求。 性能指标四:主放大级的不失真电压增益不小于100倍。 如上图所示,vpp=2.809V相对于26.476mV放大了约106倍,符合要求

相关主题
相关文档 最新文档