当前位置:文档之家› 美国Asylum Research原子力显微镜

美国Asylum Research原子力显微镜

美国Asylum Research原子力显微镜
美国Asylum Research原子力显微镜

美国Asylum Research原子力显微镜MFP-3D-SA标准型原子力显微镜

简易中文操作手册

(第一版)

杭州葛兰帕科技有限公司

AC Mode in Air轻敲模式(大气)

1.开启原子力显微镜控制器、电脑以及减震台。检查各个系统是否正常启动。

2.进入WindowsXP系统,启动Igor pro软件,在Igor pro软件的下方,开启视频窗口,

由原子力显微镜CCD提供光学观察窗口,为观察样品、选取下针位置以及“对光作业”

提供条件。

※对光作业指的是将定位激光正确的对准到探针悬臂表面合适位置,确保力学信号反馈的准确度。

3.开启位于控制器上的激光光源及为样品提供照明用的氙灯光纤光源。

氙灯光源亮度可以根据实际需求自由设定,以可以准确观察样品以及探针为标准。在正式进入原子力显微镜扫描过程中,可以将其关闭,以延长其灯泡使用寿命。

4.装针作业:

●将探针夹持器cantilever holder按照呈三角形排布的定位小球位置卡入探针台

cantilever holder stand上。

●然后用螺丝启子把cantilever holder上的螺丝松开3~4圈,不可过松,防止螺丝

滑脱。

●打开探针盒,用镊子拾取探针,注意夹取探针时的角度,要保住垂直夹取,夹取探

针的位置也要中间偏前段一点,为将探针尾部推入螺丝夹具口提供足够操作空间。

●探针插入夹具口后,根据实际情况,再精细调整位置,使其大致处于正中间位置。

最后用大拇指和中指夹住螺丝刀,进行旋紧。使用两个手指的目的,就是确保力量

不要太大,防止夹碎探针或者把螺丝螺纹破坏。

●拧紧的原则是感觉有阻力后再拧1/4圈,(要视具体情况定)再用镊子轻轻触碰探

针侧面,看其是否因为没有夹紧而发生移动。

●装入朝上放置的扫描器头部圆形槽口,注意定位小球的位置。

5.样品台准备工作

●拿起MFP-3D原子力显微镜扫描器头部。露出原子力显微镜平板式扫描板上的样

品台。

●将承载有样品的载玻片或者功能模块(功能模块具体安装另行说明)放入样品台大

致正中位置。

●用提供的两块磁铁分别吸住载玻片两端,起到固定作用。

●将扫描器头部放回,注意持握手法,用手托住后端,先将两个后脚放入样品台上的

孔洞位置,然后逐步放下前段的那个支脚,主要是防止装有探针的头部因为与样品

间距不够,直接砸在样品上,导致探针损坏。

●三个支脚之间的高低需要重视,一般先将两个后脚之间调平,前脚稍高于后脚,以

便最后的下针调整动作。可以通过使用水准仪或者在隔音柜背后贴一张白纸,通过

机器上下间缝,还是可以比较容易的校对平衡。

●前脚放下去的时候注意样品和针尖之间的距离,确认放下去不会碰到后,再调整前

脚高度,间隙调整到大致1mm左右。

●若后脚明显偏高,需先调高前脚,再提高后脚,然后再调低前脚。

6.对光作业

●通过扫描器头部后面CCD反射镜上的两个旋钮,上下左右调整运动来寻找到探针,

使其出现在视频窗口,调节扫描器头部后反射镜附近的聚焦旋钮,对探针聚焦以使

探针清晰。

●调整扫描器头部上的LDx及LDy旋钮,一边观察视频窗口,一边观察SUM值大

小,使Sum值达到Max。

●SUM值最大后,调PD旋钮(头部左面),使Deflection趋于0。(调Deflection

时,若Sum值发生偏移变化太大,就必须重新调调整LDx及LDy旋钮,使Sum

值达到Max。否则进行thermal tune时找不到共振峰。)

※关于真光斑与假光斑之分

因为夹持器透射三角棱镜的关系,在实际对光作业中,我们会发现三个光斑,两个

假光斑,一个真光斑。其位置关系如下:

真光斑一般与其中一个假光斑平行,处于三个光斑位置的最左边,而两个假光斑之

间的位置关系也是平行的。

※光斑在探针上的位置

大致在探针悬臂前部位置,不要太靠前,以取得最大SUM 为宜。

※关于Deflection 与SUM 关系

原子力显微镜光电传感器采用的是四象限传感器。SUM 值最大是指从悬臂反射回来的激光打在了四象限板(ABCD )相对中心位置。如图:

SUM=A+B+C+D

Deflection=(A+B)-(C+D)

Sum :表示光斑打到光电传感器上的总强度大小。

所以当我们调整SUM 值最大后,在调整Deflection 时,SUM 有时会发生变化,这时我们需要再调整下,以使两个值都达到相对完美状态。

7. 探针定标:(Thermal tune 热定标法)

●选择操作框Tune,对话框中有两种形式,Auto Tune和Manual Tune。大气模式

选用Auto Tune,液相模式选用Manual Tune。做之前现在

确保共振峰准确性。

●Do thermal后,等到Current samples>20 ,stop thermal,在图中用Ctrl+i取点,

⊕放到Max,图下方的X值即为共振频率。)

●进行Auto tune的参数的设定。根据前面求得的共振频率来设置Auto tune hight 以

及Auto tune low两个最高最低频率范围,其选值的大致标准是以之前获得的共振

频率为中心,上下各放宽50KHz,即Auto tune hight在共振频率基础上加50kHz,Auto tune low在共振频率基础上减50kHz。

●共振位置调整,一般情况下设置为Tagget pesent = - 5.0%,(最高峰值左偏5%。)

其左偏的意义是表示力的作用区域在斥力范围,这主要是为了首先确保探针工作在

一个力学区域内(斥力区)。

●※关于工作在哪个区的问题

为了获得形貌信号,一般要工作在斥力区,其在扫描过程中也体现在phase信号槽

一直处于中间偏左位置。当我们要体现引力特征时,可以在扫描过程中,通过调整

驱动振幅以及set point来调整,具体参数设置需要参照当时情况的Phase信号反

应以及图像质量。

8.调整Main中的参数。

●set point设置,在大气环境中,set point应设置为Sum&Deflection对话框中的

Amplitude值的0.9倍,即Set point = 0.9 Ampitude = 900左右;在液相环境时,

Set point= 0.8 Ampitude=800左右。

●设置扫描范围Scan size,以及扫描速率Scan rate,轻敲模式一般在1Hz左右,如

果重合率不好,图像质量不理想,可以酌情降低。

●关于Scan Angle设定,其原则是尽可能与样品垂直,这样能够尽可能反映出样品

的细节。大部分情况下是Scan Angle为90°。

9.下针

●点击Sum&Deflection对话框中的Engage,此时Z Voltage一般为最大值150,

即Z轴方向上的压电陶瓷长度伸到了最长,也意味着其在伸到最长的情况下,还

是没有触及到样品表面。(这是正常的,否则探针已趴在样品表面损坏掉了。)

●调整探针高度,逆时针调节扫描器头部前段的大旋钮,调整过程中,注意

Sum&Deflection对话框各项指标,在驱动振幅Amplitude=1时,系统会发出一个

清脆的提示音,此时发生“叮”声。

●在注意Zvoltage的情况下,继续逆时针调holder前面的大旋钮,同时使Z

voltage=30左右。

●注:调amplitude及z voltage的同时关注视场,当视场中样本逐渐清晰时,说明

探针接近样品表面,此时降低调节速度

●选定Set point,逆时针控制器里拉出的一个便捷远程控制器(白色大扭)使Z

voltage升高,直至不变,此时Z Voltage在50~90为宜。若Z Voltage接近150

时仍能上升,顺时针回调白色大扭至100左右(为扫描器的头部的直接调整提供

空间),继续逆时针调扫描器头部前面的大旋钮,使Z voltage=30左右,再调远

程控制器,直至满足要求。

※此方法为软下针方式,可越过“虚假”水膜,保护探针,成像质量以及对探针

的磨损最小,是我们所推荐的。

10.点击Sum&Deflection对话框中的Withdraw,关闭光纤光源,有隔音柜的情况,就合上隔音罩。

11.开始扫描,选择Main框中的do scan。

12.屏幕上出现三中图像信号,我们首先检查高度图即HeightRetrace图中,检查trace与

retrace的重合性。即红线和蓝线最好能够大致吻合。若重合性不好,有以下有四种方法进行调整:

●降低Set point

●调高integral gain,但应注意过高时会产生噪声

●Scan rate也有影响,一般是1Hz,也可调至0.75Hz或0.5Hz,对于粘弹性材料

或者有凸起的表面,Scan rate数值降低

●在扫描过程中,先调高Set point,再调高Drive Amplitude,然后调低Set Point

(?),目的是使探针离样品表面远些,同时扩展Set Point的可调范围。提高探

针振动的振幅(增大敲击力度),此方法适用于软材料。此法同时适用于相位调整,调整探针工作在引力区或者是斥力区。

调整过程中,选中slow scan disabled √,扫一条线,来回扫一条线,直到来回轨迹线重

合后在进行扫描。

13.全部调好后,点击stop,clear Image,去除以前的调整期图像,进行正式扫描阶段。

14.选择Frame Down/Up,重新扫描。

15.保存图片。

16.结束工作

实验结束后,调holder前面的大旋钮5下(顺时针方向),拿下holder,取下glass slide (sample)

注意事项

●每次进行Thermal tune或Auto tune都必须进行deflection调0。

●Phase>90°,引力作用;Phase<90°,斥力作用。一般在斥力作用模式下可获得最好形

貌。

●调焦时能够反映3相,探针、窗口和样品。

●调整频率时:空气使用append phase,液相时去掉append phase,加append thermal。

●实验时注意头部的光缆线不要一个方向转太多,防止缆线扭起来。

参数含义及取值:

1)Deflection:表示Tip在法向上的变形量反映在PD上的数值Deflection=(A+B)-(C+D)=0;调节的目的是使光斑关于某一坐标轴对称。

2)Set point:探针所在位置反映在光电传感器的电压,相当于设定探针与样品的距离。

空气中set point = Amplitude×90%,液相中set point=Amplitude×80%。

AC Mode:

由自由振荡的振幅决定(其由驱动电压决定),振幅越小,距离样品越近。空气中,对于硬物质,Tip与sample接触时的Set point值应大于未接触时的50%,其中接触时的Set point值指最终远程控制器调节后的值,未接触时的Set point值指开始的Amplitude×90%。对于软物质,最终的Set point值太小,则要先调高Set point值,再调高drive amplitude。

注:上述的关系不适用液相。

Contact Mode:

由未与样本相互作用时的Deflection决定,一般在其基础上加1-2V(电压越大,相互作用越强),视探针和样本性质而定。电压越大,距离越近。

Contact Mode下的调整应先在AC Mode模式下针,调整结束后转换到Contact Mode,然后调Deflection=0,Set point≈0.2∽0.3V。)接触模式下Set point值一般按0.2V变化。

3)integral gain:表示反馈积分速度,相当于信息处理速度。速度快,探针敏感,但是太快会出现噪声,即phase图像中会有很多毛刺,调节的目标为不出现噪声情况下达到最大。(软物质一般值小,硬物质值大。)

4)Z voltage:表示Z向电压,用来控制压电陶瓷的伸长量;

5)Scan rate:表示扫描速度,速度高,可能影响细节,通常取0.5—1 Hz,一般情况为1Hz;

(越低图像越清楚,软的材料,水膜厚,粘性大应取的小。)

6)scan size:不建议50nm以下。

7)Drive Amplitude:表示驱动探针的驱动电压;

(做Auto tune 时,系统会根据S&D中的Amplitude的值给出一个Drive Amplitude。若sample为软物质材料,则降低set point及提高intergral gain的可调范围很小,此时可适当的提高Drive Amplitude。)

液相成像

1.样品准备:

●打开电脑,双击MFP-3D,把密闭液池周围的小孔堵上,用胶水把Sample贴

在密闭液池的下面,

●干后,在液池里面滴入2.5ml液体,

●先在cantilever holder上装密封圈,然后再把它装到cantilever holder stand上

装针。

●再把cantilever holder装到Head上,probe必须用液滴湿润(用滴枪从侧面注

入,不能从上方注入,否则会压弯针),否则probe进入sample时,probe表

面会有气泡,影响稳定性。

(探针型号为TR-400、TR-800、Biolever、iDrive专用探针,这种probe比一般的厚一

点)。

2.启动系统:

在Igor pro软件的下方,开启视频窗口,开启激光光源及光路光源(调多少自己定,用来调节视频的亮度)。

3.检查头部的三个脚是否调的足够高(若未调高,就需要把三个脚调高),把holder放入base上,检查probe与glass slide之间的间隙,调holder后面的两个旋钮以及前面的大旋钮(逆),holder将下降(若间隙在1mm左右,结束旋转)。

4.调holder后面的两个旋钮,使probe出现在视频窗口。

5.探针与水接触后,调整LDx及LDy旋钮,(先调一个方向再调另一个方向)使Sum值达到Max,(若Sum值达不到Max,则调节视场位置,放大Probe,再重新调使Sum值达到Max。)=>调PD旋钮(holder左面),使Deflection趋于0。(调Deflection时,若Sum值变化太大,就必须重新调调整LDx及LDy旋钮,使Sum值达到Max。否则进行thermal tune时找不到共振峰。)

6.探针定标:Thermal tune(热定标法)

●Do thermal后,等到Current samples>20 ,在图中用Ctrl+i取点,⊕放到Max,则图下方的X值,则共振频率就是此值。)

●进行Auto tune的参数,液相选用Manual Tune。

●选取之前的X值(中心频率),Sweep Width=25KHz(两边扩展频率),Append Thermal

,注意不要选择Append phase。

●调整Deflection=0(液相下,Deflection会漂,封闭液池是由于温度场不均匀,半封闭液池是由于气泡原因,需多次调整)

●选择One tune

7.设置Drive Amplitude=1.0V(液相下,一般在1V左右,甚至不到1。)(在图中最高峰旁边的一个峰设为共振峰。)

8.调Deflection=0

9.调整Main中的参数Drive Amplitude在合适位置,最大不要超过1V。若S&D中的Amplitude <0.5,就要调高Drive Amplitude。

10.此时的Amplitude=0.6V,则设Set point=0.8 ×Amplitude=0.48V

11.继续再次调整Deflection=0

12.点击Sum & Deflection对话框中的Engage

13.调扫描器头部前面的大旋钮,使Z voltage=30左右。

(若Z Voltage降不到30,则降低Set point,然后调Deflection=0.)

14.调整扫描器头部前面的大旋钮使Z voltage=50~90不动。(最好在70)

15.点击Sum & Deflection对话框中的Withdraw,关闭光源,合上隔音柜。

16.设定好在Main(Scan size,Scan rate,Scan Angle=90°等)的相关数据

17.开始扫描-do scan

18.在Height Retrace图中,检查trace与retrace的重合性。(调整方法与大气环境相同)

19.全部调好后,点击stop,clear Image。

20.选择Frame Down/Up.

21.保存图像。

液相注意事项:

①封闭液池注水2.5ml。

②液相操作时注意随时将deflection调零。

③不能用控制器上的便捷远程控制器调Z Voltage,而是通过Set Point右下方按钮完

成。

④没有引力与斥力之分,范德华力消失。

⑤避免在载玻片上直接注水,要用液池或贴上特氟龙(厌水聚合物)的载玻片保护做。

⑥做完后抬针,务必规范,支脚要多抬起一点。

⑦探针被溶液泡过后,要把探针用酒精或丙酮泡一下(时间),要淹过探针。另外被溶

液泡过的探针要分开保存,避免污染。

⑧沾过溶液的密封圈的清洗,先用纯水清洗,再用纯水超声波清洗5min,再用纯水清

洗,最后用擦镜纸擦干。

⑨载玻片清洗,用丙酮/酒精泡过之后,再用酒精超声波清洗10∽15分钟,最后用擦镜

纸擦干。(若用丙酮清洗不须擦干)

⑩Biolever(Si),TR-400,TR-800(Si3N4)探针均不能用于iDrive模式。

?制样用胶水的特性:

404胶水:快干,粘的牢。用丙酮清洗。

环氧树脂:用于颗粒、粉末的制样。

银胶:导电、导热样品制样,作电极用。

?制样一定要平整,防止夹持器上的除了探针以外的其它部位碰到样品。

力曲线模式

准备工作与大气环境下AC Mode前期准备工作一致,在成像质量良好的基础下。

1.在Main选项中选择Contact Mode中的Force选项:

●Trigger point=1.00V;(deflection 电压通常设为1)

此值为预设值,表示力曲线纵坐标。

●选择Trigger channel中的defl volts以及Relative

●点击go there显示探针位置

●spot display选Numbered Markes,设定Spot number=1

●点击Pick point ,在图像上把点拉到目标点上

●确定,点击That's it

※可以根据需求,设定多个Spot number

●点击go there

2.定标过程

●力曲线(deflection)水平线的整平(横坐标)。在同一直线的水平部分上选择

两点,(红色线代表probe下去,蓝色线代表probe上来)

●cal.选项卡上把Set sensitivily设置为Virtual defl line,重新做一次Single

Force。

●出现Force Graph1,在倾斜部分选取同一条直线上的两点(红色线代表probe

下去,蓝色线代表probe上来),求得deflvolts

●cal.选项卡=>把Set sensitivily设置为InvOLS ,得到了InvOLS。

3.选择Thermal,

●点击go thermal(以便求得弹性常数Ks)

●出现Thermal Graph1,点击Fit Guess(用高斯模式进行计算)

●点击Fit try,得到spring constant=1.87 nN/nm(此值为探针的弹性常数Ks)。

●F=Ks×deflection

●Deflection=deflvolts×InvOLS

●Deflvolts:形变量引起的电压值;InvOLS:反切斜率;

●Ks遵循能量均分定律:将悬臂看成谐振子,热运动提供能量的一半等于谐振

子在一个自由度上的能量,即(1/2) ×K B×T=(1/2) ×K S×;其中

从布朗运动。

4.力坐标修正:

●MFP IP > Force display panel > modify

力矩阵测试

1.在Force中选择Relative,

2.设置Trigger Point

3.开始扫描do Scan

4.产生ForceMap图/AdF(此图为粘附力图)

(力矩阵,set point X=值,set point Y=值)

图像处理

MFP IP=>Browse=>list panel:image on disk(硬盘);image in memory(内存)选择一张图片=>

3D生成三维图形;

D display manager

Ly layout 图像输出

L list panel

N display 扫描后的所有数据全部存放在这。

A analyze panel:Roughness;

Section:draw画线=>make graph(求两点之间的距离)

Histogram:求作直方图求距离。

M=>modify panel=>mask=>calc mask(将变化比较大的圈出来,图像上有条纹点dilate mask,将mask范围扩大。)

参数:calc method:计算方法;threshold:域值;range:范围

=>flatten=>reset mask

注意事项:

保存图像时要保存2倍屏。

颗粒统计

1.先开Igor软件=>复制路径到My computer =>点击particals.idf=>点击compile =>点击Kill

2.选择图像=>Mask=>用红点盖住黑点,选择计算方法Threshold (任意)=>点击Calc Mask(Erode/ Dilate Mask:边界缩放)

3. MFP Controls=>Partical panel=>Mask 选HeightRetrace,=>点击Do it =>点击result

纳米操纵

操作原理:在contact模式下,取一个方形区域,将法向正压力(即deflection)增大,重新扫描,就可以将方形区域中的粒子推向旁边。

MFP controls=>Litho panel=>Master Litho panel:(修改参数)normol set point<当时的deflection值,表示操纵间隙需要抬针;这样设置是为了先抬针,然后针移动到要做操纵的位置。

Litho set point=该时刻Deflection值+1~1.5V,根据材料不同,自己确定的;

Free Hand ⊙

关闭纳米操纵模式:

注意事项:

纳米操纵要设置曲线路径,防止操作过程中将物质(如纳米碳管)折断。

纳米刻蚀

MFP controls=>Litho panel=>Groups=>load picture=>Save Groups=>display Groups=>add Groups=>转化为contact Mode=>Normal set point=(比deflection小1∽1.5)=>Save Group=>do it也需要Litho set Point吧

或者=>Draw path=>画线=>setpoint Wave √=>Litho setpoint:Mode选linear =>do it;完成后stop draw。

注意事项:

调节时,Normal set pointdeflection,Max velocity一般1—3μm/s。

MFM磁化模块

前面同于AC模式。

成像后,若敏感度不够,则采用Nap mode。

点stop=>nap panel=>drive AMP=52 √26(振幅减少原来的一半,相当于原来是贴着sample走,现在是在sample上轻敲。)=>do scan=>nap panel中的参数:Delta Height=0 nm(此值请自己调试,值太低,将撞到大颗粒,太高图像模糊)=>nap channel panel:line flatten=line(扫描一条拉平一条)

高低温联合模块操作

密封池:3∽5 ml ,易蒸发,温度稳定,故需密封。安装密封池须仔细看手册。若需通气/通液体则必须有循环。

打开泵,coolant pump:Target speed=500=>Wide=>Header panel=>Target Tamp=60℃ ;

Ramp Rate=100℃/min ;

√ low noise ;

Feadback ⊙ on

Header ⊙ off

Current Temp=60℃(设置值)

Current set point=60℃(设置值)(这两个值不动后,还应等一会,等整体温度到达设定值;温度上升后,图像会有漂移,需要重新engage。)

关闭高低温控制:Heater off=>Feedback off=>点击controller=>coolant Pump=>parameters=>default=>coolant Pump:Target speed=0=>Wrire

常见问题汇总:

1.装针偏歪,过松,过紧,会导致tune的谐振曲线峰平缓,驱动电压很大时才能达到Set Point(如在空气中,150mV驱动电压产生1V的PD信号电压为正常,要视探

针而定);

2.前脚位置没扣在槽内部;

3.测力曲线时,刻蚀,纳米操纵均要先将Mode调为Contact Mode并设置Trigger Point;

4.扫描前要先Withdraw,关灯,盖上隔声罩;

5.更换探针或样品前需先Withdraw(或Stop Scan),Head前面旋钮Up3圈。6.共振质量因子Q值:-1—+5,Q值不能大于3000,否则图像都是假的。

7.图像上的噪声通常有三种:颗粒噪声(有拖尾)、频率噪声(图像好像有水波)和漂移噪声(图像断开)。产生噪声的原因通常为:①人员走动;②样品固定不牢;③粉末状样品可能于基底吸附不好。Tip不同,各有不同。在图中的Q值>3000,说明cantilever被范德华力带着共振。在空气中,调节范德华力,使其工作在斥力范围内。

8. 起动正常:Amplitude≈1.0V,Driver Amplitude≤500mV。

( Driver Amplitude in liquid 大些,in air小些。)

9. Sample:最高可扫高度15μm,sample必须平整,防止Holder上的其他部件碰不到sample,厚度没有关系。

10. Igor软件,Help之前为Igor公司设计,用于数据处理Help之后为AR公司设计的。

11. 扫描基准:

红线代表扫描基准,兰线代表整平基准。

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

原子力显微镜

6-5 原子力显微镜 【实验简介】 扫描隧道显微镜工作时要检测针尖和样品之间隧道电流的变化,因此它只能用于导体和半导体的研究。而在研究非导电材料时必须在其表面覆盖一层导电膜。导电膜的存在往往掩盖了样品表面结构的细节。为了弥补扫描隧道显微镜的这一不足,1986年宾尼希等发明了第一台原子力显微镜AFM(atomic force microscopy)。原子力显微镜不仅可以在原子水平测量各种表面形貌,而且可用于表面弹性、塑性、硬度、摩擦力等性质的研究。 【实验目的】 1.学习和了解原子力显微镜的结构和原理; 2.学习扫描隧道显微镜的操作和调试过程,并以之来观察样品的表面形貌; 【实验原理】 1.原子力显微镜 与STM不同,原子力显微镜测量的是针尖与样品表面之间的力。将微小针尖放在悬臂的一端,当针尖与样品间距小到一定程度时,由于针尖与样品的相互作用(引力、斥力等),使悬臂发生弯曲形变。如图使样品与针尖之间作扫描运动,测量悬臂的形变位移,即可得到 图6-5-1 原子力显微镜示意图 样品表面的形貌信息。 由于微悬臂的位移很小,对它的测量是一个关键技术。最早发明者宾尼希等人利用隧道电流对间距的敏感性来测量悬臂的位移,但由于隧道效应对悬臂的功函数(由于污染等原因)变化同样敏感,所以稳定性较差。现在大多数均采用光学方法或电容检测法。本实验采用光

图6-5-2 原子力显微镜光路图 束偏转检测方法,如图2所示。激光束经微悬臂背面反射、再经平面反射镜至四相限接受器,当微悬臂弯曲时激光束在接受器上的位置将发生移动,由四象限接受器检测出悬臂弯曲位移,便可得到样品的表面形貌。 2.轻敲模式成象技术 常规的接触模式扫描由于针尖对样品的作用力较大,会在软样品表面形成划痕,或使样品变形,对粉体颗粒样品,会使样品移动,或将样品碎片吸附在针尖上,分辨率较差,而理想的非接触模式由于工作程短,又是难于有效实施的。 轻敲扫描模式的特点是在扫描过程中由压电驱动器将微悬臂激发到共振振荡状态,针尖随着悬臂的振荡,极其短暂地与样品表面进行接触,同时由于针尖与样品的接触时间非常短,因此剪切力引起的对样品的破坏几乎完全消失,可以清晰观测完好的表面结构而不受表面高度起伏的影响。AFM轻敲扫描模式,特别适用于检测生物样品及其它柔软、易碎、粘附性较强的样品。并对针尖损耗相对最少。 【实验装置】(见扫描隧道显微镜) 【实验内容及步骤】 1.扫描光栅样品 注意:所有插件栏的操作都应当是鼠标单击 1.1 放针尖。把针尖架插入探头; 1.2 放样品(用镊子操作,注意不要让镊子碰到样品表面)。 1.3打开电脑。开启控制箱电源。打开软件,切换到在线工作模式(此时仪器会自动识别当前针尖类型,软硬件自动切换到相应工作模式,头部液晶屏也会立即显示出当前工作模

原子力显微镜操作详细流程

原子力显微镜操作简要说明 一、设备开机 1、打开原子力显微镜主机电源(在光学平台下方)。 2、开启电脑、运行软件(软件10,如有问题可换9重新运行)。 3、在软件界面点击 SPM init 进行设备初始化,如显示SPM OK可继续操作,如不显示SPM OK重启软件。 4、点open door开操作门,点灯泡按钮照亮。 二、样品准备 1、将表面洁净样品使用专用双面胶粘贴至设备配备的圆形载物片上(最好两个台子一起使用,以便旋转样品)。 2、通过检测组件上的按钮或者软件点open door开启样品室舱门,点灯泡按钮照亮,点击软件界面上的AFM-STM退针钮使显微镜探头缩回。 3、使用专用镊子将样品连同载物片放入磁性样品台上,小心调整样品区域之中间。小心不要碰触探头、激光源等。 4、点击软件界面的AFM-STM使探头移回。关闭舱门。 三、操作程序 1、运行软件的camera功能,点击绿色的play键。运行approach,点击蓝色step move,将样品降低到安全距离。 2、运行软件的aiming功能,点击tools-motors-video calibration-右下角specify laser step 1-Alt+左键-确定-手动Alt+左键点击红十字中心,使激光与十字匹配。 3、运行AFM钮,使针头伸出。点击Shift+左键点击针悬臂梁的中间或偏上三分之一处,点击move laser使激光移动到点击位置,然后用Laser X和Y将Laser 调到最大,点击Aiming,使DFL、LF为0。 4、运行软件的Resonance功能,选择semicontact模式,在probes里选择对应针尖,点击Auto,调节探针悬臂的共振频率。如产生共振,调节Gain和lockgain 的大小(保证其乘积大小不变),确定setpoint为典型值Mag的一半,Gain0.5-1之间。 5、运行landing,观察way值变化。 6、运行软件的Approach功能,自动完成下针。使探针下降至检测距离。 7、点击Scanning按钮,开始样品扫描,扫描图样将自动保存至指定文件夹。注意: 1、除去扫描过程,其他改变任何程序或移动样品的操作都应先关闭反馈键使ON 变为OFF。操作过程中确保XY是闭环状态? 2、取放样品时均应首先软件操作使探头缩回。 3、扫描结果的优劣决定于当前探针状态(是否断针和污染)和所选用的反馈灵 敏度Gain。在确保不损伤仪器以及珍贵探针的情况下进行优化调节。

原子力显微镜的工作原理及基本操作

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:原子力显微镜的工作原理及基本操作学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别:应用型 考核结果阅卷人

原子力显微镜的工作原理及基本操作 一、实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二、原子力显微镜结构及工作原理 2.1 AFM的工作原理 AFM是用一个一端装有探针而另一端固定的弹性微悬臂来检测样品表面信息的,当探针扫描样品时,与样品和探针距离有关的相互作用力作用在针尖上,使微悬臂发生形变。AFM系统就是通过检测这个形变量,从而获得样品表面形貌及其他表面相关信息 1.原子力作用机制 当两个物体的距离小到一定程度的时候,它们之间将会有原子力作用.这个力主要与针尖和样品之间的距离有关.从对微悬臂形变的作用效果来分,可简单将其分为吸引力和排斥力,它们分别在不同的工作模式下、不同的作用距离起主导作用.探针与样品的距离不同,作用力的大小也不相同,针尖/样品距离曲线如图1所示. 图1 针尖/样品距离曲线 2.原子力显微镜的成像原理 AFM的微悬臂绵薄而修长,当对样品表面进行扫描时,针尖与样品之间力的作用会使微悬臂发生弹性形变,针尖碰到样品表面时,很容易弹起和起伏,它非常的灵敏,极小的力的作用也能反应出来.也就是说如果检测出这种形变,就可以知道针尖-样品间的相互作用力,从而得知样品的形貌。

图2 光束偏转法的原理图 微悬臂形变的检测方法一般有电容、隧道电流、外差、自差、激光二极管反馈、偏振、偏转方法。偏转方法是采用最多的方法,也是原子力显微镜批量生产所采用的方法.图2就是光束偏转法的原理图。 3.原子力显微镜的工作模式 AFM主要有三种工作模式:接触模式(ContactMode)、非接触模式(Non-contact Mode)和轻敲模式( Tapping Mode),如图3. 图3 三种工作模式 接触模式中,针尖一直和样品接触并在其表面上简单地移动.针尖与样品间的相互作用力是两者相接触原子间的排斥力,其大小约为10-8~10-11N。 非接触模式是控制探针一直不与样品表面接触,让探针始终在样品上方5~20nm 距离内扫描.因为探针与样品始终不接触,故而避免了接触模式中遇到的破坏样品和污染针尖的问题,灵敏度也比接触式高,但分辨率相对接触式较低,且非接触模式不适合在液体中成像。 轻敲模式是介于接触模式和非接触模式之间新发展起来的成像技术,类似与非接触模式,但微悬臂的共振频率的振幅相对非接触模式较大,一般在0.01~1nm.分辨率几乎和接触模式一样好,同时对样品的破坏也几乎完全消失,克服了以往常规模式的局限。 4.原子力显微镜的构成 SPA-300HV型显微镜主要包括以下四个系统: 减震系统、头部系统、电子学控制系统、计算机软件系统(图4为结构图)。

原子力显微镜

原子力显微镜 一、实验目的 1了解原子力显微镜的工作原理 2掌握用原子力显微镜进行表面观测的方法 二、实验原理 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 1)力检测部分 在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分 在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统 在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。(1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互

原子力显微镜使用说明书

SII 操作说明书 Nanopics NPX100M001 原子力显微镜 湖南大学机械与汽车精密制造工程实验室翻译

1.1版本 1999年11月 1.2版本 2000年9月 在使用该仪器之前请认真阅读该操作手册并按里面的说明操作。把该说明书放置在仪器旁边,当遇到仪器操作的问题时请参考之。 该产品的技术受国际交易控制法和国际贸易控制法的保护,未经日本政府权威机构的书面允许不得泄漏。 ?1999,2000日本精工Seiko公司。所有的权利都受保护 未经许可不得复制该手册 该说明书内容改变不再通知

前言 感谢您选择了Nanopics产品。该手册为使用注意事项和指导说明,将有助于您安全地使用本仪器,为了充分发挥该仪器的功能,请务必彻底地阅读操作说明书,必要时参考该说明书。 用途 在操作该仪器之前请仔细阅读说明书的安全指南和警告标志,并按照说明书及仪器上所示的注意事项操作,以获得一个安全的使用环境。 保修 该仪器的保修期为从交货之日起一年内。在该期间内提供免费保修,但由于不按操作说明书操作而产生的损坏除外。保修内容的详细信息请参阅5.4节的保修部分。 用户登记 为了方便使SII向您提供软件不断升级及维护服务通知,请返回Nanopics用户信息。在该说明书内有一张用户登记卡,请按卡上的传真号码寄回。若不寄回该卡则可能对该仪器的升级信息的通知及免费维修等带来不便,故建议您及时寄回。

安全指导 为了正确使用该仪器,请注意以下事项 1.在操作之前参考主要设备及附件的操作说明书,按照说明书上的指导要求操作,可保证操作的安全简便。 2.请把操作说明及安全指导书放在仪器旁边,以便于参考。 3.请注意仪器上的所有警告标志,参考后续部分的警告栏信息。 4.该仪器通过三根插线接地,为了避免触电请不要随意乱动或拔下接地线。 5.在修理设备的任何部件之前,请关掉所有的电源。 6.为了防止温升,在腔内置有通风冷却扇,请不要取下或阻碍其运转。 7.为了避免触电类事件发生,请不要把您的手或身体其他部分靠近仪器的开关,特别是通风部分。 8.请把仪器放置在稳定的位置。 9.不要在粉尘过多或温度过高的环境中使用该仪器。 10.不要改置改仪器,除非特殊情况下向SII代理商请求被许可或者在警告栏的指导下。打开或除去罩子会产生大量的电流,从而发生危险事件,如漏电或着火。

原子力显微镜及其应用

原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。 原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。 一、基本原理 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 二、原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。 4.软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。 三、应用实例 1.应用于纸张质量检验。2.应用于陶瓷膜表面形貌分析。3.评定材料纳米尺度表面形貌特征 1

原子力显微镜

原子力显微镜 一.实验目的 1. 了解原子力显微镜的工作原理 2. 掌握用原子力显微镜进行表面观测的方法 二.实验原理 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统: (1)力检测部分 在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分 在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统 在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 原子力显微镜便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜系统中,使用微小悬臂来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动,再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性以影像的方式给呈现出来。

AFM原子力显微镜技术及应用实验报告

原子力显微技术观测薄膜形貌 姓名:吴涵颖学号:5404312065 班级:工业工程122 一、实验目的: Ⅰ、学习和了解AFM的结构和原理。 Ⅱ、掌握AFM的操作和调试过程,并以之来观察薄膜表面的形貌。 Ⅲ、学习用计算机软件来处理原始数据图像。 二、实验原理简析: 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 (1)力检测部分在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强

进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。 (1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10 - 10~10 - 6 N。若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。 (2)非接触模式 非接触模式探测试样表面时悬臂在距离试样表面上方5~10 nm 的距离处振荡。这时,样品与针尖之间的相互作用由范德华力控制,通常为10 - 12 N ,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加尖端对表面的压力。 (3)敲击模式 在敲击模式中,一种恒定的驱使力使探针悬臂以一定的频率振动。当针尖刚接触样品时,悬臂振幅会减少到某一数值。在扫描过程中,反馈回路维持悬臂振幅在这一数值恒定,亦即作用在样品上的力恒定,通过记录压电陶瓷管的移动得到样品表面形貌图。对于接触模式,由于探针和样品间的相互作用力会引起微悬臂发生形变,也就是说微悬臂的形变作为样品和针尖相互作用力的直接度量。同上述轻敲式,反馈系统保持针尖—样品作用力恒定从而得到表面形貌图。 原子力显微镜是用微小探针“摸索”样品表面来获得信息,所以测得的图像是样品最表面的形貌,而没有深度信息。扫描过程中,探针在选定区域沿着样品表面逐行扫描。 实验扫描的是光栅,纳米铜微粒以及纳米微粒,选用的是轻敲式。 敲击模式优点:敲击模式在一定程度上减小样品对针尖的粘滞现象,因为针尖与样品表面接触时,利用其振幅来克服针尖"样品间的粘附力。并且由于敲击模式作用力是垂直的,表面材料受横向摩擦力和剪切力的影响都比较小,减小扫描过程中针尖对样品的损坏。所以对于较软以及粘性较大的样品,应选用敲击模式。 三、实验步骤: 一、实验前准备: ①样品制备 1)薄膜样品制备 把之前实验制备得的铜微粒纳米材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。 2)纳米微粒制备 把纳米微粒材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片

原子力显微镜及其在各个研究领域的应用

高技术 原子力显微镜及其在各个研究领域的应用An Ato mic Force Micro sco p e and I ts A pp lication 刘延辉王弘孙大亮王民姚伟峰杨雪娜 (山东大学晶体材料国家重点实验室济南250100) 在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。在众多的科学领域里,人们希望实时地看到具体的真实变化过程,而不仅仅是根据前后的现象和关系来推理,这就需要高分辨率的显微镜。适应这种需要,许多用于表面结构分析的现代仪器问世,如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场离子显微镜(FIM)、俄歇电子能谱仪(AES)、光电子能谱(ESCA)等,但是大多数技术都无法真正地直接观测物体的微观世界。在这之后,原子力显微镜出现了。 一、原子力显微镜的结构和工作原理 1982年,G erd Binnin g和H einrich R ohrer在I BM 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scannin g tunnelin g m icrosco p e,ST M),这是扫描探针显微镜这一大家族的第一个成员,其发明人Binnin g和R ohrer因此获得1986年的诺贝尔物理奖。扫描隧道显微镜的工作原理是:当探针与样品表面间距小到纳米级时,经典力学认为探针与样品在这时是不导电的,但按照近代量子力学的观点,由于探针尖端的原子和样品表面的原子有波动性,两者的波函数相互叠加,故在它们间会有电流,该电流称隧道电流。ST M就是通过检测隧道电流来反映样品表面形貌和结构的。ST M要求样品表面能够导电,从而使得ST M只能直接观察导体和半导体的表面结构;对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节。 为了克服ST M的不足处,Binnin g、Quate和G er2 ber决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和ST M的针尖之间,于1986年推出了原子力显微镜(atom ic force m icrosco p e,AFM)。AFM 是通过探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域更为广阔。它得到的是对应于样品表面总电子密度的形貌,可以补充ST M对样品观测得到的信息,且分辨率亦可达原子级水平,其横向分辨率可达2nm,纵向分辨率可达0.01nm。 AFM原理图 AFM的核心部件是力的传感器件,包括微悬臂(C antilever)和固定于其一端的针尖。 根据物理学原理,施加到C antilever末端力的表达式为:F=KΔZ。式中,ΔZ表示针尖相对于试样间的距离,K为C antilever的弹性系数。 力的变化均可以通过C antilever检测。根据力的检测方法,AFM可以分成两类:一类是检测探针的位移;另一类是检测探针的角度变化。由于后者在Z 方向上的位移是通过驱动探针来自动跟踪样品表面形状,因此受到样品的重量及形状大小的限制比前者小。 微悬臂和针尖是决定AFM灵敏度的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM的灵敏度,微悬臂的设计通常要求满足下述条件:(1)较低的力学弹性系数,使很小的力就可以产生可观测的位移;(2)较高的力学共振频率;(3)高的横向刚性, 针尖与样品表面的摩擦不会使它发生 9 科技导报3/2003

(AFM)原子力显微镜原理介绍

原子力显微镜(AFM)原理 一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM公司的Binnig与史丹佛大学的Quate于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 图1、原子与原子之间的交互作用力因为彼此之间的距离 的不同而有所不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1”所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作

用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones的公式中到另一种印证。 为原子的直径为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E同时也说明了空间中两个原子之间距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM),探针与试片的距离约数十到数百?。 二、原子力显微镜的硬件架构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。

原子力显微镜操作规程及注意事项

原子力显微镜操作规程及注意事项 ※※原子力显微镜属于精密且贵重大型实验仪器,操作需倍加小心※※一.开机及实验主要操作步骤: 1. 打开总电源开关。 2. 打开计算机主机以及显示器电源开关。 3. 打开控制机箱电源开关,见右图。 4. 打开HEB(Head Electronics Box)的激光开光,见下图。 5. 打开MAC Mode或AC Mode Controller电源开关,见下图。 6. 打开PicoView或者Picoscan控制软件。 7. 根据样品需要,从控制软件界面中选择合适的成像模式,mode→STM、AFM、 AC AFM、MAC 和TopMac。 8. 根据样品需要,从控制软件界面中scanner选择合适的扫描头型号(100 m和10 m)。 9. 取出扫描头,放置于扫描头基座上进行安装(注意:轻拿轻放!!!)。

10. 根据成像模式需要选择合适的nose。 11. 将nose安装在scanner上,需要双手同时垂直用力,以O型圈没入扫描头为准。 12. 用一个手将弹簧钥匙(Spring Key)放入弹簧一侧可以把弹簧翘起,另一只手 利用镊子夹起针尖安装到nose上,弹簧一般压在针尖的1/3-1/2处。

13. 安装扫描头,连接插线,并拧紧右下方紧固螺栓,此时扫描头下方出现红色激 光,建议用户放一白纸。 14. 利用扫描头上的两个螺栓上下左右调整激光的位置,使激光对在针尖背面(详 见激光调整过程)。

15. 安装样品时,确保针尖和样品之间有足够的距离,防止样品撞坏针尖。利用Close 键初步逼近样品,可以缩短针尖逼近时间。 16. 安装探测器,调整螺丝,使deflection和LFM参数满足该模式的要求。

原子力显微镜在化学中的应用

高分子材料研究方法 姓名:管明章 专业:材料学 学号:200804054

原子力显微镜的原理及其在化学里的应用 扫描隧道显微镜(STM)能在多种实验环境下高分辨地实时观察导体和半导体的表面结构,提供了许多其他表面分析技术不能提供的新信息。但是STM只能直接观察导体和半导体的表面结构,对于非导体材料往往采取覆盖导电膜的方法进行间接观察,而导电膜的存在往往掩盖了表面结构的细节,而且即使是导电材料,STM观察到的是对应于表面费米能级处的态密度,当表面存在非单一电子态时,STM得到的是表面形貌和表面电子性质的综合结果。1986年Binnig等发明了第一台AFM[1]弥补了STM的不足。它不仅能给出样品的表面形貌,而且可得到样品表面在垂直方向的绝对高度。 1 原理[1,2] 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z 轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 图1 AFM的组成部分示意图 AFM的组成部分示意图见图1。 A:样品;B:AFM探针尖;C:探测器;D:微悬臂;E:调制压电陶瓷;F:氟橡胶;G: 压电晶体管;H: STM反馈;I:基架(铝)。 AFM必须具备以下要素:在弹性常数很小的悬臂上镶有非常尖锐的探针,具有低的弹性常数、高的力学共振频率、高的横向刚性、短的悬臂长度;探测悬臂能上下弯曲;监测和控制悬臂弯曲的反馈系统;机械扫描系统(主要是压电晶体管)是AFM最为关键的部件,是所得扫描信息的准确性与精确性的控制因素,它通过移动使样品相对探针作垂直方向的精密移动,以得到清晰图象;将所测数据转化图象的显示系统。一台具有标准扫描头(25μm)的AFM(如美国Burleigh公

原子力显微镜 细胞 分析

原子力显微镜在细胞生物学领域的应用 材料科学与工程学院 5120519012 蒋沐阳 摘要原子力显微镜是近年来生物领域的重要观测工具,它优良的观测性能和强大清晰的观测分辨率能够满足细胞生物领域不同的观测需求。本文将阐述原子力显微镜在细胞观测中的工作原理,以及待观测细胞需要经过怎样的固定处理。另外本文也将展现原子力显微镜在分析细胞的生命历程以及细胞、分子间的各种相互作用力的性能。 关键字原子力显微镜,细胞生物,成像分辨率,力-距离曲线 前言 几百年来,人类为了观察微小物体创造出了一代又一代显微镜,从最原始的光学显微镜,到以电子显微镜(SEM)为代表的第二代显微镜,再到以扫描隧道显微镜(TEM)为代表的新型显微技术,都显示出了各自代表时代科学家的智慧。而在1986年,作为扫描隧道显微镜的改进产品,原子力显微镜(AFM)的出现,更是突出的显现了显微观测技术作为人类视觉感官功能的延伸与增强的重要性。[1]不同于扫描隧道显微镜只能应用于导电物体表面,原子力显微镜在非导电物质的观测上效果出色,并且具有高分辨、制样简单、操作易行的特点。它在纳米尺度上的成像分辨率极佳,横向达到0.1~0.2nm,纵向则高达 0.01nm,[2]这样的性能使得前几代显微镜望尘莫及,也极大地推动了纳米科学的发展。因为原子力显微镜在观测过程中能够保持样品的自然状态,防止其发生变形或变性,并且能够实现对生物样品的连续动态分析与成像,所以它的出现对于微观分析要求极高的生命科学领域无疑是一块大大的宝藏,发明至今,原子力显微镜已经帮助科学家们在细胞生物学领域取得了长足的进步。 1 原子力显微镜原理简介 简单地说,原子力显微镜(Atomic Force Microscopy)是通过控制并检测样品与显微镜配备的针尖间的相互作用力来实现高分辨成像的。[2]它将扫描的针尖制作在一个对微弱力极为敏感的V字型的微悬臂上,微悬臂的另一端固定住,使得针尖趋近样品并与样品表面轻轻接触。通过压电陶瓷管的伸缩可以控制原子间的作用力恒定,微悬臂由此可以随着样品表面的起伏而震动,通过光学检测方法可以得到样品形貌的信息。 2 原子力显微镜在细胞表面成像手段 原子力显微镜有三种工作方式:接触式(Contact Mode),非接触式(Non-Contact Mode)和轻敲式(Tapping Mode)。[3]在接触式状态下,针尖与样品的距离始终保持在零点几纳米的斥力区域,正因为这样的距离接近接触,所以能够得到非常稳定、高分辨的图像;而在非接触式状态下,针尖与样品的距离则大大远于接触式,主要检测原子间的范德华力和静电力等长程力,对样品无破坏作用,但是分辨率也比接触式低;介于两者之间的是轻敲模式。在轻敲模式下,针尖与样品有一个间断的接触,微悬臂的振动可以保证测量的准确性。因为针尖同样品有接触,所以得到的分辨率几乎接近于接触式,而又因为接触非常短暂,所以不大会破坏样品表面,特别适宜于分析柔软、粘性和脆性的样品,在液体中的成像表现也良好。综合上述分析,原子力显微镜在细胞表面的成像往往采用轻敲模式。

原子力显微镜(AFM)使用总结

原子力显微镜(AFM)是购买浙江大学光电研究所研制的,已经使用一年多,中间出现些问题,也都解决了,现在做个总结: 1、设备 信号来源:激光 信号接收:PSD(Position Sensitive Detector)全称为位置传感检测器,输出的是模拟信号,线性度好、响应快。 探针:在镀金的小矩形上,每头有一大一小的等腰三角形,探针三角形顶端,垂直于三角形平面,肉眼只能看到三角形,看不到探针,一个矩形上有四个探针可以使用。 压电陶瓷:样品在测试过程中,三维方向的运动是通过三根压电陶瓷的位移产生 信号放大、反馈、数据采集、显示 2、过程 1、把用探针的小矩形用双面胶贴好,矩形伸出的长度一般为小于或接近长边的一半,用四个控制螺钉调节激光器,使激光照在三角形的边上,直到产生衍射条纹,并且衍射条纹在PSD左侧,不能在PSD光敏面上,倾斜方向 \ ,光斑中心居中,激光照在三角形边上达到衍射条件时将产生强的反射光; 2、用双面胶把待测样品粘在样品台上,双面胶要贴平,样品要测得地方不能太靠样品台中心,因为在测试时探针接触的位置不是在样品台的中心,然后把样品台固定在三根压电陶瓷构成的支杆上,适当转动样品台,使待测样品的中心与探针的位置相对; 3、用粗调使试样向探针运动,此时为了观察可把激光关了,当接近至1~2mm 时打开激光,使用细调,观察控制面板上PSD反馈信号、Z轴反馈信号的变化、衍射光斑的变化,但衍射光斑移动时说明已进入原子力的作用范围,应缓慢调节旋钮,在光斑移动迅速的时候应适当方向调节旋钮,防止调过,在PSD信号为1.6,Z轴反馈信号-200~-300时即可进行测试。 3、出现的问题和解决方法 3.1 Z轴反馈信号不稳定

相关主题
文本预览
相关文档 最新文档