当前位置:文档之家› 光纤通信实验指导书

光纤通信实验指导书

光纤通信实验指导书
光纤通信实验指导书

光纤通信原理实验教程

(第二版)

唐修连编著

江苏盛泰信通科技发展有限公司

光纤通信原理实验教程

(第二版)

唐修连编著

江苏盛泰信通科技发展有限公司

前言

为了配合有关《光纤通信系统原理》等课程的教学和实验需要,我们研制开发的光纤通信系统原理综合实验箱。共收入了8个实验,如果实验室配备有光纤通信常用的仪表,还可在此基础上开设更复杂的实验7个。

与该书配套的光纤通信系统原理综合实验箱,置于一个便携式的实验箱内,该系统的突出优点有:

1、该实验箱采用模块化设计,波形测试点多,调节点多,有利于学生动手操作实验。

2、系统采用硬件和软件、分列元件和集成器件相结合,有利于对原理的理解。

3、该实验箱还可根据实验者自己的设计来控制,组合各模块完成不同的实验项目。

本实验教程由同完成,由于水平有限,书中缺漏难免,欢迎使用者批评指正。

编著者

2000.11

目录

第一章光纤通信实验系统总体介绍 (1)

第二章光纤通信基础实验 (10)

实验一、光纤通信实验系统信号发生器单元实验 (10)

实验二、中央处理器(CPU)单元实验 (15)

实验三、码型变换(CMI)实验 (23)

实验四、光发送系统实验 (29)

实验五、光接收系统实验 (37)

实验六、PCM话路光传输系统实验 (43)

实验七、变速率数据光传输实验 (46)

实验八、模拟和数字光纤系统综合实验 (51)

第三章光纤通信加强实验 (57)

实验九、数字光发送接口指标测试实验 (57)

1、消光比EXT测试

2、平均发送光功率

实验十、数字光接收接口指标测试实验 (60)

1、灵敏度测试

2、动态范围测试

实验十一、PCM话路特性测试实验 (62)

实验十二、光纤传输特性测量实验 (63)

1、光纤损耗的插入测试法

2、多模光纤带宽的时域测试法

实验十三、光纤无源器件特性测试实验 (65)

1、光纤活动连接器

2、Y型分路器

3、星型耦合器

实验十四、图像光纤传输系统实验........ (66)

实验十五、波分复用(WDM)光纤通信系统实验 (67)

第四章常用光纤通信仪表简介 (69)

5.1 光功率计 (69)

5.2 稳定光源 (70)

5.3 光时域反射仪(OTDR) (74)

5.4 误码测试仪 (75)

5.5 光纤熔接机 (79)

5.6 PCM终端测试仪 (81)

第五章光纤通信实验原理电路 (83)

第一章光纤通信实验系统总体介绍

一、概述

本实验系统根据光纤通信系统原理的主要知识点进行实验,结合电子技术和微处理器技术,针对光纤通信系统的典型应用可进行8项实验或示教,实验内容重点突出,内容丰富,有重点的培养实验者的动手能力。实验系统总方框图如图1所示,它由以下7个部分单元电路组成:

1、信号发生器单元

2、模拟接口单元

3、数字接口单元

4、信号处理单元

5、中央CPU控制单元

6、光发端机单元

7、光接收机单元

每个单元电路的详细说明将在后面的实验中逐一介绍。图2是实验系统的电原理图。图3是实验系统元件分布图。

图1 实验系统总方框图

二、光纤传输系统介绍

(俗称玻璃)制成的良好的通信媒介,其优点是尺光纤是由高纯度的SiO

2

寸小、质量轻,其纤芯典型尺寸多模光纤为50μm或62.5μm,比人的头发丝还小。抗电磁干扰保密性好,节省了大量的金属。最主要的优点有两点,一是损耗小传输距离远,损耗典型值0.1dB/KM,与之对应同轴电缆5dB/KM。二是容量大,目前一根光纤上的容量达320Gbps。

光纤通信是以光为载波,以光纤为传输媒介的一种通信方式。光载波的产生是由半导体光源产生的,半导体光源的体积小,常温下连续工作,寿命长,与我们日常生活中熟悉的光源如白炽灯、日光灯、发光二极管(如红色、绿色、黄色等)不同属于红外光源,尤其半导体激光源的特性更好,发光功率大,传送距离远。光源的发光波长应与光纤的三个低损耗窗口对应,它们分别为以0.85μm,1.30μm,1.55μm为中心、1.30μm为零色散窗口,1.55μm为最低损耗窗口。

光纤传输系统的基本框图如图4 所示

图4 光纤传输系统方框图

由图4 知光纤传输系统包括光发端机,光收端机,光纤组成。光发送机完成将电信号调制到光载波上去,采用强度调制(IM),光接收机完成光信号的解调,采用直接检测(DD)属于非相干解调,光载波由半导体光源产生,直接检测由半导体光检测器将光信号转换成电流信号。

光纤由光纤连接器与光发端机和光收端机相连其连接关系由下面图 5 所示。

图5 光发、收端机与光纤连接器连接示意图

在连接过程中不能蛮劲使用,将方向、缺口对准,将插头插入底座然后旋紧,保护套环即可,光纤的弯曲弧度不能太小,以免折断光纤,插头前端为陶瓷芯子易碎切勿弄脏,碰碎。

三、光纤通信的优越性

1.最小的传输损耗

2.极宽的传输带宽

3.光缆外形直径很小

4.光缆重量很轻

5.与常规同轴电缆相比,光缆在安装时更易弯曲

6.极不易受电磁场的干扰

7.光缆材料更易获得

8.最低的泄漏,最高的安全性

9.对高温和化学物品的最大承受力

四、光纤的类型

1.多模光纤

多模光纤是允许多于一个模式光波传输的光纤。模式的数目取决于芯径、数值孔径(接收角)、折射率分布特性和波长。 2.单模光纤

当入射光波长大于截止波长时,光纤将只能传输一个基模的光波。这种只允许一种模式光波的传输的光纤叫做单模光纤。一般芯径小于10μm 。

图6 光纤的类型

五、光纤活动连接器的类型及操作注意

1.光纤通信产品中使用的活动连接器类型一般可分为:

⑴ FC/PC型

⑵ FC/APC型

⑶ SC或ST型

上述三种类型的光纤活动连接器均可作为光输入/输出端口。

2.光纤活动连接器操作注意事项:

⑴连接器应放置于清洁场地,不用时应盖好保护帽。

⑵在插拔连接器时,严禁用力拉扯光缆、光纤,应手握端头操作。

⑶插针体和套筒要保持干净,如发现有污物,应用无水乙醇将其清洁干净。

⑷本实验箱中所使用的光纤活动连接器是ST型。

3.光纤通信产品中使用的活动连接器外形如图7所示。

5

图 7 活动连接器外形图

六、系统实验项目及建议时数安排

实验系统在CPU中央控制单元的管理控制下,实验者可根据自己的设计进行8项实验。

1、信号源和信号处理实验0.5学时

2、中央集中控制单元实验0.5学时

3、码型变换实验1学时

4、光发送系统实验1学时

5、光接收系统实验1学时

6、电话光传输系统实验1学时

7、可变速率数据光传输系统实验1学时

8、综合实验系统实验2学时

第二章光纤通信基础实验

实验一光纤通信原理实验系统信号发生器实验

一、实验目的

1、熟悉该光纤通信原理实验系统的电路组成。

2、熟悉光纤通信系统发送端信号产生的方法。

二、实验仪表

1、直流稳压电源一台

2、20MHz示波器一台

3、三用表一台

三、实验电路工作原理

时钟信号是该光纤实验系统电中的重要主成部分。其方框图与电原理图分别见1-1与图1-2所示。图1-3是伪随机码产生电路。

图1-1 信号发生方框图

各点波形说明如下:

TP101:2.048MHz的方波信号,作为PCM编译码电路的主时钟信号。

TP102:1.024MHz的方波信号

TP103:128KHz的窄脉冲信号

TP104:8KHz的窄脉冲信号,作为PCM编译码电路的帧同步信号和脉冲波产生电路的波形。

TP105:2KHz或1KHz的方波信号,作为正弦波产生电路的输入信号。

TP107:8KHz或4KHz的方波信号,作为三角波产生电路的输入信号。

TP109:64KHz的方波信号。

TP110:伪随机码产生电路输出波形,码型为000011101100101。

四、实验内容:

1、用示波器测出各测量点波形,并对每一测量点的波形加以分析。

2、分析伪随机码发生器的工作原理并画出输出波形。

五、实验报告要求:

1、分析电路的工作原理,叙述其工作过程。

2、根据测试的实验数据,现象与波形。写出分析的结果与实测的是否一致。

实验二 CPU中央处理控制单元系统实验

一、实验目的

1、了解单片机在光纤通信系统中的应用。

2、了解该单元电路对整个光纤实验系统的管理与控制过程。

3、熟悉键盘操作方法。

二、实验仪器

同实验一

三、实验电路工作过程

(一)方框图

见图2-1所示,它由CPU单元,显示控制接口电路、数字控制接口电路,模拟控制接口电路与键盘输入电路等五个部分组成。图2-2是它的电原理图。

图2-3是CPU与输入键盘、显示电路方框图。

图2-1 CPU中央处理控制器方框图

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

光纤通信实验材料

实验一半导体激光器P-I特性测试实验 一、实验目的 1、学习半导体激光器发光原理和光纤通信中激光光源工作原理 2、了解半导体激光器平均输出光功率与注入驱动电流的关系 3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法 二、实验内容 1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线 2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率 三、实验仪器 1、ZY12OFCom23BH1型光纤通信原理实验箱1台 2、FC接口光功率计1台 3、FC-FC单模光跳线 1根 4、万用表1台 5、连接导线 20根 四、实验原理 光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。 光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。第四,光源的输出光谱不能太宽以利于传输高速脉冲。第五,光源应便于调制,调制速率应能适应系统的要求。第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。第七,光源应该省电,光源的体积、重量不应太大。 作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。 本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。 半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 半导体激光器的特性,主要包括阈值电流Ith、输出功率P0、微分转换效率η、峰值波长λp、光束发散角、脉冲响应时间t r、t f等。除上述特性参数之外,有时也把半导体激光器的工作电压、工作温度等列入特性参数。

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信系统实验指导书

光纤通信系统实验指导书 光纤通信系统实验指导书 桂林电子科技大学信息科技学院 二零零九年三月 目录 实验一数字光纤传输测试系统实验 (2) 实验二SDH点对点组网2M配置实验 (9)

实验三SDH 链型组网配置实验 (17) 实验四SDH 环形组网配置实验 (27) 实验一数字光纤传输测试系统实验 概述 光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。 光纤是光导纤维的简称。光纤通信是以光波为载频,以光导纤维为传输媒质

的一种通信方式。光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。 通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。 光纤通信有许多优点:首先它有极宽的频带。目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它 。 在地球上有取之不尽,用之不竭的光纤原材料—SiO 2 光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。 波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。 光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。 光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。其电/光和光/电变换的基本方式是直接强度调制和直接检波。实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号、正弦波或三角波信号),也可以是数字信号(如计算机数据、PCM编码信号、数字信号源信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源 输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电信号处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。 根据所使用的光波长、传输信号形式、传输光纤类型和光接收方式的不同,光纤通信系统可分成:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

光纤光学大学物理实验讲义

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

光纤通信实验报告思考题

1、不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区和反常色散区传输后分别具有什么样的啁啾?为什么? 答:不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区后具有正啁啾和反常色散区传输后具有负啁啾。无啁啾的脉冲工作在正常色散区后,低频比高频传播得快,造成脉冲后沿传播速度比前沿传播速度快,从而产生正啁啾。无啁啾的脉冲工作在反常色散区后,高频比低频传播得快,造成脉冲前沿传播速度比后沿传播速度快,从而产生负啁啾。 2、低峰值功率的脉冲(不考虑非线性效应)在什么情况下,经过光纤传输会产生压缩效应? 答:脉冲要发生压缩的情形,应满足 2C<0,且。但一般的半导体激光器光源在直接强度调制时产生的光脉冲是负啁啾C<0,因此必须采用β2>0的单模光 1、传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要什么类型的光纤光栅?其工作原理是什么? 传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要啁啾光纤光栅。啁啾光纤光栅(Chirped FBG)的光栅周期(空间频率)随光纤长度有变化的光纤布拉格光栅,主要用于光纤色散补偿。 其工作原理是,普通单模光纤在1550nm波长时为色散值D>0(反常色散区)。光脉冲的高频分量(蓝移)较低频分量(红移)传输得快,导致脉冲展宽。经啁啾光纤光栅传输以后的入射光中的长波长分量(低频)位于脉冲后沿,使其在光栅的起始端就反射,而短波长分量位于脉冲的前沿,使其在光栅的末端才被反射,于是就补偿了色散效应,使脉冲宽度被压缩甚至还原。 1、有两个脉冲,其宽度不同,但峰值功率相同,通过相同的光纤后(不考虑光纤的色散),由自相位调制效应所展宽的光谱是否相同? 答:不相同。脉冲频谱的展宽程度还与脉冲形状有关。 2、脉冲在光纤中的自相位调制效应跟什么因素有关系?如何增强自相位调制效应? 答:自相位调制效应与输入光功率、传输距离、材料非线性折射率、光纤的型号、信号光的波长、输入脉冲的形状等因素有关。信道设置在非零色散波长附近将有利于增强自相位调制效应的影响;通过增强输入光功率的方法来增加自相位调制效应的影响;增加光纤传输距离来增大自相位调制效应;使用高非线性折射率的材料。

光纤通信实验报告

实验1 数字发送单元指标测试实验 一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验一

实验报告 课程名称无源光实验 实验项目实验1.1、实验1.2、实验1.3、 实验1.4、实验1.5

第一部分无源光实验 实验1.1 单模光纤特性测量 一、实验目的 1、能够熟练测量光的特性 2、掌握单模光纤特性 二、实验仪器 1、 ZH7002型光纤通信多功能综合实验系统一台 2、光功率计一台 3、单模光纤跳线一根 三、实验原理 光纤是光波的传输媒质,按光纤中传输模式的多少,光纤可分为多模光纤和单模光纤两类。在单模光纤中只能传输一个模式,多模光纤则能承载成百上千个模式。 一般的光纤通信系统中,对光纤的要求为:(1)低传输损耗;(2)高带宽和高数据传输速率;(3)与系统元件(光源、光检测器等)的耦合损耗低;(4)高的机械稳定性;(5)在工作条件下光和机械性能的退化慢;(6)容易制造。 单模光纤的结构、参数和各组成部分的作用与多模光纤是类似的,它们的不同之处在于:单模光纤有模场直径和截止波长两个特殊参数。单模光纤的典型几何参数如表1所示。 表1 单模光纤的典型几何参数 参数指标 模场直径,μm (8.6~10.5)±0.7 包层直径,μm 125±1 芯/包层同心度误差,μm ≤0.8 包层不圆度,%≤2%

单模光纤以其损耗低、频带宽、容量大、成本低、易于扩容等优点,作为一种理想的信息传输介质,得到了广泛的应用。 四、 实验步骤 准备工作:将实验箱左上端的跳线开关KE01和KJ02都设置在“5B6B ”工作方式下(右端:2-3),将5B6B 编码模块中的输入数据选择开关KB01设置在“m 序列”工作方式(右端:2-3),KX02设置在“正常”位置;用发送波长为1310nm 和1550nm 的光纤发送器作为光源;并准备好尾纤,为保证测试精度,测量前先用酒精棉将光纤头清洁一下。 1、 弯曲损耗测量 (1) 将单模光纤跳线的一端接入光纤收发模块中激光收发器UE01的发送端,然后 用光功率计测量该光源的光功率并记录结果。 1310nm :-8.06dBm 1550nm :-3.48dBm (2) 人为地抖动跳线,定量地观察光功率值的波动范围。(为什么变化比较小?) 1310nm :-8.03dBm~-8.12dBm 1550nm :-3.61dBm~-3.89dBm 因为光纤具有高机械稳定性。 2、 不同波长(1310nm 与1550nm )的光信号在光纤中衰减量的测量(连接方法可 参考图1.2) 1310/1550nmLD ZH7002 跳线 连接器 跳线 光功率计 图1.2 跳线连接示意图 (1) 将跳线的一端接到光发送波长为1310nm 的激光发送器的输出端,用光功 率计测出该点的光功率13p ,在此跳线的另一端通过连接器再接入一根跳 线,测光功率'13p ,计算出差值' 131313d p p =-。(注:此差值中包含有连 接器的损耗) 13p =-8.11dBm '13p =-8.79dBm ' 131313d p p =-=0.68dBm (2) 将跳线的一端接到光发送波长为1550nm 的激光发送器的输出端,用光功

光纤通信实验报告

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A203 实验时间 :2016年 6月 21日 一、实验目的 1、 了解光端机的工作原理 2、 掌握数字光发送机的功率测量方法 3、 理解平均光功率的含义 二、实验原理 光端机的平均发送光功率是指在正常工作条件下光端机输出的平均光功率,即光源尾纤输出的平均光功率。平均发送光功率指标与实际的光纤线路有关,在长距离光纤数字通信系统中,要求有较大的平均发送功率;在短距离的光纤数字通信系统中,要求较小的平均发送光功率。设计人员应根据整个光纤通信系统的经济性、稳定性和可维护性全面考虑该指标,提出合适的数值要求,而不是越大越好。 平均发送光功率测试框图如图一所示。 图一 光发送端光功率测试框图

说明: 1)平均光功率与PCM信号的码型有关,NRZ码与50%占空比的RZ码相比,其平均光功率要大3dB。 2)光源的平均输出光功率与注入它的电流大小有关,测试应在正常工作的注入电流条件下进行。 实验平台中,可以选择系统自身产生的2M伪随机序列来测试平均光功率,系统中PN序列的长度只有24-1,即15位。 三、实验设备、仪器及材料 光功率计、HD-GX-Ⅲ型光纤通信实验箱、光纤跳线 四、实验步骤(按照实际操作过程) 1、用短接帽将跳线XP401的1、2两脚连接,这样选择传输的是系统内部产生的2M伪随机序列。如果将 2、3两脚连接,则传输的将是外部输入的2M数据。 2、选择光发模块甲。用短接帽将跳线XP500的1、2脚相连,开关KS501选择传输数字信号。 3、从发送模块甲的光源组件连接器S中取出保护塑料套,用光纤跳线分别插入发送端连接器S与光功率计的输入连接器插头,连接光发送端的光输出与光功率计。 4、测试系统建立后,给实验平台加电,按复位键后,从键盘输入PN,以控制系统产生2M信号。从光功率计上读出平均光功率值。 5、从键盘输入方波或CMI码,测试不同的数字信号驱动光源时,所产生的平均光功率。思考一下他们为什么有差别?

光纤通信实验六报告

光电综合设计报告 学号:姓名: 一、课题6: 1、课题要求及技术指标 ①课题名称: EDFA 设计 ②课题任务: 采取不同结构和泵浦波长设计一个EDFA,结构分为同向泵浦,反向泵浦,双向泵浦三类。 ③技术指标: 可选泵浦光源波长为980nm 和1480nm;泵浦光源的功率在10~20dBm,测试输入信号功率为-20dBm。 ④课题要求: 1.在上述条件下要求EDFA 噪声指数小于4.5dB。 2.在满足一定条件下,最大输出功率可达到18dBm,最大增益可达到25dB(两者不要求同时满足)。 3.需要分别比较三种结构下的EDFA 的以下特性,并根据比较结果优化设计: (1)掺铒光纤长度的优化,需要从输出功率、噪声指数、增益三个方面验证; (2)泵浦光源波长(可选择980nm 和1480nm)的优化,需要从输出功率、噪声指数、增益三个方面验证; 4.给出设计图和性能参数比较图,参数取点不少于10 个,参数应具有合理性和可行性。 2、课题分析及设计思路 ①课题分析: 铒纤长度在4~15m 之间取值。 仿真模型中,掺铒光纤选用Default/Amplifiers Library/Optical/EDFA/Erbium Doped Fiber;泵浦光源选用Default/Transmitters Library/Optical Sources/Pump Laser;泵浦光耦合器采用Default/WDM Multiplexers Library/Multiplexers/ Ideal Mux。 ②设计思路: 设计参考反向泵浦EDFA 结构图,参考图如下:

根据下述实验原理,可知同向EDFA Pump Laser 位于与CW Laser 同向的合波器前,而光纤输出端则不设置。同理,双向EDFA就是两侧均放置了Pump Laser。 ③实验原理:掺铒光纤放大器EDFA 1、EDFA的结构和工作原理 图 1 给出了双向EDFA 的原理性光图,其主体是泵浦源和掺铒光纤(EDF)。泵浦源用来提供能量;EDF 作为有源介质,提供反转粒子;波分复用器(WDM)的作用是将泵浦光和信号光混合,然后送入EDF 中,对它的要求是能将信号有效地混合而损耗最小;光隔离器(ISO)的作用是防止反射光对EDFA 的影响,保证系统稳定工作;滤波器的作用是滤除EDFA 的噪声,提高系统的信噪比(SNR),在两级宽带EDFA 中,它还起到增益平坦的作用。EDFA 的泵浦过程需要使用三能级系统(如图 2.3 所示)。实际上基态能级、亚稳态能级和泵浦能级受斯托克斯分裂(Stock Splitting)和热效应的影响,形成了一个近似联系的能带。由于亚稳态能级和基态能级具有一定的宽度,因此EDFA 的放大效应具有一定波长范围。在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er3 +离子抽运到激发态,处于激发态的Er3 + 离子又迅速无辐射地转移到亚稳态。由于Er3 +离子在亚稳态能级上寿命较长,因此很容易在亚稳态与基态之间形成粒子数反转。当信号光子通过掺铒光纤时,与处于亚稳态的Er3 +离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺铒光纤传输的信号光子迅速增多,产生信号放大作用。Er3 + 离子处于亚稳态时,除了发生受激辐射和受激吸收以外,还要产生自发辐射(ASE),它造成EDFA 的噪声。图1为EDFA 双向泵浦结构示意图。

相关主题
文本预览
相关文档 最新文档