当前位置:文档之家› leslie人口增长模型模型

leslie人口增长模型模型

leslie人口增长模型模型
leslie人口增长模型模型

人口增长预测模型

摘要

奔文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。

模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。

模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。

首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。

其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。

再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。

最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。

关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

§1、问题重述

一、背景知识:

中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国人口发展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂局面,人口安全面临的风险依然存在

二、相关数据:

附件1 《国家人口发展战略研究报告》

附件2 人口数据(《中国人口统计年鉴》中的部分数据)及其说明根据已有数据

三、要解决的问题:

1、试从中国的实际情况和人口增长的上述特点出发,参考附件2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。

2、利用所建立模型的预测结果,参照附件1的相关叙述对反映中国人口增长特点的一系列指标如人口老龄化、人口抚养比等进行分析预测。

3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和管理进行分析。

§2、问题分析

人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题,我们分析了题目以及附录1中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及不同的时期建立多个模型分别加以讨论。

一、从附件1中,我们看到过去一些专家对中国的总人口数做出了2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右的预测。因而,我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测所要用到的一些相关数据,我们作了相应的补充,由此我们建立了模型Ⅰ:阻滞增长模型。

二、模型Ⅰ只考虑了人口总数,对人口总数进行了预测分析。但实际中在对人口进行分析时,按年龄段分布的人口结构是非常重要的。在人口总数一定时,不同年龄段的人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。为了讨论不同年龄段的人口分布对人口增长的影响,我们依据附件2建立了模型Ⅱ:按年龄分布的Leslie模型。

三、由模型Ⅰ和模型Ⅱ的结果我们预测了人口总数的发展趋势,由模型Ⅱ的计算结果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。根据这些预测值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行进一步的分析。

§3、合理的假设

1、社会稳定,不会发生重大自然灾害和战争i i s b ,不随时间而变化

2、超过90岁的妇女(老寿星)都按90岁年龄计算

3、在较短的时间内,平均年龄变化较小,可以认为不变

4、不考虑移民对人口总数的影响

§4、名词解释与符号说明

一、名词解释

1、总和生育率——指一定时期(如某一年)各年龄组妇女生育率的合计数,说明每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生育水平最常用的指标之一。

2、更替水平——指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她们本身。一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出的情况下,人口将最终停止增长,保持稳定状态。

3、人口抚养比——指人口总体中非劳动年龄人口数与劳动年龄人口数之比。通常用百分比表示。说明每 100 名劳动年龄人口大致要负担多少名非劳动年龄人口。用于从人口角度反映人口与经济发展的基本关系。根据劳动年龄人口的两种不同定义( 15-59 岁人口或 15-64 岁人口),计算总抚养有两种方式

4、人口老龄化——指人口中老年人比重日益上升的现象。 促使人口老龄化的直接原因是生育率和死亡率降低,主要是生育率降低。一般认为,如果人口中65岁及以上老年人口比重超过7%,或60岁及以上老年人口比重超过10%,那么该人口就属于老年型。

5、出生人口性别比——是活产男婴数与活产女婴数的比值,通常用女婴数量为100时所对应的男婴数来表示。正常情况下,出生性别比是由生物学规律决定的,保持在103~107之间。 二、符号说明

15: m i n i ,2,1),0(= 2001年第i 年龄段的人口总数

16: )3,2,1(=i v i 3,2,1=i 时分别表示市、镇、乡的女孩出生率 17: )j (L j 时段具有劳动能力的人口 18: )j (ρ 社会的抚养比指数

19: k

总和生育率 20:

)(j K i j 时段i 年龄组中女性所占的百分比

§5、模型的建立与求解

模型Ⅰ:阻滞增长模型(Logistic 模型)[1] 一、模型的准备

阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增

长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有:

0)0(,)(x x x x r dt

dx

== (1)

对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )

0,0()(>>-=s r sx

r x r (2)

设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即

增长率0)(=m x r ,代入(2)式得m

x r

s =,于是(2)式为

)1()(m

x x

r x r -= (3)

将(3)代入方程(1)得:

?????=-=0

)0()

1(x x x x rx dt dx

m

(4)

解方程(4)可得:

rt

m m

e x x

x t x --+=

)1(1)(0

(5)

二、模型的建立

为了对以后一定时期内的人口数做出预测,我们首先从中国经济统计数据库

(http://211.86.245.155/index.aspx )上查到我国从1954年到2005年全国总人口的数据如表1。

表1 各年份全国总人口数(单位:千万)

1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程(程序见附录1)得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):

9959.0)y y

()y

?y

(1R 51

i 2

i

5

1

i 2i i

2=---

=∑∑==

由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲

线:

t

e t x 0336.0.0)12

.609871.180(19871

.180)(--+=

(6)

根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万):

6028.158)79(,5400.148)66(,6161.138)56(===x x x

结果分析:从附录1所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布,

由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。因此我们再选择1963年作为初始年份对表1中的数据进行拟合。

2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。运用Matlab 编程(程序见附录2)得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数

9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线:

t

e t x 0484.0)11

.694513.151(14513.151)(--+=

(7)

根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万):

145.5908 )70(,140.8168)57(,134.9190 )47(===x x x

结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布(当然均值与方差可能不同)因此用最小二乘法拟合所得到的结果应有较大的可信度。

3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab 编程(程序见附录3)得到相关的参数0.0477 ,153.5351 ==r x m ,可以算出可决系数

9987.02=R 得到中国各年份人口变化趋势的第三条拟合曲线:

t

e t x 0477.0)1705

.985351.153(15351

.153)(--+= (8)

根据曲线(7)我们可以对2010年(30=t )、2020年(40=t )、及2033年(53=t ) 进行预测得(单位:千万):

147.0172 )53(,141.8440 )40(,135.5357 )30(===x x x

结果分析:这一时期,国家虽然对人口大增长进行了干预,但国家的计划生育的政策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分布。所以我们的结果应是比较可信的。

我们分别根据拟合曲线(6)、(7)、(8)对各年份中国总人口进行预测得到结果如表2:

由上表可以看出:用拟合曲线(6)预测得到的数据比较大,在2024年总人口就已经超过了151.9662千万,而且一直以比较快的速度增长到2048年达到了166.7683千万。用拟合曲线(7)预测得到的数据偏小,到2048年人口只有148.558千万。相比较而言用拟合曲线(8)预测的数据比较接近附件1中的预测。画出图形如图1:

图1:对各年份全国总人口数的预测

模型Ⅱ:按年龄分布的Leslie 模型[2] 一、模型的准备

将人口按年龄大小等间隔地划分成m 个年龄组(譬如每10岁一组),模型要讨论在不同时间人口的年龄分布,对时间也加以离散化,其单位与年龄组的间隔相同。时间离散化为 2,1,0=t .设在时间段t 第i 年龄组的人口总数为m i t n i ,2,1),(=,定义向量

T m t n t n t n t n )](),(),([)(21 =,模型要研究的是女性的人口分布)(t n 随t 的变化规律,从而

进一步研究总人口数等指标的变化规律。

设第i 年龄组的生育率为i b ,即i b 是单位时间第i 年龄组的每个女性平均生育女儿的人数;第i 年龄组的死亡率为i d ,即i d 是单位时间第i 年龄组女性死亡人数与总人数之比,i i d s -=1称为存活率。设i b 、i s 不随时间t 变化,根据i b 、i s 和)(t n i 的定义写出)(t n i 与)1(+t n i 应满足关系:

?????

-==+=++=∑1

,,2,1),()1()

()1(11

m i t n s t n t n b t n i i i m

i i i i (9) 在(9)式中我们假设i b 中已经扣除婴儿死亡率,即扣除了在时段t 以后出生而活不

到1t +的那些婴儿。若记矩阵

?????

??

?

??

?

?????=--000

00012

1

121m m m s s s b b b b L

(10)

则(9)式可写作

)()1(t Ln t n =+ (11)

当L 、)0(n 已知时,对任意的 ,2,1=t 有

)0()(n L t n t = (12)

若(10)中的元素满足

(ⅰ)1,,2,1,0-=>m i s i ;

(ⅱ)m i b i ,2,1,0 =≥,且至少一个0>i b 。

则矩阵L 称为Leslie 矩阵。

只要我们求出Leslie 矩阵L 并根据人口分布的初始向量)0(n ,我们就可以求出t 时段的人口分布向量)(t n 。

二、模型的建立

我们以2001年为初始年份对以后各年的女性总数及总人口数进行预测,根据附件2中所给数据,以一岁为间距对女性分组。

(1) 计算2001年处在各个年龄上的妇女人数的分布向量)90,,2,1,0),

0(+= i n i (: 附件2给了2001年中国人口抽样调查数据,提取为表3

根据抽样调查的结果,可以算出2001年城市、镇、乡人口占2001年全国总人口的比率分别为:

6283.0,1297.0,242.0===x z s p p p

我们由表1数据知2001年全国总人口627.1270=Z (单位:千万),因此可以算出2001年城市、镇、乡的总人口分别为(单位:千万):

885.300=?=z p z s s 、548.160=?=z p z z z 、194.800=?=z p z x x 根据附件2给的2001年城市、镇、乡各个年龄段的女性比率,可以分别算出2001年城市、镇、乡处在第)90,,2,1,0(+= i i 年龄段的女性的总数分别为)0(,)0(,)0(321i i i n n n 。以城市为例,设2001年城市中处在i 年龄段妇女占城市总人口比率分别为i P ,则s i i Z P n ?=)0(1(镇、乡类似)。于是可以算出2001年处在第

)90,,2,1,0(+= i i 年龄段上的妇女总人数

)0()0()0()0(321i i i i n n n n ++=(见附录7)。

(2)计算处在第)90,,2,1,0(+= i i 年龄段的每个女性平均生育女儿的人数

)90,,2,1,0(+= i b i 。附件2中分别给出了2001年城市、镇、乡育龄妇女(15岁—49岁)的生育率(此处应该是包含男孩和女孩))90,,1,0(+= i i (15i 时都为0),则

可以分别算出2001年处在第)90,,1,0(+= i i 年龄段的城市、镇、乡育龄妇女总共生育的小孩数(包含男孩和女孩),记为:

)49,,16,15(,)49,,16,15(,)49,,16,15(321 ===i H i H i H i i i 。

以城市为例计算)49,,16,15(1 =i H i :`

)49,,16,15()

0(*)49,,16,15(111 ===i n b i H i i i (镇、乡类似)。

附件2中还分别给出了2001年市、镇、乡的男女出生人口性别比321,,c c c (女

100计),据此可以分别计算出城市、镇、乡女孩的出生率)3,2,1(100=+=

i c c v i

i

i 。由此

就可以求出2001年处在第)49,,15( =i i 年龄段的每个女性平均生育女儿的人数:

)49,,15()

0(3

32211 =?+?+?=i n v H v H v H b i i i i i ,

由于总和生育率:389.1b S 49

15

i i ==∑= 经计算得到总和生育率小于 1.8,误差很大,我们

对生育率进行修正:i 1i b *1)S)/S v 8.1((b +-?=具体计算结果见附录7。 (3) 计算第i 年龄段的女性总存活率率)90,,2,1,0(+= i d i :

记第)90,,2,1,0(+= i i 年龄段的女性的死亡率为i d 。附件2中分别给出了城市、镇、乡处在第)90,,2,1,0(+= i i 年龄段的女性死亡率)90,,2,1,0(,,321+= i d d d i i i ,则处在第i 年龄段的女性总死亡率)90,,2,1,0(+= i d i 为:

)90,,2,1,0()

0()

0()0()0(332211+=?+?+?=

i n n b n b n d d i i i i i i i i ,

于是总存活率为:i i d s -=1见附录4。用EXCEL 对计算出来的数据进行整理,然后运用

MATLAB 软件进行编程,计算出Leslie 矩阵,

于是可以用上面(12)式

)0()(n L t n t =

进行预测。

三、对模型结果作进一步讨论

我国人口发展形势复杂,目前人口的低生育水平面临着严峻的挑战,下面我们分别从如下方面分析预测我国人口发展将要面临的复杂局面。 (1)人口总量与劳动力人口的发展变化

根据考虑种群结构的Leslie 离散模型,利用2001年的数据建立人口预测模型。 通过分析,计算出我国人口的预测值,对应作出的我国劳动年龄人口与总人口的折线图如下:

图2 我国全国总人口与劳动年龄人口折线图

根据图2 可以知道从2001年到2023年预测我国全国总人口是呈现上升趋势的,随后几年呈现缓慢下降的趋势。总人口在2010年、2020年分别达到14.2609亿人和14.9513亿人,在2023年达到峰值14.985亿人,在2033年达到14.7455亿人。把预测数值与附件2中所提供的预测数值进行比较,发现我们预测的未来人口的高峰期提前10年。这一方面可能由我国男女的出生性别比例中女性所占的比例较小的原因;另一方面,我们计算出人口更替率仅为1.42(此为5年的均值),而中外专家对我国90年代中期以来的人口更替率的计算结果为1.8(见附录10),两者相差甚远,这说明附录---提供的数据可能不够真实,从而导致了我国人口峰值的预测年份提前。

根据图2,我国劳动年龄人口庞大,15-64岁的劳动年龄人口2010年为10.4421亿人,2013年将达到高峰10.4852亿人,随后劳动年龄人口呈现下降的趋势。由此,可知在相当长的时间内,我国不缺劳动力,但需要加强劳动力结构性的调整,同时由于我国计划生育等宏观政策的影响,近几年总和生育率已降低到1.8,并将稳定在1.8的水平上,所以经过较长的时期,我国的劳动年龄人口将有所降低。

(2)人口老龄化与人口抚养比

通过计算分析人口结构持续老龄化,运用Leslie离散模型,通过MATLAB软件计算出我国60岁以上与65岁以上的老龄人口数,做出散点图如下:

图3 我国老年人口预测值的折线图

从图3可以直观的看出我国老龄人口在持续增加,说明我国老龄化进程在加速。同时做出未来我国老龄人口占总人口的比例的折线图如下:

图4 我国老龄人口占总人口预测比例的折线图

从图3,图4得到:2001年我国60岁以上老年人口已达到1.5538亿人,占总人口的11.5693%。到2020年,60岁以上老年人口将达到2.907亿人比重为19.443%;65岁以上老年人口将达到2.0628亿人比重从2000年的8.009%增长到13.797%。预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%。综上可知我国老龄人口数量大,老龄化速度快,高龄趋势明显,加上我国人口基数大,所以我国是个老龄人口多的国家。

老龄化也在一定程度上导致了我国人口抚养比的不断增高。下面计算人口抚养比指数:

设21l ,,l 与2'1'l l 分别为男性与女性中具有劳动能力的年龄组,则j 时段具有劳动能力的人口为

∑∑==+-=2

'1

'2

1

l l i i l l i i )j ,i ((j)N K )j ,i (N )]j (K 1[L(j),

而)j (L )j (N -为j 时段由社会抚养的失去劳动能力与老人或尚未具有劳动能力的为成年

人的数量。定义社会的抚养比指数L(j)

L(j)

N(j))j (-=ρ,即平均每一劳动者抚养的无劳动

能力的人数。我们以0—14岁为没有劳动能力的儿童,以15-64岁为具有劳动能力的年龄劳动人口,以65岁及以上的为老龄人口。首先,通过MATLAB 编程计算出2002到2051年0-14岁、15-64岁、65岁及5以上三段的人数;其次,根据人口抚养比的含义,计算出每一年份的人口抚养比得出人口抚养比。得出的每年人口抚养比的折线图如下:

图5 预测人口抚养比

从图5 可以看出预测的以后各年的人口抚养比呈增长的趋势。人口抚养比比较高主要原因有:每年新生婴儿数目在增加;老龄化的加剧,老龄人口数量大;15-64岁年龄段中的人的残疾、生病而无劳动能力等。 (3)人口调控与管理

现阶段我国生育水平的不稳定性,根据建立的Leslie 模型,运用MATLAB 软件计算出2000年到2050年我国育龄妇女(15-49岁)人口,并做出的散点图如下:

2000

2005201020152020

202520302035204020452050

年份

百万人

图6 未来我国育龄妇女(15-49岁)人口预测

从图6中可以看出我国育龄妇女(15-49岁)人口在2010年左右到达到高峰,

2000

2005

2010

2015

2020

20252030

2035

2040

2045

2050

年份

百万人

图7 未来我国生育旺盛期育龄妇女(20-29)人数预测

从图7我们发现,我国生育旺盛期育龄妇女(20-29)人数在2012年将达到高峰,到2025年左右有进入一个小低谷,然后再2037年左右有达到一个小高峰。第二个我国生育旺盛期育龄妇女(20-29)人数小高峰的原因在于在2012年人口出生高峰期的女婴到2037年时达到生育旺盛期,因此,在2025年生育旺盛期育龄妇女(20-29)人数达到低谷时有回升的形势。

§6、误差分析与灵敏度分析

一、模型的残差分析:

1、运用Matlab 软件计算出用1954年到2005年的总人口数进行拟合产生的残差,再利用EXCEL 作出残差的散点图如下:

图8 残差分析

从图8可以看出残差在坐标轴0

x 上下波动,但是,不是呈现正态分布,并且残差绝对值之和为57.9992,是比较大,因此拟合的效果不太好。

2、利用1963年到2005年的总人口数,根据Logistic模型的形式,用Matlab软件进行拟合,并求出残差序列,再利用EXCEL进行处理,并作出残差散点图如下:

图9 残差分析图

通过图9,可以看出残差值大致分布在坐标轴x的上下,呈现对称分布,又有Matlab 软件计算出拟合的残差绝对值之和为27.8046,因此效果较好。

3、利用1980年到2005年的人口总数居,同样运用Matlab、EXCEL软件进行分析、处理,作出散点图如下:

图10 残差分析图

通过Matlab 软件计算,得出拟合的残差绝对值之和为10.1699,从图10可以看出,图形基本关于坐标轴0x 对称,所以你和效果比较好。 二、灵敏度分析:

1、在不同的总合生育率k 下按照前面的方法分别计算从2001年到2050年全国人口总数的预测值(程序见附录6),并画出图形如图11

2000

2005201020152020

20252030

2035204020452050

年份

千万人

图11:在不同的k 值下对各年份全国总人口数的预测

由图11可以看出当k 值很小时人口增长比较缓慢,达到峰值后人口数量很快下降出现严重负增长;当k 值很大时人口增长速度很快,达到峰值后下降的速度缓慢,在此情况下人口数量急剧膨胀。只有当k 值适中时,总人口增长才比较稳定。

2、再在不同的总和生育率k 下按照前面的方法分别计算从2001年到2050年全国老龄化变化趋势(程序见附录6),并画出图形如图12

2000

2005201020152020

202520302035204020452050

年份

老龄化指数

图12:在不同的k 值下对各年份老龄化变化趋势

由图12可以看出k 值越小,老龄化增大的速度越快;k 值越大老龄化指数增长平缓年龄结构稳定,有利于社会发展。

由以上分析可知国家在制定人口政策时要多方面考虑,如果只看重对人口总数的控制可能导致社会老龄化严重、劳动力不足这显然是不利于社会经济发展的;相反如果为了防止社会老龄化加快而放任人口的增长,也会导致社会人口过多对资源和环境带来巨大压力。因此只有掌握好一个“平衡点”正确制定政策才能使国民经济持续增长,人民生活水平不断提高。

§7、模型的评价与推广

一、模型的优点:

1、在用模型Ⅰ对各年全国人口总数预测时结合实际情况,分别用不同时间段的数据拟合确定了三个预测函数。并对三个函数预测的数据进行了对比分析,使模型的计算结果更加准确。

2、利用EXCEL 软件对数据进行处理并作出各种平面图,简便,直观、快捷;

3、运用多种数学软件进行计算,取长补短,使计算结果更加准确;

4、在模型Ⅱ中我们充分考虑到不同年龄的个体具有不同的生育能力和死亡率,采用leslie 模型,建立年龄结构的离散模型,并通过合理假设,在时间跨度不大的前提下,对人口数量仅此进行了预测,得到人口数量变化趋势图2与<<国家人口发展战略研究:人口发展预测>>课题中未来我国总人口,劳动人口及人口扶养比预测 及未来我国人口老龄化预测趋势图基本一致。因为原始数据得到的人口总和生育率跟实际情况不符,我们对此进行了合理修正,使预测更为准确。在模型Ⅰ中我们还进行了参差分析,在模型Ⅱ中我们对不同的平均妇女生育胎数下人口总数及老龄化趋势进行了分析,得到适合平均生育胎数的最佳值。 二、模型的缺点:

在模型假设中我们i b 及i p 不随时段的变迁而改变这一理想状态下,但出生率及死亡

率会随时间的变化而有所该变,本模型没有建立i b 与死亡率随时间变化的动态模型,因而存在一定的误差; 三、模型的改进:

随着人民的生活水平的提高和医疗卫生的改善,各年龄的死亡率不断下降,存活率不断提高。因此我们可以对Leslie 模型进行进一步改变:

记j 时段i 年龄组中女性所占的百分比为)(j K i

,并设为育龄女性的年龄组,则j 时

段新生儿为

∑=+)

,()()()1,0(j i N j K j b j N i i

m

i j i N s j i N i ,,1),

,1()1,(1 =-=+-

我们引入控制变量),(j i h ,使得 )

,(*)(j i h j b i β=

∑=2

1

),(i i i j i h =1,这里151

=i

,49=j i ,),(j i h 称为女性生育模式,我们将lestie 矩阵变

成:

j

j N j B j A N *)]()([1+=+

其中

??

??????????????=-0)j (s 0

00

)j (s 00)(1m 0

j A

??

??

?

??

??

??

?

??=000000

)

()(00)(''2

1

j b j b j B i i )(),()()('

j K j i h j j b i i β=

在一定时期内)(j s i (这里j 从0到90),β

为平均生育胎数,),(j i h 和)(j K i 可视为

与j 无关的常数,我们可以通过控制结婚年龄和生育两胎间的年龄差来求),(j i h 的最佳值,从而达到控制人口数量和年龄结构的目的。 四、模型的推广:

本文首先不考虑年龄结构对人口增长的影响,建立Logistic 人口预测模型;然后,逐步改进,考虑年龄结构对人口增长的影响,建立Leslie 模型,对人口增长进行预测,这种由简到繁,逐步加深的思路,可以应用到较复杂问题的处理上。

参考文献

[1] 姜启源,谢金星,叶俊.数学模型[M].北京:.2003年8月第三版; [2] 姜启源.数学模型[M].北京: 高等教育出版社.1987年4月第一版; [3] 于洪彦.Excel 统计分析与决策[M].北京:高等教育出版社.2006年4月; [4] 胡守信,李柏年.基于MATLAB 的数学实验[M].北京:科学出版社.2004年6月;

[5] 扬启帆,康旭升,等.数学建模[M].北京: 高等教育出版社.2006年5月;

[6]于学军.《中国人口科学》2000年第2期,时间:2000-4-6,中国人口信息网.

附录

附录1:

t=0:51; %令1954年为初始年

x=[60.2 61.5 62.8 64.6 66 67.2 66.2 65.9 67.3 69.1 70.4 72.5 74.5 76.3 78.5 80.7 83 85.2 87.1 89.2 90.9 92.4 93.7 95 96.259 97.5 98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756];

[c,d]=solve('c/(1+(c/60.2-1)*exp(-5*d))=67.2','c/(1+(c/60.2-1)*exp(-20*d))=90.9','c','d') ;%求初始参数

b0=[ 241.9598, 0.02985]; %初始参数值

fun=inline('b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*t))','b','t');

[b1,r1,j1]=nlinfit(t,x,fun,b0)

y= 180.9871./(1+( 180.9871/60.2-1).*exp( -0.0336.*t)); %非线性拟合的方程

plot(t,x,'*',t,y,'-or') %对原始数据与曲线拟合后的值作图

R1=r1.^2;

R2=(x-mean(x)).^2;

R=1-R1/R2 %可决系数

W=sum(abs(r1)) %残差绝对值之和

附录2:

t=46:3:94

y= 180.9871./(1+( 180.9871/60.2-1).*exp( -0.0336.*t))%对总人口进行预测

t=0:42; %令1963年为初始年

x=[69.1 70.4 72.5 74.5 76.3 78.5 80.7 83 85.2 87.1 89.2 90.9 92.4 93.7 95 96.259 97.5 98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756];

[c,d]=solve('c/(1+(c/69.1-1)*exp(-5*d))=78.5','c/(1+(c/69.1-1)*exp(-20*d))=103.008','c','d '); %求初始参数

b0=[ 134.368,0.056610]; %初始参数值

fun=inline('b(1)./(1+(b(1)/69.1-1).*exp(-b(2).*t))','b','t');

[b1,r1,j1]=nlinfit(t,x,fun,b0)

y=151.4513./(1+(151.4513/69.1-1).*exp( -0.0484.*t)); %非线性拟合的方程

plot(t,x,'*',t,y,'-or') %对原始数据与曲线拟合后的值作图

R1=r1.^2;

R2=(x-mean(x)).^2;

R=1-R1/R2 %可决系数

W=sum(abs(r1)) %残差绝对值之和

附录3:

t=37:3:85

y=151.4513./(1+(151.4513/69.1-1).*exp( -0.0484.*t))%对总人口进行预测

t=0:25; %令1980年为初始年

x=[98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756];

[c,d]=solve('c/(1+(c/98.705-1)*exp(-5*d))=105.851','c/(1+(c/98.705-1)*exp(-8*d))=111.026', 'c','d'); %求初始参数

b0=[ 109.8216, - 0.19157]; %初始参数值

fun=inline('b(1)./(1+(b(1)/98.705-1).*exp(-b(2).*t))','b','t');

[b1,r1,j1]=nlinfit(t,x,fun,b0)

y= 153.5351./(1+(153.5351/98.705-1).*exp( -0.0477.*t)); %非线性拟合的方程

plot(t,x,'*',t,y,'-or') %对原始数据与曲线拟合后的值作图

R1=r1.^2;

R2=(x-mean(x)).^2;

R=1-R1/R2 %可决系数

W=sum(abs(r1)) %残差绝对值之和

t=20:3:53

y= 153.5351./(1+(153.5351/98.705-1).*exp( -0.0477.*t))%对总人口进行预测

附录4:

计算0-14岁,15-64岁,65岁及以上的程序、绘画出未来我国育龄人数的程序

N=[0.680891272 0.58459172 0.584558207 0.692220217 0.72411021 0.775536041 0.847368918

0.834418703 0.917922042 0.951466819 1.070015717 1.249256063 1.199263988 1.202198525

1.274218917 1.111050839 0.992314425 0.893797544 0.874657347 0.984356877 0.859576778 0.85215346

0.90864418 0.897944807 0.880539323 1.019086724 1.04218667 1.114823731 1.192867199

1.203566572 1.272973995 1.328513576 1.254992403 1.333819445 1.103186123 1.22470307

1.220643442 1.236736319 1.390726415 0.980765111 0.646684069 0.785660623 0.701627592

0.910420112 0.960157646 0.914258713 0.953980568 0.927429956 0.851007759 0.825482359

0.807942823 0.736552002 0.69043204 0.60580295 0.615510624 0.554785663 0.50370135

0.480051762 0.468722817 0.455364059 0.484386541 0.447344681 0.420164498 0.44238033

0.426529091 0.428183875 0.39132953 0.380409129 0.385339967 0.327924574 0.334697711

0.307330012 0.262864834 0.270663183 0.235872165 0.208725495 0.212001549 0.178456772

0.164260316 0.149842833 0.138734916 0.109899949 0.097358277 0.0765762 0.0638135

0.055794123 0.049396016 0.0382881 0.033544777 0.023870616 0.070211606];

N0=N'; %第0年(2001年)的女性个年龄段的人口数

A=eye(90);

b=[0.974906966 0.999321231 0.99772433 0.999247616 0.999567418 0.999180663 0.999887948

0.999387596 0.999618586 0.999985672 0.999389434 0.999724354 0.999801796 0.999627626

0.999704795 0.999639686 0.999728462 0.999974533 0.999173327 0.998954118 0.999441067

0.999357392 0.999290675 0.998999176 0.999881604 0.998896347 0.998355939 0.999135339

0.999074527 0.998872652 0.999180794 0.998918159 0.999046112 0.999042354 0.999396027

0.998624972 0.998252716 0.999597855 0.998710945 0.999003274 0.999443444 0.999141415

0.998772101 0.998940505 0.997905005 0.998374562 0.997783774 0.997596666 0.997344906

0.996954499 0.996669784 0.996030759 0.995006639 0.996157488 0.994647744 0.995779435

0.995652313 0.99577713 0.992477806 0.994969564 0.988130537 0.989284868 0.988703961

0.988302563 0.98420824 0.984495416 0.985298735 0.980062089 0.978928307 0.977358446

0.971126989 0.969303899 0.969979818 0.96405059 0.961740312 0.96729706 0.948302346

0.946571559 0.949641387 0.935949391 0.912489482 0.9261805 0.923757863 0.928757906

0.918230333 0.887761389 0.885306858 0.875178086 0.882495752 0.824428701];

for i=1:90

A(i,:)=A(i,:)*b(1,i);

end

A;

c=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.478E-05 0.000322169

0.000358246 0.001004604 0.004683367 0.011011165 0.033616492 0.057875394 0.074871727

0.069182006 0.076039141 0.06724895 0.052429406 0.043732464 0.034350502 0.024632733

0.023252532 0.018343847 0.014701275 0.011039961 0.007117557 0.005094843 0.00359291

0.002514858 0.002484781 0.001764709 0.001471644 0.000676953 0.000265476 0.000401474

0.000408779 0.000110447 0.000192401 0.000389421 0.000224069 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

c1=1.295274487*c;

M=sum(c1'); %总合生育率

d=zeros(91,1);

B=[c1;A];

L=[B,d]; %构造的lestie矩阵

for i=0:49

H=L^i*N0; %第i年人口总数

Q(1,i+1)=sum(H([16:50],:)); %第i年15-49育龄妇女总数

P(1,i+1)=sum(H([21:30],:)); %第i年20-29生育旺盛期妇女总数

end

x=2001:2050;

y1=Q*10;

y2=P*10;

plot(x,y1,'*')

plot(x,y2,'-or')

grid on

附录5:

计算2001到2051年的人口总数程序

p=0.464429182; %女性占总人口的比例

N=[0.680891272 0.58459172 0.584558207 0.692220217 0.72411021 0.775536041 0.847368918

0.834418703 0.917922042 0.951466819 1.070015717 1.249256063 1.199263988 1.202198525

1.274218917 1.111050839 0.992314425 0.893797544 0.874657347 0.984356877 0.859576778 0.85215346

0.90864418 0.897944807 0.880539323 1.019086724 1.04218667 1.114823731 1.192867199

1.203566572 1.272973995 1.328513576 1.254992403 1.333819445 1.103186123 1.22470307

1.220643442 1.236736319 1.390726415 0.980765111 0.646684069 0.785660623 0.701627592

0.910420112 0.960157646 0.914258713 0.953980568 0.927429956 0.851007759 0.825482359

0.807942823 0.736552002 0.69043204 0.60580295 0.615510624 0.554785663 0.50370135

0.480051762 0.468722817 0.455364059 0.484386541 0.447344681 0.420164498 0.44238033

0.426529091 0.428183875 0.39132953 0.380409129 0.385339967 0.327924574 0.334697711

0.307330012 0.262864834 0.270663183 0.235872165 0.208725495 0.212001549 0.178456772

0.164260316 0.149842833 0.138734916 0.109899949 0.097358277 0.0765762 0.0638135

0.055794123 0.049396016 0.0382881 0.033544777 0.023870616 0.070211606];

N0=N'/10; %第0年(2001年)的女性各个年龄段的人口数(千万)

N00=N0/10 %把单位化成亿(人)

A=eye(90);

b=[0.974906966 0.999321231 0.99772433 0.999247616 0.999567418 0.999180663 0.999887948

0.999387596 0.999618586 0.999985672 0.999389434 0.999724354 0.999801796 0.999627626

0.999704795 0.999639686 0.999728462 0.999974533 0.999173327 0.998954118 0.999441067

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口 Leslie 矩阵模型的基本概念 参数定义[11] 我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到: x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n 注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。 其他关于人口的参数: 1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率 2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率 Leslie 矩阵 1.转移过程 在一个时间周期内x k?1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子: 11(1)()(1()),1,2, k k k x i x i d i i n --+=-= (4-1) 下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为 1 ()2 k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下: 1111 ()() ()2 n k k k i x i b i x i --==∑ (4-2) 2. 人口发展模型 1 11111111 11 1(0) (1)(1)()22 2 2 1(0) 00 001(1)00001(1) 0k k k k k k k k k b b b n b n d x x d d n --------??- ? ?- ? =? ?- ? ? ?--? ? (4-3)

人口增长模型的确定

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。 关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 1.1 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 1.2 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。 17801800182018401860188019001920194019601980 050 100 150 200 250

图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0)起始年人口容纳量 N(t)t年后人口容纳量 t年份 r增长率 五、模型建立 5.1 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。 当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。为了利用微积分这一数学工具,将N(t)视为连续、可微函数。记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。根据r是常数的基本假设,于是N(t)满足如下的微分方程: dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出: N(t)=N(0)e rt(5-2) 表明人口将按指数规律无限增长(r>0)。将以t年为单位,上式表明,人口以e r为公

人口预测模型经典

中国人口预测模型 摘要 本文对人口预测的数学模型进行了研究。首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下: 其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为 负指数函数,并给出了反映城乡人口迁移的人口转移向量。 最后我们BP神经网络模型检验以上模型的正确性 关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络

一、问题重述 1. 背景 人口增长预测是随着社会经济发展而提出来的。由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。而人口增长预测是对未来进行预测的各环节中的一个重要方面。准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。 2. 问题 人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。例如,中国人口预期寿命约为70岁左右,因此,长期人口预测最好预测到70年以后,中期40—50年,短期可以是5年、10年或20年。根据2007年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。 二、问题的基本假设及符号说明 问题假设 1. 假设本问题所使用的数据均真实有效,具有统计分析价值。 2. 假设本问题所研究的是一个封闭系统,也就是说不考虑我国与其它国家的人口迁移问题。 3. 不考虑战争 瘟疫等突发事件的影响 4. 在对人口进行分段处理时,假设同一年龄段的人死亡率相同,同一年龄段的育龄妇女生育率相同。 5. 假设各年龄段的育龄妇女生育率呈正态分布 6.人类的生育观念不发生太大改变,如没有集体不愿生小孩的想法。 7.中国各地各民族的人口政策相同。 符号说明 ()i a t --------------------第t 时间区间内第i 个年龄段人口总数 ()i c t --------------------第t 时间区间内第i 个年龄段人口总数占总人口的比例 ()k i c t --------------------第t 时间区间内第i 个年龄段中第k 年龄值人口总数占总人口 的比例 ()A t --------------------第t 时间区间内各年龄段人口总数的向量 ()P t --------------------第t 时间区间各年龄段人口总数向量转移矩阵

数学建模logistic人口增长模型

数学建模l o g i s t i c人口 增长模型 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测的效果好并结合中国实情分析原因。 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2)

设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再 增长,即增长率0)(=m x r ,代入(2)式得 m x r s = ,于是(2)式为 )1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ? ??=-=0 )0()1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

leslie人口增长模型

人口增长预测模型 摘要 本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。 模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。 关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

Leslie人口模型及例题详解

Leslie 人口模型 现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。 模型假设 (1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化; (2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记 )](,),(),([)(21t n t n t n t n m = 第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记 1,i i s d =-假设,i i b d 不随时间变化; (3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响; (4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。 建立模型与求解 根据以上假设,可得到方程 )1(1+t n = ∑=m i i i t n b 1 )( )()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为 )()1(t Ln t n =+ 其中,L =?????? ? ? ??--00000000 0121121m m m s s s b b b b (1) 记 )]0(,),0(),0([)0(21m n n n n = (2) 假设n (0)和矩阵L 已经由统计资料给出,则 t 1 +t

人口增长数学模型

软件学院 人口增长模型数学建模报告 专业:软件工程 班级:卓越131班 学号:201370044120 学生姓名:郭俊成 指导教师:于志云 2015 年11 月12 日 题目:计划生育政策调整对人口数量、结构及其影响的研究

摘要 本论文针对2007年国家人口发展战略研究课题组发布的《国家人口发展战略研究报告》中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年”的论述做了研究。论文根据计划生育实施之前1949-1980年的人口普查数据,使用最小二乘法拟合并建立灰色预测模型,利用数学软件,预测出了如果未实行计划生育现今中国人口的数量,从而对研究报告中“少生4亿”的结论产生质疑。 同时,本论文针对2006年全国老龄工作委员会发布的《中国人口老龄化发展趋势预测研究报告》中关于“2051年,中国老年人口规模将达到峰值4.37亿,老龄化水平基本稳定在31%左右”的论述做了研究,根据近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测40年到70年的老龄人口数量和老龄化率,验证了报告中的关于老龄人口数目持续增加、数目庞大、老龄化严重的预测。 论文基于近期的计划生育调整、“单独二孩”政策的逐步实施、城镇化所导致的人口迁移等现象,结合江苏省的实际情况,利用差分方程模型、LESLIE矩阵,分析新政策对江苏人口数量的影响。论文从出生率着手,重点研究了新政策对江苏省14岁以下儿童、60岁以上老人的影响,分析了儿童和老人数量的变化对人口结构、教育改革、养老的直接影响作用。 关键字 单独二孩、人口老龄化、Logistic 模型、差分方程模型、LESLIE模型 一、问题描述

2019年人口增长的预测.doc

人口增长的预测 关键字:人口数平衡点方程模型运动预测曲线稳定增长人口 一题目: 请在人口增长的简单模型的基础上。 " (1)找到现有的描述人口增长,与控制人口增长的模型; " (2)深入分析现有的数学模型,并通过计算机进行仿真验证; " (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测; " (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。 二摘要: 本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。按照这个假设,。用参数=3.0,r=0.0386, =1908, =14.5。画出N=N(t)的图像,作为人口增长模型的一种近似。 做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。 用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。 三问题的提出 1.Malthus模型 英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。根据这个假设有: , (1.1) 这是一个最简单的可分离变量方程,用符号微分方程求解器desolve容易求得方程的解为:如果人口的增长符合Malthus的模型,则意味着人口数量呈指数级数增长,最终结果是人口爆炸。 2.Logistic模型 1938年,荷兰生物数学家Verhulst引入常数,用来表示自然环境条件所能容许的最大人口数。并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。按照这个假设(1.1)式可改为: ,(2.1) 上述方程为可分离变量方程,可直接求解。也可用符号微分方程解题器求它的解: N=dsolve(’DN=r*(1-N/Nm)*N’,’N(t0)=N0’) N=Nm/(1+exp(-r*t)*exp(t0*r)*(Nm-N0)/N0) 化简后得: 四利用数学模型对中国人口的预测

leslie人口增长模型模型

l e s l i e人口增长模型 模型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

人口增长预测模型 摘要 本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。 模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为亿、亿、亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到亿人,在2020年达到亿人,在2023年达到峰值亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达亿人,比重达%;65岁以上老年人口达亿人,比重达%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。 关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增 长,即增长率0)(=m x r ,代入(2)式得 m x r s = ,于是(2)式为 )1()(m x x r x r - = (3)

将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0) 解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5 得到1954-2005实际人口与理论值的结果: 根据《国家人口发展战略研究报告》 我国人口在未来30年还将净增2亿人左右。过去曾有专家预测(按照总和生育率2.0),我国的人口峰值在2045年

基于人口增长模型的数学建模(DOC)

数学建模论文 题目:人口增长模型的确定专业、姓名: 专业、姓名: 专业、姓名:

人口增长模型 摘要 随着人口的增加,人们越来越认识到资源的有限性,人口与资源之间的矛盾日渐突出,人口问题已成为世界上最被关注的问题之一。问题给出了1790—1980年间美国的人口数据,通过分析近两百年的美国人口统计数据表,得知每10年的人口数的变化。预测美国未来的人口。对于问题我们选择建立Logistic模型(模型2)现实中,影响人口的因素很多,人口也不能无限的增长下去,Logistic 模型引进常数N 表示自然资源和环境所能承受的最大人口数,因而得到了一个贝努利方程的初值问题公式,从实际效果来看,这个公式较好的符合实际情况的发展,随着时间的递增,人口不是无限增长的,而是趋近于一个数,这个即为最大承受数。我们还同时对数据作了深入的探讨,作数据分析预测,通过观测比较选择一个比较好的拟合模型(模型3)进行预测。预测接下来的每隔十年五次人口数量,分别为251.4949, 273.5988 , 293.4904 , 310.9222 325.8466。关键词:人口预测Logistic模型指数模型

一、问题重述 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 年份1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 人口(?106) 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 年份1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 人口(?106) 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。 二、问题分析 人口预测是一个相当复杂的问题,影响人口增长除了人口数与可利用资源外,还与医药卫生条件的改善,人们生育观念的变化等因素有关…….可以采取几套不同的假设,做出不同的预测方案,进行比较。 人口预测可按预测期长短分为短期预测 (5年以下)、中期预测(5~20年)和长期预测(20~50年)。在参数的确定和结果讨论方面,必须对中短期和长期预测这两种情况分开讨论。中短期预测中所用的各项参数以实际调查所得数据为基础,根据以往变动趋势可较准确加以估计,推算结果容易接近实际,现实意义较大。 三、问题假设 1.在模型中预期的时间内,人口不会因发生大的自然灾害、突发事故 或战争等而受到大的影响; 2.假设美国人口的增长遵循马尔萨斯人口指数增长的规则 3.假设人口增长不受环境最大承受量的限制 四、变量说明

人口增长模型综述

人口增长模型综述 一、引言 当前中国的人口正在以一个较快的速度增长,随着人口的增长,环境和社会的压力正在不断的加大,然而,环境的承载能力是有限的,人口不可能无限制的,故人口最后会趋于一个稳定的数字。世界上大多数国家的人口年龄结构,都是随着人口转变以及社会经济发展,逐渐从年轻型、成年型到老年型转变的。西方发达国家的人口转变是伴随着工业化和现代化逐步深化的渐进过程,经历了大约150多年的时间。我国则是在经济不发达的条件下进行的,且明显带有人为的痕迹,经历着更加迅速的人口转变,人口年龄结构也发生了比较快的变化,即从相对年轻型人口结构,直接转变为相对老年化的人口结构。因此,对于人口的未来趋势的预测将变得尤为重要,产业、服务、环境等方面都依赖于人员,只有对未来人口的发展趋势进行准确的把握,才能够及时地对社会各个部门进行调控,以缓解人口对于社会环境的压力!利用数学建模的知识建立人口增长模型,进而才能够得到较为准确的未来的人口数据。 然而,何为人口增长模型?人口增长模型[1]就是通过人口现状及对影响人口发展的各种因素的假设,对未来人口的规模、结构、变动和趋势所做的测算。当前人口老龄化,人口出生率以及人口死亡率等问题已经成为人口问题的焦点问题,同时,对于一个城市或国家的人口预测还必须考虑到移民率等。 二、中国人口增长研究的现状[6] 新中国成立60年来,中国人口发展经历了两个不同的时期:一是实行计划生育政策之前,人口发展处于无计划、自发的高增长时期;二是实行计划生育政策之后,人口发展逐步走向有计划、可控制的平稳增长时期。这两个不同发展时期的区别,不仅表现在出生率、死亡率的变化上,而且还表现在人口发展模式的转变,以及人口年龄结构的变化上。 现如今,中国面临着严峻的人口压力,我们的国家虽然地大物博,然而人均资源占有量确实相当的稀少,因此,解决人口增长问题已经变得迫在眉睫。中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 当前我国对于人口增长预测的模型主要考虑到了环境所能接受的最大数量,人口出生率,人口死亡率,人口老龄化,以及平均寿命等因素对于未来人口的增长所带来的影响。其中人口老龄化是最近几年中国人口发展出现的新问题。 一般来说,当前普遍是通过莱斯利模型,马尔萨斯模型为基础模型,对其中

Leslie矩阵模型

Leslie 矩阵模型 本节将以种群为例,考虑种群的年龄结构,种群的数量主要由总量的固有增长率决定,但是不同年龄结构动物的繁殖率和死亡率有着明显的不同,为了更精确地预测种群的增长,在此讨论按年龄分组的种群增长预测模型,这个向量形式的差分方程是Leslie 在20世纪40年代用来描述女性人口变化规律的,虽然这个模型仅考虑女性人口的发展变化,但是一般男女人口的比例变化不大。 假设女性最大年龄为s 岁,分s 岁为n 个年龄区间: 年龄属于i t ?的女性称为第i 组,设第i 组女性人口数目为 ),,2,1(n i x i Λ=,称T n x x x x ),,,(21Λ=为女性人口年龄分布向量,考虑x 随 k t 的变化情况,每隔 n s 年观察一次,不考虑同一时间间隔内的变化(即将时间离散化)。设初始时间为0t ,n ks t t k +=0时间的年龄分布向量为 T k n k k k x x x x ),,,()()(2)(1)(Λ=,这里只考虑由生育、老化和死亡引起的人口 演变,而不考虑迁移、战争、意外灾难等社会因素的影响。 设第i 组女性的生殖率(已扣除女婴的死亡率)为i a (第i 组每位女性在n s 年中平均生育的女婴数,0≥i a ),存活率i b (第i 组女性在 n s 年仍活着的人数与原来人数之比,10≤

第2讲 Leslie矩阵模型

3.4 Leslie 矩阵模型 本节将以种群为例,考虑种群的年龄结构,种群的数量主要由总量的固有增长率决定,但是不同年龄结构动物的繁殖率和死亡率有着明显的不同,为了更精确地预测种群的增长,在此讨论按年龄分组的种群增长预测模型,这个向量形式的差分方程是Leslie 在20世纪40年代用来描述女性人口变化规律的,虽然这个模型仅考虑女性人口的发展变化,但是一般男女人口的比例变化不大。 假设女性最大年龄为s 岁,分s 岁为n 个年龄区间: n i n is n s i t i ,,2,1,,)1( =??? ???-=? 年龄属于i t ?的女性称为第i 组,设第i 组女性人口数目为 ),,2,1(n i x i =,称T n x x x x ),,,(21 =为女性人口年龄分布向量,考虑x 随 k t 的变化情况,每隔n s 年观察一次,不考虑同一时间间隔内的变化(即 将时间离散化)。设初始时间为0t ,n ks t t k +=0时间的年龄分布向量为 T k n k k k x x x x ),,,()()(2)(1)( =,这里只考虑由生育、老化和死亡引起的人口 演变,而不考虑迁移、战争、意外灾难等社会因素的影响。 设第i 组女性的生殖率(已扣除女婴的死亡率)为i a (第i 组每位女性在n s 年中平均生育的女婴数,0≥i a ),存活率i b (第i 组女性在 n s 年仍活着的人数与原来人数之比,10≤

人口增长模型的确定

人口增长模型的确定 Prepared on 22 November 2020

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。 图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想

到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0) 起始年人口容纳量 N(t) t年后人口容纳量 t 年份 r 增长率 五、模型建立 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。

Leslie矩阵

1提出:Leslie 在上世纪40年代为描述女性人口变化规律提出的矩阵。 矩阵P= ????????? ???????????--0000000000000110 1210n n n P P P F F F F F ,其中 1,...,,0,0;,...,1,0,0-=>=≥n i i P n j F i j 称矩阵P 为Leslie 矩阵。 注1:特点:Leslie 矩阵的特点是:非零元只出现在第一行和次对角线上。 2. 基本概念和性质 基本概念:设矩阵的特征值为n λλλ,...,,10,将它们的模按从大到小的顺序排列(不妨设为):n λλλ≥≥≥...10,则称0λ为矩阵的主特征值,如果10λλ>,则称0λ为严格主特征值。 Leslie 矩阵P 的几个基本性质: (1)特征多项式为: )...(...)()()(110221011001n n N n n n F P P P F P P F p F p ---+-----=λλλλλ 它有唯一一个正的单特征值0λ(重数为1),且为主特征值。 (2) 如果λ为L 矩阵P 的一个非零特征值,则 T n n P P P P P P )...,...,,,1(1102100λ λλαλ-= 为与λ对应的一个特征向量。 (3) 若L 矩阵第一行有两个相临元素非零,则它的唯一正特征根0λ为严格主特征值。 (4)若m k k k ,...,,21是L 矩阵中第一列中非零元素所处的列数,且m k k k ,...,,21互素,则0λ为严格主特征值。 3. Leslie 矩阵基本算法 将生物种群所有成员按年龄大小等间隔地划分为n 个年龄组,比如每10岁或每5岁或1岁为一个年龄组,与年龄的离散化相对应,时间也离散为时段,并且时段的间隔与年龄区间大小相等,即以 每10岁或每五岁为一个时段。 种群是通过雌性个体的繁殖而增长的, 所以用雌性个体数量的变化为研究对象比较方便,下面提到的种群数量仅指其中的雌性。 设时段k 第i 个年龄组的成员数量为 ()i x k ,0,1,2,,i=1,2,,n k = ,第 i 年龄组的繁殖率为 i b ,即第i 年龄组每个雌性个体在一个时段内平均繁殖的数量,

文本预览