当前位置:文档之家› 冷却风扇的选型与设计

冷却风扇的选型与设计

冷却风扇的选型与设计
冷却风扇的选型与设计

摘要

冷却风扇的设计包括气动设计计算,结构设计和强度计算等内容。冷却风扇的气动设

计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论

设讲方法用于设计新系列的通风机。本文在了解离心通风机的基本组成,工作原理以及设计

的一般方法的基础上,设计了一种离心通风机。

关键字:冷却风扇工作原理设计方法

ABSTRACT

The design of Centrifugal fan includes the calculation of aerodynamic and the structure etc. The aerodynamic design of Centrifugal fan has two kinds of methods: one is the likeness designs, the other is theoretical designs. Based on above, this article designed a Centrifugal fan based on above.

Key words: Centrifugal fan; working principle; design method

1.引言…………………………………………………………………… .(1)

2.冷却风扇的结构及原理 (3)

2.1离心式风机的基本组成 (3)

2.2离心式风机的原理 (3)

2.3离心式风机的主要结构参数 (4)

2.4离心式风机的传动方式 (5)

3离心风机的选型的一般步骤 (5)

4.冷却风扇的设计 (5)

4.1通风机设计的要求 (5)

4.2设计步骤 (6)

4.2.1叶轮尺寸的决定 (6)

4.2.2离心通风机的进气装置 (13)

4.2.3蜗壳设计 (14)

4.2.4参数计算 (20)

4.3离心风机设计时几个重要方案的选择 (24)

5.结论 (25)

附录 (25)

引言

通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。

通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。

通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。

1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。

1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。

按气体流动的方向,通风机可分为离心式、轴流式、斜流式和横流式等类型。

离心通风机工作时,动力机(主要是电动机)驱动叶轮在蜗形机壳内旋转,空气经吸气口从叶轮中心处吸入。由于叶片对气体的动力作用,气体压力和速度得以提高,并在离心力作用下沿着叶道甩向机壳,从排气口排出。因气体在叶轮内的流动主要是在径向平面内,故又称径流通风机。

离心通风机主要由叶轮和机壳组成,小型通风机的叶轮直接装在电动机上中、大型通风机通过联轴器或皮带轮与电动机联接。离心通风机一般为单侧进气,用单级叶轮;流量大的可双侧进气,用两个背靠背的叶轮,又称为双吸式离心通风机。

叶轮是通风机的主要部件,它的几何形状、尺寸、叶片数目和制造精度对性能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。

前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。

为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。

轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100毫米左右,大型的可达20米以上。

小型低压轴流通风机由叶轮、机壳和集流器等部件组成,通常安装在建筑物的墙壁或天花板上;大型高压轴流通风机由集流器、叶轮、流线体、机壳、扩散筒和传动部件组成。叶片均匀布置在轮毂上,数目一般为2~24。叶片越多,风压越高;叶片安装角一般为10°~45°,安装角越大,风量和风压越大。轴流式通风机的主要零件大都用钢板焊接或铆接而成。

斜流通风机又称混流通风机,在这类通风机中,气体以与轴线成某一角度的方向进入叶轮,在叶道中获得能量,并沿倾斜方向流出。通风机的叶轮和机壳的形状为圆锥形。这种通风机兼有离心式和轴流式的特点,流量范围和效率均介于两者之间。

横流通风机是具有前向多翼叶轮的小型高压离心通风机。气体从转子外缘的一侧进入叶轮,然后穿过叶轮内部从另一侧排出,气体在叶轮内两次受到叶片的力的作用。在相同性能的条件下,它的尺寸小、转速低。

与其他类型低速通风机相比,横流通风机具有较高的效率。它的轴向宽度可任意选择,而不影响气体的流动状态,气体在整个转子宽度上仍保持流动均匀。它的出口截面窄而长,适宜于安装在各种扁平形的设备中用来冷却或通风。

通风机的性能参数主要有流量、压力、功率,效率和转速。另外,噪声和振动的大小也是通风机的主要技术指标。流量也称风量,以单位时间内流经通风机的气体体积表示;压力也称风压,是指气体在通风机内压力升高值,有静压、动压和全压之分;功率是指通风机的输入功率,即轴功率。通风机有效功率与轴功率之比称为效率。通风机全压效率可达90%。

通风机未来的发展将进一步提高通风机的气动效率、装置效率和使用效率,以降低电能消耗;用动叶可调的轴流通风机代替大型离心通风机;降低通风机噪声;提高排烟、排尘通风机叶轮和机壳的耐磨性;实现变转速调节和自动化调节。

2. 冷却风扇的结构及原理

2.1离心风机的基本组成

主要由叶轮、机壳、进口集流器、导流片、联轴器、轴、电动机等部件组成。旋转的叶轮和蜗壳式的外壳。旋转叶轮的功能是使空气获得能量;蜗壳的功能是收集空气,并将空气的动压有效地转化为静压。

2.2离心风机的原理

叶轮旋转产生的离心力使空气获得动能, 然后经蜗壳和蜗壳出口扩散段将部分动能转化为静压。这样,风机出口的空气就是具有一定静压的风流。

1-进气室;2-进气口;3-叶轮;4-蜗壳;5-主轴;6-出气口;7-扩散器

2.3离心风机的主要结构参数

如图所示,离心风机的主要结构参数如下。

①叶轮外径, 常用D表示;

②叶轮宽度, 常用b表示;

③叶轮出口角,一般用β表示。叶轮按叶片出口角的不同可分为三种:

前向式──叶片弯曲方向与旋转方向相同, β> 90°(90°~ 160°);

后向式──叶片弯曲方向与旋转方向相反, β< 90°(20°~ 70°);

径向式──叶片出口沿径向安装,β= 90°。

2.4离心风机的传动方式

如图所示。

3风机的选型一般步骤

1、计算确定场地的通风量

[1]风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速.所以风量计算也很简单.直接用公式Q=VF.便可算出风量.

风机数量的确定根据所选房间的换气次数.计算厂房所需总风量.进而计算得风机数量. 计算公式:N=V×n/Q 其中:N--风机数量(台), V--场地体积(m3), n--换气次数(次/时), Q--所选风机型号的单台风量(m3/h). 风机型号的选择应该根据厂房实际情况.尽量选取与原窗口尺寸相匹配的风机型号.风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧).实现良好的通风换

气效果.排风侧尽量不靠近附近建筑物.以防影响附近住户.如从室内带出的空气中含有污染环境.可以在风口安装喷水装置.吸附近污染物集中回收.不污染环境

2、计算所需总推力It

It=△P×At(N)

其中,At:隧道横截面积(m2)

△ P:各项阻力之和(Pa);一般应计及下列4项:

1) 隧道进风口阻力与出风口阻力;

2) 隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力;

3) 交通阻力;

4) 隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力.

3、确定风机布置的总体方案

根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T.

满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件:

1) n台风机并列时,其中心线横向间距应大于2倍风机直径

2) m组(台)风机串列时,纵向间距应大于10倍隧道直径

4、单台风机参数的确定

射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量流量与流速的乘积),在风机测试条件先,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力:

理论推力=p×Q×V=pQ2/A(N)

P:空气密度(kg/m3)

Q:风量(m3/s)

A:风机出口面积(m2)

试验台架量测推力T1一般为理论推力的0.85-1.05倍.取决于流场分布与风机内部及消声器的结构.风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的可用推力T,这是因为风机吊装在隧道中时会受到隧道中气流速度产生的卸荷作用的影响(柯达恩效应),可用推力减少.影响的程度可用系数K1和K2来表示和计算: T=T1×K1×K2或T1=T(K1×K2)

其中T:安装在隧道中的射流风机可用推力(N)

T1: 试验台架量测推力(N)

K1:隧道中平均气流速度以及风机出口风速对风机推力的影响系数

K2:风机轴流离隧道壁之间距离的影响系数

特定场合风机选型使用分析

仓库通风

首先,看仓储货品是否是易燃易爆货品,如:油漆仓库等,必须选择防爆系列风机。其次,看噪声要求高低,可以选择屋顶风机或环保式离心风机,(而且有款屋顶风机是风力启动,更可以省电呢。

最后,看仓库空气所需换气量的大小,可以选择最常规的轴流风机SF 型或排风扇FA型。

厨房排风

首先,对于室内直排油烟的厨房(即排风口在室内墙上),可以根据油烟大小选择SF型轴流风机或FA型排气风扇。

其次,对于油烟大,且油烟需要经由长管道,并管道里有打弯处理的厨房,强烈建议使用离心风机(4-72离心风机最为通用,11-62低噪声环保型离心

风机也很实用),这是因为离心风机的压力较轴流风机大,且油烟不经过电机,对电机的保养和换洗更容易。最后,建议油烟强烈的厨房选用以上两种方案并用,效果更佳。

高档场所通风

对于酒店、茶坊、咖啡吧、棋牌室、卡拉OK厅等高档场所通风,就不适宜用常规风机了。

首先,对于小室的通风,使通风管道连接中央通风管的房间,可以在兼顾外观与噪声基础上,选择FZY系列小型轴流风机,它体积小,塑料或铝制外观,低噪声与高风量并存。

其次,对风量与噪声要求更严格的角度说,风机箱是最好选择。箱体内部有消音棉,外接中央通风管道后可以达到减噪的显著效果。

最后,补充一下,对于健身房的室内吹风,务必选则大风量的FS型工业电风扇,而非SF型岗位式轴流风机。这是从外观及安全性方面考虑。

污水处理中风机选型应注意的问题

一、鼓风机是污水处理工程中常用的充氧设备,在污水厂风机选型时,风机厂家产品样本上给出的均是标准进气状态下的性能参数,我国规定的风机标准进气状态: 压力p0 =101. 3 kPa ,温度T0 = 20 ℃,相对湿度φ= 50 % ,空气密度ρ= 1. 2 kg/ m3 。然而风机在实际使用中并非标准状态,当鼓风机的环境工况如温度、大气压力以及海拔高度等不同时,风机的性能也将发生变化,设计选型时就不能直接使用产品样本上的性能参数,而需要根据实际使用状态将风机的性能要求,换算成标准进气状态下的风机参数来选型。

二、风机选型中应关注鼓风机出口压力影响因素的分析容积式鼓风机排气压力的高低并不取决于风机本身,而是气体由鼓风机排出后装置的情况,即所谓“背压”决定的 ,曝气鼓风机具有强制输气的特点。鼓风机铭牌上标出的排气压力是风机的额定排气压力。实际上,鼓风机可以在低于额定排气压力的任意压力下工作,而且只要强度和排气温度允许,也可以超过额定排气压力工作。对于污水处理厂而言,排气系统所产生的绝对压力(背压) 为管路系统的压力损失值、曝气池水深和环境大气压力之和,如图1 所示。若由于某种原因,如曝气头或管路堵

塞,使管路系统的压力损失增加,“背压”也会升高,于是鼓风机的压力也就相应升高;又若曝气头破裂或管路泄漏等原因,管路系统的压力损失则会减少“, 背压”便不断降低,鼓风机的压力也随之降低。综上所述,确定曝气鼓风机压力时,只需要鼓风机在标准状态下所能达到的绝对压力等于使用状态下的大气压力、曝气池水深和管路损失之和。

三、风机选型时应关注鼓风机空气流量因素在计算污水处理的需氧量时,其结果为标准状态下所需氧的质量流量qm (kg/ min) ,再将其换算成标准状态下所需空气的容积流量qv1(m3/ min) ,如果鼓风机的使用状态不是标准状态,例如在高原地区使用,则空气密度、含湿量会发生变化,鼓风机所供应的空气容积流量与标准状态是相同的,而所供空气的质量流量将减少,有可能导致供氧量不足。因此,必须计算出能供应相同质量流量的容积流量,即换算流量。在高原地区使用时,环境大气压力也会发生变化,压力比相应升高,那么,鼓风机的泄漏流量则会增大,这将导致鼓风机所供应的空气容积流量减少,也可能造成供氧量不足。因此,设计时必须考虑使用条件发生变化时各种因素的影响,以保证风机所供应的实际空气流量能够满足使用要求,并需计算出换算流量和泄漏流量。

四、风机选型应关注鼓风机供气流量的变化规律对于同一台鼓风机,在冬季和夏季,其容积流量是不会发生变化的,但因空气密度的不同质量流量会发生变化,也就是说供氧量会有所不同。鼓风机在标准状态与使用状态下的容积流量是不变的,但因为空气密度(ρ) 、含湿量等发生了变化,导致鼓风机输送至曝气池的供氧量( FOR) 在冬季温度降低时增加、夏季温度升高时降低。例如,某一污水处理厂,选用上述计算例题中的罗茨鼓风机,根据环境温度变化, 计算出鼓风机的实际供氧量,其一年的变化规律在实际运行过程中,由于进水量、水质、水温、ML S S 等参数的变化,系统需氧量( SOR) 也会发生变化在夏季,水温较高,曝气池需氧量( SOR) 增大,但鼓风机的供氧量( FOR)在减少,这是设计时考虑需氧量的最不利工况点,此时,供氧量、需氧量基本相当;在冬季,水温降低,曝气池需氧量( SOR) 减少,但鼓风机的供氧量( FOR) 增大,此时,供氧量较需氧量大出许多。这是由于冬季气温降低,空气密度增加,那么风机所供给的干空气的质量流量较标准状态大幅度增加,从而引起供氧量增加,从运行的实际测量情况来看,每年冬季曝气池的溶解氧较夏季会高出1~3mg/ L 。因此,在生产运行过程中,需要针

对这种变化对设备进行及时的调整,使鼓风机的充氧能力与实际运行中的需氧量相适应。对于罗茨鼓风机来说,使用变频器,通过改变风机转速来调整供风量是很经济实用的。不同季节曝气池需氧量( SOR) 、鼓风机供氧量( FOR) 变化规律五、结论综上所述,同一台鼓风机在不同的使用条件下,其性能的变化非常大,所以必须通过严谨的计算进行选型, 否则有可能导致生化系统的供氧不足; 另外,在冬季和夏季由于空气密度发生了变化,鼓风机所供应氧气的质量流量变化很大,冬季供氧量大大超过了需氧量,所以,应采取变频调速等措施使生化系统的溶解氧浓度保持稳定。

4. 冷却风扇的设计

4.1 通风机设计的要求

离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质

及以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转

速n,进出口宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。

对于通风机设计的要求是:

(1)满足所需流量和压力的工况点应在最高效率点附近;

(2)最高效率要高,效率曲线平坦;

(3)压力曲线的稳定工作区间要宽;

(4)结构简单,工艺性能好;

(5)足够的强度,刚度,工作安全可靠;

(6)噪音低;

(7)调节性能好;

(8)尺寸尽量小,重量经;

(9)维护方便。

对于无因次数的选择应注意以下几点:

(1)为保证最高的效率,应选择一个适当的值来设计。

(2)选择最大的值和低的圆周速度,以保证最低的噪音。

(3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。

4.2 设计步骤

4. 2.1 叶轮尺寸的决定

叶轮的主要参数:

:叶轮外径

:叶轮进口直径;

:叶片进口直径;

:出口宽度;

:进口宽度;

:叶片出口安装角;

:叶片进口安装角;

Z:叶片数

:叶片前盘倾斜角;

一.最佳进口宽度

在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口

面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有:

由此得出:

考虑到轮毂直径引起面积减少,则有:

其中

在加速20%时,即,

加速20%的叶轮图

二.最佳进口直径

由水力学计算可以知道,叶道中的损失与速度的平方成正比,即。为此

选择在一定的流量和转速条件下合适的,以使为最小。

首先讨论叶片厚度的影响。由于叶片有一定厚度;以及折边的存在,这样使进入风机的

流速从增加至,即:

用和分别表示进出口的阻塞系数:

式中为节距,为切向叶片厚度

同理

那么进出口的径向速度为:

当气流进入叶轮为径向流动时,,那么:

为了使最小,应选用适当的。总之在中间值时,使最小,即

考虑到进口20%加速系数,及轮毂的影响

求极小值,得出的优化值为:

出口直径不用上述类似的优化方法,只要选用合适的即可:

即:

也可以根据,求出

三.进口叶片角

1.径向进口时的优化值

同一样,根据为最小值时,优化计算进口叶片角。当气流为径向进口时,,且均布,

那么从进口速度三角形(令进口无冲击=)

代入值后得出值,最后得出:

(3-5)

求极值,即

(3-6a)

这就是只考虑径向进口时的优化值。

把(3-6a)式代入(3-4a)至(3-4d)式:

(3-6b)

进而当时:

(3-6c)

或者:(3-6d)

2.当叶轮进口转弯处气流分布不均匀时的优化值。

图3-4,叶片进口处速度分布不均匀,在前盘处速度大小为和,比该面上的平均值要大,设

那么

此外:

当时:

(3-7a)

进而采用近似公式:

其中为叶轮前盘叶片进口处的曲率半径。计算出来的角比小一些。如下表所示:

: 0.2 0.4 1.0 2.0 3.0 4.0

: 0.952 0.88 0.74 0.58 0.472 0.424

:

那么

(3-7b)

式中为的平均值。

图3-4叶片进口处和分布不均匀

图3-5进口速度三角

3.当气流进入叶片时有预旋,即:

由图3-5进口速度三角形可以得出:

求极值后:

(2-8a)

可以看出当气流偏向叶轮旋转方向时(正预旋),将增大,同时得到:

4.叶轮的型式不同时有所区别

一般推荐叶片进口角稍有一个较小的冲角。后向叶轮中叶道的摩擦等损失较小,此时

的选择使叶轮进口冲击损失为最小。

冲角

一般后向叶轮:

对于前向叶轮,由于叶道内的分离损失较大,过小的进口安装角导片弯曲度过大,分离损失增加。较大的安装角虽然使进口冲击损失加大,但是流道内的损失降低,两者比较,效率反而增高。

一般前向叶轮:

当时,甚至。

4.2.2离心通风机的进气装置

离心通风机的进气装置位置

离心通风机的进气形状

一.进气室

进气室一般用于大型离心通风机上。倘若通风机进口之前需接弯管,气流要转弯,使叶轮进口截面上的气流更不均匀,因此在进口可增设进气室。进气室装设的好坏会影响性能:

1.进气室最好做成收敛形式的,要求底部与进气口对齐。

2.进气室的面积与叶轮进口截面之比

一般为矩形,为最好。

3.进气口和出气口的相对位压,对于通风机性能也有影响。时为最好,时最差。

二,进气口

进气口有不同的形式。

风机选型所需风量的设计计算方法

风机选型所需风量的设计计算方法应不同地区不同客户,制造厂有义务指导客户如何选择适当风量,兹将风量选择方法,介绍如下: 首先必须了解一些已知条件: 1.1卡等于1g重0℃的水使其温度上升1℃所需的热量。 2.1瓦特的功率工作1秒钟等于1焦尔。 3.1卡等于 4.2焦尔 4.空气的定压(10mmAq)比热(Cp)=0.24(Kcal/Kg℃) 5.标准状态空气:温度20℃、大气压760mmHg、湿度65%的潮湿空气为标准空气,此时单位体积空气的重量(又称比重量)为1200g/M*3 6.CMM、CFM都是指每分钟所排出空气体积,前者单位为立方米/每分;后者单位为立方英呎/每分钟。 1CMM=35.3CFM。 2,公式推算一、得知:风扇总排出热量(H)=比热(Cp)×重量(W)×容器允许温升(△Tc) 因为:重量W=(CMM/60)×D=单位之间(每秒)体积乘以密度 =(CMM/60)·1200g/M*3=(Q/60)×1200g/M*3所以:总热量 (H)=0.24(Q/60)·1200g/M*3·△Tc 二、电器热量(H)=(P[功率]t[秒])/4.2 三、由一、二得知: 0.24(Q/60)·1200g/M*3·△Tc=(P·t)/4.2Q=(P×60)/1200·4.2·0.24·△TcQ=0.05P/△Tc (CMM)=0.05·35.3P/△Tc=1.76P/△Tc…………………………(CFM) 四、换算华氏度数为:Q=0.05·1.8P/△Tf=0.09P/△Tf (CMM)=1.76·1.8P/△Tf=3.16P/△Tf…………………………(CFM)↑TOP3, 范例例一:有一电脑消耗功率150瓦,风扇消耗5瓦,当夏季气温最噶30℃,设CPU允许工作60℃,所需风扇风量计算如下:P=150W+5W=155W;△ Tc=60-30=30Q=0.05×155/30=0.258CMM=9.12CFM(为工作所需风量)所以,应选择实际风量为Qa之风扇

风机选型常用计算 (1)(DOC)

风机选型常用计算 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风管截面积的计算: 截面积=机器总风量÷3600÷风速 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。

按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。

流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。 功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 传动方式及机械效率: A型直联传动D型联轴器联接转动F型联轴器联接转动B型皮带传动

风机选型

1) 计算风机工作风量f Q 由于外部漏风(即井口防爆门及主要通风机附近的反风门等处的漏风),风机风量Q f 大于矿井风量Q m f Q =k m Q ( 7-6) 式中 k-----漏风损失系数,风井不做提升用时取 1.1;箕斗井兼做回风井时取 1.15;回风井兼做升降人员时取1.2。 所以潘二矿井所选风机前期的工作风量f Q 为: 10803.1m 3/min ,合 180.05m 3/s ; 后期的工作风量f Q 为:15123 m 3/min ,合252.04m 3/s 。 2) 计算通风机风压 由于离心式风机的效率低,所以本设计只考虑轴流式风机。 容易时期:m sd H =m h +d h -N H (7-7) 困难 时 期 : m sd H = m h + d h + N H (7-8) 式中 m h ----矿井通风系统的总阻力,Pa ; d h ----通风机附属装置(风硐和扩散器)的阻力,Pa ;(本设计取196 Pa ) N H ----自然风压,Pa 。本设计取(98 Pa ) 故潘二矿井主通风机容易时期风压:min sd H =936.6+196-98=1034.6 Pa ; 困难时期风压:max sd H =1377.5+196+98=2176.4Pa 。 3)初选通风风机 根据上述计算得到矿井通风容易时期和矿井通风困难时期风机的f Q 和 sd H 在通风曲线图上,选出满足矿井通风要求的通风机。初选出以下二个型号的风机: 1K58-No.36和2K58-No.36。 4)求通风机的实际工况点 1.计算通风机的工作风阻 通风机的工作风阻计算公式为:容易时期 2 min min f sd sd Q H R = ; (7-9) 困难时期 2 m a x m a x f sd sd Q H R = 。 (7-10) 故潘二矿井通风机容易时期的工作风阻为0.03191 N ·s 2/m 8; 困难时期的工作风阻为0.03586 N ·s 2/m 8 。 2. 求风机的实际工况点

风机风量计算方法

风机风量计算方法 风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得 风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。 风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。

风量如何计算?要加入风机功率管道等因素,抽风空间的大小等? 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说0.1或0.5米每秒的风速多长时间可以抽100立方或500立方的风?以上的两个问题要求有个计算公 式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3.14*3600。 6、风速计算:ν=Q/(r^2*3.14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3.14*ν) 二、 1、风速为0.5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0.3m。 Q=ν*r^2*3.14*3600 =0.5*(0.3/2)^2*3.14*3600 =127.2(立方) 500/127.2=3.9(小时) 建议:风速最好确定在12m/s比较合适,提高风速后可以缩小管道的直径。

矿井主扇风机选型计算

X X煤矿主通风系统选型 设计说明书 一、XX矿主要通风系统状况说明 根据我矿通风部门提供的原始参数:目前矿井总进风量为2726m3/min,总排风量为2826m3/min,负压为1480Pa,等积孔1.46㎡。16采区现有两条下山,16运输下山担负采区运输、进风,16轨道下山担负运料、行人和回风。我矿现使用的BDKIII-№16号风机2×75Kw,风量范围为25-50m3/S,风压范围为700-2700Pa,已不能满足生产需要。 随着矿井往深部开采及扩层扩界的开展,通风科提供数据 要求:矿井最大风量Q 大:6743m3/min,最大负压H 大 :2509Pa。现 在通风系统已不能满足生产要求,因此需对主通风系统进行技术改造。 二、XX煤矿主通风系统改造方案 根据通风科提供的最大风量6743m3/min,最大负压2509Pa,经选型计算,主通风机需选用FBCDZ-№25号风机2×220Kw。由于新选用风机能力增加,西井风机房低压配电盘、风机启动柜等也需同时改造。本方案中,根据主通风机选用的配套电机功率,选用高压驱动装置。即主通风系统配置主通风机2台,高压配电柜6块,高压变频控制装置2套,变压器1台。

附图:主通风机装置性能曲线图 附件:主通风机选型计算 附件: 主扇风机选型计算 根据通风科提供数据,矿井需用风量为Q:67433/min m ,通风容易时期负压min h :1480Pa ,通风困难时期负压max h :2509Pa,矿井自然风压 z h :±30Pa 。 1、 计算风机必须产生的风量和静压 (1)、通风机必须产生的风量为 f l Q K Q ==67433/min m =112.43/m s (2)根据通风科提供数据,在通风容易时期的静压为1480Pa ,在通风困难时期的静压为2509Pa 。 2、 选择通风机型号及台数 根据计算得到的通风机必须产生的风量,以及通风容易时期和

轴流风机选型、型号、参数

轴流风机轴流风机型号、用途、性能及轴流风机参数 ——(德州万商暖通设备公司) 一、轴流风机型号名称、用途、性能 ■管道加压轴流风机 ●JSF轴流通风机(SDF) ●大风量轴流风机(JSF-Z) JSF轴流通风机是一种高轮毂比设计的新型节能管道加压风机,具有噪声低、风压适中、气动性能范围广、安装简单等特点,广泛应用于民用、商业及工业厂矿企业建筑工程的管道加压送排风系统。 JSF风机有两种叶轮结构形式,JSF-A采用模压圆柱形轮毂式叶轮,具有效率高、风压大等特点。 JSF-Z采用压铸铝合金叶轮,机翼型前掠扭曲可调叶片,具有噪声低、外形美观、铝质叶轮的防腐防爆性能优等优点,常用于机组设备冷却、机械生产线的工艺送风。 本系列风机一般为电机内置直联传动形式,也可做成电机外置皮带传动结构形式,用于输送特殊气体介质的场所,如厨房排油烟、工业热气等。 ■边墙壁式轴流风机 ●DFBZ低噪声方形壁式轴流风机 DFBZ系列风机采用高效低噪声轴流叶轮、风机专用电机直联传动,方形消音型外壳(可进一步降低风机噪声;整机制成方形,墙体预留方孔简单,安装方便)。

出风口装有铝合金自垂百叶(可防止室外雨水、灰尘和自然风向室内倒灌);具 有明显的外形美观,噪声低、运行平稳、安装牢固等优点,广泛适用于民用商用 建筑工程和厂矿企业车间的低噪声壁式排风。可根据使用场合要求制成防爆防腐 型风机。 本系列风机一般配用三相电机,按用户要求可对0.55kW以下配用单相电机。 ●DWEX边墙风机(WEX) DWEX系列风机采用先进的前掠型叶片、低噪音的外转子或内转子风机专用电机直联传动,方形外壳设计可以方便地安装在混凝土墙、砖墙或轻钢压型墙板上,方形防雨罩结构牢固,外形美观。具有噪声低、风量大、运行可靠、性能参数范围广、安装简便等特点,广泛应用于厂矿企业车间和民用、商用建筑工程的边墙壁式通风换气。根据输送介质的要求,可制成防腐、防爆型。 DWEX(WEX)系列风机一般用于边墙壁式排风,配设45°防雨罩(或特殊制造成60°)和防虫网(夜间可防止昆虫循灯光飞入车间)。可按需要制成边墙送风机型号为DWSP(WSP),配设90°防雨罩(防风、雨、尘)和防虫网(夜间可防止昆虫循灯光飞入车间)。 附件选配:重力式止回风阀(可确保车间在风机不开时保持与室外隔绝),订货 时注明。 ●DWBX板壁式轴流风机 DWBX系列风机采用高效翼型轴流式叶轮与低噪声电机直联驱动,压型金属板 式外壳,具有墙面安装简便、整机重量轻、运转平稳、外形美观。多用于轻钢结 构建筑边墙、窗框安装的壁式送排风场合。 选配附件:出风口可根据使用场合配设铝制重力式止回阀或加设防雨罩、配设防

厨房风机选型及设计计算

厨房风机选型设计及计算方法 一、通风机基础知识 通风机是用于输送气体的机械,从能量的观点来,它是把原动机的机械能转变为气体能量的一种机械。通常把产生的压力小于或等于14700Pa以下者为通风机。按型式可分为:离心通风机、轴流通风机、混流通风机。 二、通风机的主要性能参数: 流量、压力、转速、功率及效率是表示通风机性能的主要参数,称为通风机的性能参数。 A.流量:单位时间流经通风机的气体容积,称为流量(又称风量)。常用 单位为m3/s(米3/秒)、m3/min(米3/分钟)、m3/h(米3/小时)。 B.压力:通风机的压力是指升压(相对于大气的压力),即气体在通风机 压力的升高值,或者说是通风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数是指通风机的全压(它等于通风机出口与进口全压之差)。单拉为Pa(帕斯卡)。 C.转速:通风机转子旋转速度的快慢将直接影响通风机的流量、压力、 效率。单位为每分钟转数即rpm。

D.轴功率:驱动通风机所需要的功率N称为轴功率,或者说是单位时间 传递给通风机轴有能量,单位为kw(千瓦)。 E.效率:通风机在把原动机的机械能传给气体的过程中,要克服各种损 失,其中只有一部分是有用功。常用效率来反映损失的大小,效率高,即损失小。从不同的角度出发有不同效率。 三、风机与系统的匹配基本原理、常见问题及原因分析 1、系统 空气系统简单地说,包括风机及与其进口或出口或两者都连接的管路。较为复杂的空气系统包括风机、管网、空气控制调节风门、冷却管、加热管、过滤器、扩散器、消声器和导向叶片等。风机是本系给气体以能量,用以克服其它部件的流动阻力的一个组成部分。 2、系统与风机匹配的基本原理 每个空气系统对气流都有一个流动阻力和附加阻力,如果已精确地确定系统阻力,并提供了理想的进出口工况;当空气系统设定一个流量 QA时,那么选择风机时的压力就必须达到满足系统阻力的要求,当风 机安装在系统时,风机所产生的全压的一部分即静压用于克服管网系 统的阻力,全压的其余部分消耗在气流从管网出口时所具有的动能上;

风机的选型一般步骤

风机选型的一般步骤 1、计算确定场地的通风量 风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风量,所以风量计算也很简单.直接用公式Q=VF.便可算出风量. 风机数量的确定根据所选房间的换气次数.计算厂房所需总风量.进而计算得风机数量. 计算公式:N=V×n/Q 其中:N--风机数量(台), V--场地体积(m3), n--换气次数(次/时), Q--所选风机型号的单台风量(m3/h). 风机型号的选择应该根据厂房实际情况.尽量选取与原窗口尺寸相匹配的风机型号.风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧).实现良好的通风换气效果.排风侧尽量不靠近附近建筑物.以防影响附近住户.如从室内带出的空气中含有污染环境.可以在风口安装喷水装置.吸附近污染物集中回收.不污染环境 2、计算所需总推力It It=△P×At(N) 其中,At:隧道横截面积(m2) △ P:各项阻力之和(Pa);一般应计及下列4项: 1) 隧道进风口阻力与出风口阻力; 2) 隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力; 3) 交通阻力; 4) 隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力. 3、确定风机布置的总体方案 根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T. 满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件: 1) n台风机并列时,其中心线横向间距应大于2倍风机直径 2) m组(台)风机串列时,纵向间距应大于10倍隧道直径 4、单台风机参数的确定 射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量流量与流速的乘积),在风机测试条件先,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力: 理论推力=p×Q×V=pQ2/A(N) P:空气密度(kg/m3) Q:风量(m3/s) A:风机出口面积(m2) 试验台架量测推力T1一般为理论推力的0.85-1.05倍.取决于流场分布与风机内部及消声器的结构.风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量

风机风量的计算风机的选择

风机风量如何计算风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。 风量如何计算?要加入风机功率管道等因素,抽风空间的大小等? 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说0.1或0.5米每秒的风速多长时间可以抽100立方或500立方的风?以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力:R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3.14*3600。 6、风速计算:ν=Q/(r^2*3.14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3.14*ν) 二、 1、风速为0.5m/s时,计算每小500立方米风需要多长时间。假设管道直径为

风机选型计算

出风口时风速为50m/s,从单位标注上看应该是每秒50米。‘时风速’是指每小时风速为50米吗?还是每秒50米?确认后我来帮你算一下。 补充回答: 1、我们先从三个已知条件中取二个条件来验证第三个条件。 1.1、当出风口为2平方米,流速达到50m/s时,计算流量。 根据流量公式 Q=νS3600 =50×2×3600 =360000(m3/h); 1.2、当出风口为2m2,风量10立方米每分钟时,计算出风口风速。ν=Q/(S3600) =10×60/(2×3600) =0.083(m/s) 1.3、当流速为50m/s,流量为10×60立方每小时,计算出风口面积。D=√[Q4/(ν3.14×3600)] =√[600×4/(50×3.14×3600)] =0.065(m) S=(D/2)^2×3,14 =(0.065/2)^2×3.14 =0,0033(平方米) 2、从1,1计算结果上来看,要满足出风口为2平方米,流速达到50m/s 这个条件,风量需达到360000(m3/h);从1.2计算结果看,当出风口为2平方米,风量10立方米每分钟,风速只有0.083(m/s);从1.3计算结果来看,流速为50m/s,流量为10×60立方每小时,出风口面积只需0.0033平方米。 3、结论:你所列出的条件不能相互成立。 QQ:1102952818 ‘新科’ 追问 风机的全压等于静压加上动压,而动压P=ρv2/2; 可以理解为风机的出口风速与风机的动压有关,或者说有相应的比例

关系,就像上式那样的。 那么提高风机的动压,是否可以提升风机的出口风速,出口风速的提高 能否按照公式v=根号下2P/ρ(就是上面的公式来推导的)来计算风速的大小,风速的提高有没有什么限制 回答 没错,正如你所述。动压的定义是:把气体流动中所需动能转化成压力的一种形式。通俗的讲:动压是带动气体向前运动的压力。 风速的获得,是风量通过管道截积上的时间,同时压力又是保证流量的手段。风速的提高主要受制于管道的沿程摩擦阻力。 追问 那么我想要的风机就是出口风速为50m/s,动压就得有1500,那么静压这个就不太好算了,说是跟通风管道有关,我可以画出通风管路的图,你能帮我算一下静压吗?出风口的面积就是0.2平方米,这样的话流量就得10立方米每秒,36000立方米每小时了,不知道有没有比较合适的风机,还有这样的风机应该选择什么样的类型,还有风机的驱动电机能不能换成内燃机驱动的,能够比较满足工况的情况下需要多大的功率,静压先按2000算,管路比较复杂 回答 根据你提供的参数,你可以选择 型号:4-72-10C 转速:1450(r/min) 功率:55(KW) 风量:40441(m3/h) 压力:3202(Pa)

风机选型计算公式

风机选型计算公式-CAL-FENGHAI.-(YICAI)-Company One1

风机选型计算公式 1、标准状态:指风机的进口处空气的压力P=101325Pa,温度t=20℃,相对湿度φ=50%的气体状态。 2、指定状态:指风机特指的进气状况。其中包括当地大气压力或当地的海拔高度,进口气体的压力、进口气体的温度以及进口气体的成份和体积百分比浓度。 3、风机流量及流量系数 、流量:是指单位时间内流过风机进口处的气体容积。 用Q表示,通常单位:m3/h或m3/min。 、流量系数:φ=Q/(900πD22×U2) 式中:φ:流量系数 Q:流量,m3/h D2:叶轮直径,m U2:叶轮外缘线速度,m/s(u2=πD2n/60) 4、风机全压及全压系数: 、风机全压:风机出口截面上的总压与进口截面上的总压之差。用PtF表示,常用单位:Pa 、全压系数:ψt=KpPtF/ρU22 式中, ψt:全压系数Kp:压缩性修正系数PtF:风机全压,Pa ρ:风机进口气体密度,Kg/m^3u2:叶轮外缘线速度,m/s 5、风机动压:风机出口截面上气体的动能所表征的压力,用Pd表示。常用单位:Pa 6、风机静压:风机的全压减去风机的动压,用Pj表示。常用单位:Pa 7、风机全压、静压、动压间的关系: 风机的全压(PtF)=风机的静压(Pj)+风机的动压(Pd) 8、风机进口处气体的密度:气体的密度是指单位容积气体的质量,用ρ表示,常用单位:Kg/m3 9、风机进口处气体的密度计算式:ρ=P/RT 式中:P:进口处绝对压力,Pa R:气体常数,J/Kg·K。与气体的种类及气体的组成成份有关。 T:进口气体的开氏温度,K。与摄氏温度之间的关系:T=273+t 10、标准状态与指定状态主要参数间换算: 、流量:ρQ=ρ0Q0 、全压:PtF/ρ= PtF0/ρ0 、内功率:Ni/ρ= Ni0/ρ0 注:式中带底标“0”的为标准状态下的参数,不带底标的为指定状态下的参数。 11、风机比转速计算式: Ns= n Q01/2/(KpPtF0)3/4 式中:Ns:风机的比转速,重要的设计参数,相似风机的比转速均相同。n:风机主轴转速,r/min Q0:标准状态下风机进口处的流量,m3/s Kp: 压缩性修正系数PtF0: 标准状态下风机全压,Pa 12、压缩性修正系数的计算式: Kp=k/(k-1)×[(1+p/P)(k-1)/k-1]×(PtF/P)-1 式中:PtF:指定状态下风机进口处的绝对压力,Pa k:气体指数,对于空气,K= 13、风机叶轮直径计算式: D2=(27/n)×[KpPtF0/(2ρ0ψt )]1/2 式中:D2:叶轮外缘直径,m n:主轴转速:r/min Kp:压缩性修正系数PtF0:标准状态下风机全压,单位:Pa ρ0:标准状态下风机进口处气体的密度:Kg/m3ψt:风机的全压系数 14、管网:是指与风机联接在一起的,气流流经的通风管道以及管道上所有附件的总称。 15、管网阻力的计算式:Rj=KQ2 式中: Rj:管网静阻力,Pa K:管网特性系数与管道长度、附件种类、多少等因素有关,确定其值的方法通常采用:计算法,类比法和实际测定法。

风机风量的计算、风机的选择

风机风量如何计算 风机风量得定义为:风速V与风道截面积F得乘积、大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量、 风机数量得确定根据所选房间得换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时);Q——所选风机型号得单台风量(m3/h)。风机型号得选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配得风机型号,风机与湿帘尽量保持一定得距离(尽可能分别装在厂房得山墙两侧),实现良好得通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出得空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要得就是确定风量; 2、风量得确定要瞧您做什么用途,不同得用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力与局部阻力,将它们相加,乘以裕量系数,得出需要得压力; 4、查阅风机性能数据表,或者请风机厂家查找对应得风机型号即可 风机风量与风压计算功率,工业方面用,设计中,通过风量与风压计算风机得大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0、719至0、8;机械传动效率对于三角带传动取0、95,对于联轴器传动取0、98。 风量如何计算?要加入风机功率管道等因素,抽风空间得大小等? 比如说:100平方得房间我需要每小时抽风500立方,要怎么求出它得风机得功率,管道等。还有风速与立方怎么算出来得,比如说0、1或0、5米每秒得风速多长时间可以抽100立方或500立方得风?以上得两个问题要求有个计算公式,公式中得符号要注明。 一、 1、管道计算 首先确定管道得长度,假设管道直径。计算每米管道得沿程摩擦阻力:R=(λ/D)*(ν^2*γ/2)。 2、计算风机得压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3、14*3600。 6、风速计算:ν=Q/(r^2*3、14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3、14*ν) 二、 1、风速为0、5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0、3m。 Q=ν*r^2*3、14*3600 =0、5*(0、3/2)^2*3、14*3600 =127、2(立方) 500/127、2=3、9(小时)

各种局部通风机选型计算

局部通风机选型 一、风量计算 1、按瓦斯涌出量计算: 根据进风立井揭4#煤实测瓦斯涌出量为0、4 m3/min进行计算,其公式如下: Q掘=100×QCH4×K=100×0、4×2= 80m3/min 其中:Q—掘进工作面需风量, k-掘进工作面得通风系数,取2, QCH4—掘进工作面得瓦斯绝对涌出量,m3/min. 2. 按炸药量计算需风量: 式中Q炸——按爆破炸药量计算得工作需风量,m3/min; t——通风时间,取t=30min ; A——一次爆破最大炸药量,kg; S——巷道断面,m2; L-—-掘进巷道通风长度; P-—局部通风机吸入风量与掘进工作面风筒出口风量比,取P=1、1; k—--井筒淋水修正系数,取0、6; 3. 按最多工作人数计算 Q掘=4×N=4×50=200m3/min 式中 Q掘-掘进工作面实际需要得风量,m3/min ; N—掘进工作面同时工作得最多人数,取交接班时50人; 4—每人供给得最小风量,m3/min 。 4。按最低风速进行计算: Q掘=60VminSmax=60×0、3×33=594m3/min 式中 Q掘-掘进工作面实际需要得风量,m3/min ; Vmin -最低风速,按煤巷掘进工作面进行计算取0、25m/s; Smax—巷道最大断面,考虑到进风大巷联络巷配风量,断面计算取22+(22/2)=33m2。根据计算取以上1、2、3、4式中最大值进行计算,即:594m3/min。 二、局扇选型计算 1、通风阻力计算:

由于该通风系统为非负压通风,通风阻力为巷道通风阻力与风筒通风阻力之与。 1、1巷道通风阻力计算: R 巷道=R 井筒+R 进风大巷+R 集中胶带上山 R井筒=(α×L ×P/S3)×K =(0、003×310×22/26、93)×1、2 = 0、0013 R 井筒-风筒得阻力,N ×s 2÷m8; α-摩擦阻力系数 0、003 L -巷道长度 310m P-巷道周长 22m S—巷道得净断面 38、5-8、9=26、9 m 2 K-风压系数,包括局部阻力等因素,取1、2。 R进风大巷=(α×L ×P/S 3)×K =(0、011×900×19/213)×1、2 = 0、0244 R 井筒-风筒得阻力,N ×s 2÷m 8; α-摩擦阻力系数 0、011 L —巷道长度 900m P -巷道周长 19m S-巷道得净断面 21m 2 K -风压系数,包括局部阻力等因素,取1、2。 R集中胶带上山=(α×L×P/S 3)×K =(0、011×350×19/213)×1、2 = 0、0095 R 井筒-风筒得阻力,N ×s 2÷m 8; α-摩擦阻力系数 0、011 L-巷道长度 350m P -巷道周长 19m S —巷道得净断面 21m2 K-风压系数,包括局部阻力等因素,取1、2。 R 巷道=R 井筒+R 进风大巷+R 集中胶带上山 = 0、0013+0、0244+0、0095 =0、0352 N×s2÷m 8 1、2风筒通风阻力计算 1、2、1 局部通风机最大供风距离计算(按施工进风大巷2→集中胶带上山计算): L=l地面+L 井筒+L 进风大巷+L集中胶带上山 =40+310+900+350 =1600m 采用φ1000*20m 抗静电阻燃柔性风筒向工作面通风,工作面有效风量按594m3/m in 进行计算。 1、2 、2 风筒风阻计算 风筒接头得采用钢圈捆扎接法。风筒得风阻包括摩擦风阻与接头、拐弯等局部阻力。 (1)沿程摩檫阻力计算 R摩=6、5×α×L/D 5

风机选型的计算公式 风机流量及流量系数

风机选型的计算公式风机流量及流量系数 [字号:大中小] 2013-06-19 阅读次数:9415 1、标准状态:指风机的进口处空气的压力P=101325Pa,温度t=20℃,相对湿度φ=50%的气体状态。 2、指定状态:指风机特指的进气状况。其中包括当地大气压力或当地的海拔高度,进口气体的压力、进口气体的温度以及进口气体的成份和体积百分比浓度。 3、风机流量及流量系数 流量:是指单位时间内流过风机进口处的气体容积。 用Q表示,通常单位:m3/h或m3/min。 流量系数:φ=Q/(900πD22×U2) 式中:φ:流量系数 Q:流量,m3/h D2:叶轮直径,m U2:叶轮外缘线速度,m/s(u2=πD2n/60) 4、风机全压及全压系数: 风机全压:风机出口截面上的总压与进口截面上的总压之差。用PtF表示,常用单位:Pa 全压系数:ψt=KpPtF/ρU22 式中, ψt:全压系数Kp:压缩性修正系数PtF:风机全压,Pa ρ:风机进口气体密度,Kg/m^3 u2:叶轮外缘线速度,m/s 5、风机动压:风机出口截面上气体的动能所表征的压力,用Pd表示。常用单位:Pa 6、风机静压:风机的全压减去风机的动压,用Pj表示。常用单位:Pa 7、风机全压、静压、动压间的关系: 风机的全压(PtF)=风机的静压(Pj)+风机的动压(Pd) 8、风机进口处气体的密度:气体的密度是指单位容积气体的质量,用ρ表示,常用单位:Kg/m3 9、风机进口处气体的密度计算式:ρ=P/RT 式中:P:进口处绝对压力,Pa R:气体常数,J/Kg·K。与气体的种类及气体的组成成份有关。 T:进口气体的开氏温度,K。与摄氏温度之间的关系:T=273+t 10、标准状态与指定状态主要参数间换算: 流量:ρQ=ρ0Q0 全压:PtF/ρ= PtF0/ρ0 内功率:Ni/ρ= Ni0/ρ0 注:式中带底标"0"的为标准状态下的参数,不带底标的为指定状态下的参数。 11、风机比转速计算式: Ns=5.54 n Q01/2/(KpPtF0)3/4 式中: Ns:风机的比转速,重要的设计参数,相似风机的比转速均相同。 n:风机主轴转

矿井主扇风机选型计算

矿井主扇风机选型计算文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

X X煤矿主通风系统选型 设计说明书 一、XX矿主要通风系统状况说明 根据我矿通风部门提供的原始参数:目前矿井总进风量为 2726m3/min,总排风量为2826m3/min,负压为1480Pa,等积孔㎡。16采区现有两条下山,16运输下山担负采区运输、进风,16轨道下山担负运料、行人和回风。我矿现使用的BDKIII-№16号风机 2×75Kw,风量范围为25-50m3/S,风压范围为700-2700Pa,已不能满足生产需要。 随着矿井往深部开采及扩层扩界的开展,通风科提供数据要求:矿井 最大风量Q 大:6743m3/min,最大负压H 大 :2509Pa。现在通风系统已不能满 足生产要求,因此需对主通风系统进行技术改造。 二、XX煤矿主通风系统改造方案 根据通风科提供的最大风量6743m3/min,最大负压2509Pa,经选型计算,主通风机需选用FBCDZ-№25号风机 2×220Kw。由于新选用风机能力增加,西井风机房低压配电盘、风机启动柜等也需同时改造。本方案中,根据主通风机选用的配套电机功率,选用高压驱动装置。即主通风系统配置主通风机2台,高压配电柜6块,高压变频控制装置2套,变压器1台。

附图:主通风机装置性能曲线图 附件:主通风机选型计算 附件: 主扇风机选型计算 根据通风科提供数据,矿井需用风量为Q:67433/min m ,通风容易时期负压 min h :1480Pa ,通风困难时期负压max h :2509Pa,矿井自然风压z h :±30Pa 。 1、 计算风机必须产生的风量和静压 (1)、通风机必须产生的风量为 f l Q K Q ==67433/min m =3/m s (2)根据通风科提供数据,在通风容易时期的静压为1480Pa ,在通风困难时期的静压为2509Pa 。 2、 选择通风机型号及台数 根据计算得到的通风机必须产生的风量,以及通风容易时期和通风困难时期的风压,在通风机产品样本中选择合适的通风机。可选用FBCDZ-8-№25轴流通风机2台,1台工作,1台备用。风机转速为740r/min 。 3、 确定通风机工况点 (1) 计算等效网路风阻和等效网路特性方程式 通风容易时期等效网路风阻 21min /s f R H Q ==1480/=(N ·S2)/m 8 通风容易时期等效网路特性方程式 h= 通风困难时期等效网路风阻

离心式通风机设计和选型手册范本

离心式通风机设计 通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。 (4)大时选择最大的值。 §1 叶轮尺寸的决定

图3-1叶轮的主要参数: 图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角; :叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出:

风机如何选型

风机如何选型 风机的选型一般按下述步骤进行: 1、计算确定隧道内所需通风量; 2、计算所需总推力It It=P×At(N) 其中,At:隧道横截面积(m2) P:各项阻力之和(Pa); 一般应计及下列4项: 1)、隧道进风口阻力与出风口阻力; 2)、隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力; 3)、交通阻力; 4)、隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力; 3、确定风机布置的总体方案根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T。 满足m×n×T》Tt的总推力要求,同时考虑下列限制条件: 1)、n台风机并列时,其中心线横向间距应大于2倍风机直径; 2)、m组(台)风机串列时,纵向间距应大于10倍隧道直径; 4、单台风机参数的确定射流风机的性能以其施加于气流的推力来恒量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量与流苏的乘积),在风机测试条件下,进口气流的动量为零,所以可以计算出在测试条件下, 风机的理论推力:理论推力=r×Q*V=rQ2/A(N)

r:空气密度(kg/3) Q:风量(m3/s) A:风机出口面积(m2) 试验台架量测推力T1 一般为理论推力的0.85-1.05倍。取决于流场分布与风机内部及消声器的结构。风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的可用推力T,这是因为风机吊装在隧道中时会收到隧道中气流速度产生的卸荷作用的影响(柯达恩效应),可用推力减少。影响的程度可用系数K1和K2来表示: T=T1×K1×K2或者T1=T(K1*K2) 其中:T:安装在隧道中的射流风机可用推力(N) T1:试验台架量测推力(N) K1:隧道中平均气流速度以及风机出口风速对风机推力的影响系数 K2:风机轴流离隧道壁之间距离的影响系数

离心风机选型_设计

引言 离心通风机在我国工业上的应用越来越广泛,涉足水泥、冶金、化工、电力等诸多领域。其主要的应用包括输送气体、排除废气、输送物料、冷却介质等。离心通风机的选型(简称选型)是风机生产流程中关键性的一步。 1 离心通风机选型 传统选型方法简单,但计算过程复杂、繁琐,结果易出偏差,只有少数技术精英凭借经验才能完全掌握。计算机的出现给选型带来一场质的革命,选型的程序化把大量繁杂的运算过程留给计算机,把简单、便捷、友好的界面留给使用者,一般的风机技术人员、销售人员都可以轻松掌握。高端的选型大众化,在应用领域通过笔记本电脑、互联网由厂内扩展到设计院、风机招标现场,把现代风机市场运作理念发挥得淋漓尽致。 2 离心通风机选型过程 要选型,首先要确定气体的流量、压力、密度,这是离心通风机选型过程的三要素。 气体的密度(工况密度)是选型过程中最为关键的第一要素,若未给定密度则需根据风机的工况环境,如海拔、当地大气压、工作温度、气体的标密来计算或换算出工况气体的密度。 气体的压力(工况全压)是风机选型的第二要素,根据给定或计算出的工况密度,将工况压力换算为风机标准状态下压力。如风机带进气箱或消声器,需考虑其压力损失,可经过计算或估算,估算损失一般在100~300Pa之间。 气体的流量(工况容积流量)是选型过程的第三要素,如系统要求气体的质量流量(保证气体的排放量或要求气体中的某种介质的含量),则需要将气体质量流量换算为风机标准状态下的容积流量。如系统要求气体的容积流量(保证气体的容积流量),则风机标准状态下的容积流量与工况下的容积流量相同。 比转数计算是风机选型过程中的重要步骤,是判断风机选用具体模型的主要依据。将换算到风机标准状态下的性能参数(容积流量,全压)和转速代入比转数的计算公式,根据不同的转速可求出不同的比转数,一阶比转数是单吸风机的依据;二阶比转数是双吸风机的依据。 到这里,风机选型的第一部分结束,求比转数是第一部分的关键所在。

相关主题
文本预览
相关文档 最新文档