当前位置:文档之家› 高层建筑结构在罕遇地震影响下的弹塑性时程分析研究_李志山

高层建筑结构在罕遇地震影响下的弹塑性时程分析研究_李志山

高层建筑结构在罕遇地震影响下的弹塑性时程分析研究_李志山
高层建筑结构在罕遇地震影响下的弹塑性时程分析研究_李志山

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。 (3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,

房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻部位的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越大, 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,图所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝。

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱会出现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅,由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏8.1级)的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和1995 年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

地震带来的危害

地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 地震所造成的直接灾害有: 建筑物与构筑物的破坏,如房屋倒塌、桥梁断落、水坝开裂、铁轨变形等等。地面破坏,如地面裂缝、塌陷,喷水冒砂等。山体等自然物的破坏,如山崩、滑坡等。海啸、海底地震引起的巨大海浪冲上海岸,造成沿海地区的破坏。此外,在有些大地震中,还有地光烧伤人畜的现象。地震的直接灾害发生后,会引发出次生灾害。 地震引起的次生灾害主要有; 火灾,由震后火源失控引起;水灾,由水坝决口或山崩壅塞河道等引起;毒气泄漏,由建筑物或装置破坏等引起;瘟疫,由震后生存环境的严重破坏所引起。 泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流具有突然性以及流速快,流量大,物质容量大和破坏力强等特点。发生泥石流常常会冲毁公路铁路等交通设施甚至村镇等,造成巨大损失 滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、雨水浸泡、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。俗称“走山”、“垮山”、“地滑”、“土溜”等。 海啸就是由海底地震、火山爆发、海底滑坡或气象变化产生的破坏性海浪,海啸的波速高达每小时700~800千米,在几小时内就能横过大洋;波长可达数百公里,可以传播几千公里而能量损失很小;在茫茫的大洋里波高不足一米,但当到达海岸浅水地带时,波长减短而波高急剧增高,可达数十米,形成含有巨大能量的“水墙”。海啸主要受海底地形、海岸线几何形状及波浪特性的控制,呼啸的海浪冰墙每隔数分钟或数十分钟就重复一次,摧毁堤岸,淹没陆地,夺走生命财产,破坏力极大。全球的海啸发生区大致与地震带一致。全球有记载的破坏性海啸大约有260次左右,平均大约六、七年发生一次。发生在环太平洋地区的地震海啸就占了约80%。而日本列岛及附近海域的地震又占太平洋地震海啸的60%左右,日本是全球发生地震海啸并且受害最深的国家。

地震对建筑物破坏的原理分析与监舍防震设计

地震对建筑物破坏的原理分析与监舍防震设计 论文通过地震破坏建筑物的原理和监舍特点分析,提出了监舍的防震设计目标和特点。 标签:地震监舍防震设计 0 引言 云南省是我国地震灾害的高发地区。1976年唐山大地震以来,我国共发生6级以上强破坏性地震56次,其中有15次發生在云南,占全国总数的五分之一以上。为保证在押犯人的生命安全,在监舍设计时必须对予以考虑。 1 建筑物破坏原理 地震对建筑物的破坏作用主要有三种因素:振动破坏、地基失效破坏、次生效应破坏。 1.1 振动破坏 地震波引起的地面振动通过基础传递到建筑物上,引起建筑物本身的振动。建筑物一般是按静力设计和建造的,耐受振动的强度有一定的限度,其破坏程度取决于地震力的大小;但地震波对建筑物的破坏作用很复杂,破坏程度常由许多因素综合决定,包括地震波频谱组成和延续时间,建筑物的材料性质,动力特性,以及地基条件和地形等环境因素。 1.2 地基失效破坏 当地基强度较小或加速度很大时,地表层或下垫层可能达到屈服极限;此时岩石或土层不再具有完全弹性,将产生永久变形,进而导致地基承载力下降甚至丧失,地基产生变位、移动。虽然地基破坏消耗了地震波的能量,减小了震动对建筑物的破坏;但地基失效同时又造成另一种灾害,如建筑物下沉、地基不均匀沉降和水平变位,进而导致建筑物结构破坏。 1.3 次生效应破坏 在特定的地质、环境条件下,地震可能引起崩塌、滑坡或泥石流等次生灾害。在陡峭的山区或丘陵地带,破碎的岩石和松散的表土可能由于地震所产生的振动与下卧的岩土层脱离,从而发生次生灾害;如果地震前发生大量、长时间降水,更易发生该类灾害。规模巨大的崩塌和滑坡灾害可能摧毁地面的建筑物,掩埋坡下的居民点,造成大规模的破坏和伤亡;如果滑坡或崩塌造成河道阻塞,还有可能引发水灾;而大型水体下及附近发生的大规模崩滑,也会对坝体及周边建筑造成毁灭性破坏。

ANSYS地震时程分析

在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中得震害特点 (一)砌体结构房屋得震害及分析 1)震害现象 (1)墙角得破坏:房屋得四角墙面上开裂以至于局部倒塌得现象。 (2)楼梯间得破坏:楼梯间两侧承重墙出现严重得斜裂缝。 (3)内外墙连接得破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,房屋丧失整

体性。 (4)突出屋面得屋顶间等附属结构得破坏:地震时,平面突出部位出现局部破坏现象。相邻部位得刚度差异较大时尤为严重。突出屋面得屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应” 得影响,一般较下部主体结构破坏严重,而且突出部分面积与房屋面积相差越大,震害越严重,如 图所示。 (5)墙体得破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重得则出现歪斜以致倒塌现象,图所示。 方向平行得墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X 形交叉裂缝;如果墙体得高宽比较小,则在墙体中间部位出现水平裂缝。 (6)其她部位常见破坏:由于楼盖缺乏足够得拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝得作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地

震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害就是相当严重得。 在地震作用下,底部框架—抗震墙结构房屋得底层承受着上不砖房倾覆力矩得作用,其外侧柱会出现受拉得状况;底层为内框架时,外侧得砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架得破坏;底层商店住宅,由于需要大空间,横墙较少,因底层得抗震能力弱形成特别得薄弱楼层,造成破坏特别严重。 (二)钢结构房屋得震害及分析 1) 钢结构得震害主要有节点连接得破坏、构件得破坏以及结构得整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋得 震害要较钢筋混凝土结构房屋得震害小得多。以1985年9月墨西哥城大地震(里氏8、1级)得震害为例,其中倒塌与严重破坏得钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接得破坏 (1)框架梁柱节点区得破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多得一种破坏形式。1994年美国诺斯里奇(Northridge)地震与1995 年日本阪神地震均造成了很多梁柱刚性节点得破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面得梁柱节点得典型破坏形式。由图中可见,大多数节 点破坏发生在梁端下翼缘处得柱中,这可能就是由于混凝土楼板与钢梁共同作用,

建筑结构抗震复习题--答案演示教学

建筑结构抗震复习题 一、判断题 1.振型分解反应谱法既适用于弹性体系,也可用于弹塑性体系 X 2.结构的刚心就是地震惯性力合力作用点的位置 3.受压构件的位移延性将随轴压比的增加而减小 V 4.结构的重力荷载代表值等于竖向荷载加上各可变荷载组合值。 X 5.震源到震中的垂直距离称为震中距。 X 6.对应于一次地震,震级只有一个,烈度也只有一个。X 7.横波一般周期较长,振幅较大,引起地面水平方向的运动。V 8.采用底部剪力法时,突出屋面的屋顶件,由于刚度突变、质量突变,其地震作用的效应乘以增大系数3,此增大部分应向下传递。 X 10.地震波的传播速度,以横波最快,面波次之,纵波最慢。X 11.横波只能在固态物质中传播 X 12.设防烈度为8度和9度的高层建筑应考虑竖向地震作用 X 13.众值烈度比基本烈度小1.55度,罕遇烈度比基本烈度大1.55度 X 14在进行抗震设计时,结构平面凹进的一侧尺寸为其相应宽度的20%时,认为是规则的V 16.在同等场地、烈度条件下,钢结构房屋的震害较钢筋混凝土结构房屋的震害要严重。 X 17.钢筋混凝土框架柱的轴压比越大,抗震性能越好。 18.场地特征周期与场地类别和地震分组有关。V 20.选择结构的自振周期应尽可能接近场地卓越周期。X 21.根据液化指数,将液化等级分为三个等级。V 22.质量和刚度明显不对称、不均匀的结构,应考虑水平地震作用的扭转影响。 23.地震作用对软土的承载力影响较小,土越软,在地震作用下的变形就越小。X 26在抗震设计中,对烈度为9度的大跨、长悬臂结构,应考虑竖向地震作用 V 27.一次地震只有一个震级,所以不同地区地震烈度相同。X 25.一般来讲,震害随场地覆盖层厚度的增加而减轻。X 22.地震烈度是表示地震本身大小的尺度。X 29一般而言,房屋愈高,所受到的地震力和倾覆力矩愈大,破坏的可能性也愈大。 30.耗能梁段的屈服强度越高,屈服后的延性越好,耗能能力越大。

浅析地震对建筑物的破坏及建筑减震防震措施

浅析地震对建筑物的破坏及建筑减震防震措施 姓名:王涛 班级:土木 通过对土木工程概论这门课程的学习,我对土木工程这个专业有了大概的了解。我对建筑防震减震方面的问题有着浓厚的兴趣,通过陈老师的介绍以及我查阅的相关资料,浅析一下本人对地震对建筑物的破坏以及建筑物减震防震方面的认识。 破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾难。目前,每年全世界由地震灾害造成的平均死亡人数达8000一10000人/次,平均经济损失每次达几十亿美元。据联合国统计,本世纪以来,全世界因地震死亡人数达260万,占全球自然灾害所造成的死亡总和的58%。从某种意义上说,地震是群灾之首。 大地震如果发生在渺无人烟的地方是不会造成伤害的,如果发生在城市或农村的活,就会造成房倒屋塌,甚至建筑物与重要工程也会遭至"破坏并危及人员的生命安全,给人们造成严重灾害。 我国由于地处板块交界处地震灾害频度高,强度大,成灾率高,这是造成地震灾害特别严重的原因。同时,我国民众防灾意识不高,同一震级的地震,造成伤亡的人数可多达数倍。另外,我国大部分城市的基础设施,抗震性能较差。建国头20年中,多数建筑物和工程未考虑抗震设防,加之城市生命线管线纵横交错,埋设不合理,有的材料强度不够,有的年久失修,使我国多数城镇防震抗震的能力脆弱,潜在着很大的隐患。广大农村多属土、石结构建筑,抗震能力更差。据估计,地震若发生在我国工业城市及人口稠密的地区,8级左右或7级左右以及5、6级左右的地震所造成的经济损失分别为百亿元、数十亿元和数亿元人民币。譬如1976年唐山大地震,在几十秒钟的时间内,将一座百万人口的工业城市变成了废墟,伤亡侧万人,直接经济损失100亿元以上,救灾花了6亿多元,重建用了50亿元,而

地震对工程建筑实施的影响

浅谈地震灾害对工程建筑的影响

地震对工程建筑实施的影响 摘要 地震是非常严重的自然灾害之一,它以瞬间的能量瞬息间使成千上万的生命遭到伤害,地震称为地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。地震产生的原因随其形式的不同而不同,本文将阐述地震成因的具体知识,能让我们更好的了解地震带给工程实施的影响。地震时会使房屋等建筑物受到严重的震动致使破坏,会使桥梁断裂、路面开裂下陷、铁路扭曲等,从而使城市瘫痪。地震常常还会伴随滑坡、泥石流、地基沉陷等地面破坏现象,其次生灾害也是非常严重的。对此我们应该对其地震带上的城市进行防范,地震灾害的破坏程度与地震震级和震源深度、地震发生的时间、地貌地质条件、建筑物的质量和地震的防御状况。其中后三个因素则是人类可以控制的,通过对采取有效手段完全可以降低地震灾害的程度。在未来的发展过程中,我们还不能有效地预测地震,无法避免地震灾害的发生,但采取一定措施的前提下是可以有效地减少地震造成的破坏的。 关键词:地震地震成因震级地震烈度应对措施 引言 地震灾害这两年对我国造成的灾害较大,本文研究地震对工程实施的影响可为改善这种现象采取一定的防治措施,我国是地质灾害较多的国家,每年因地质灾害造成的经济损失不计其数,也给人类的生命安全财产造成极大的伤害,因此本文研究地震地质灾害及防治具有一定的社会意义,也使人们更加重视面对地震灾害时采取应对措施。 理论基础 2.1 地震现象与成因 地震是由于地球内部应力,引起构造变动而产生的地震,地震是一种地质现象,地球上差不多每天都有地震,地震时,从震源地方的岩石破裂产生的地震波,在地球内部和地球表面传播。 地震一般可分为人工地震和自然地震两大类,下面所说的地震成因为天然地震的成因:①构造地震,因为地壳运动引起的地壳构造突然变化,地壳岩层错动破裂而发生的地壳震动,这就产生了人们平常所说的地震。由于地球不停地运动变化,从而内部产生了巨大的地应力,在其长期缓慢的作用下,造成地壳的岩层

时程分析中地震波选取浅析

时程分析中地震波选取浅析 通过介绍时程分析法中输入地震波的选择原则、地震动幅值和频率特性等一系列问题,使初学者对输入地震波的选择有初步认识和了解,为以后更深层次的研究打下基础。 标签:时程分析法;地震波选择 1、引言 随着社会、经济和科技的不断发展以及人口数量的迅速膨胀,高层、超高层以及复杂形状的建筑的数量定会快速增长。抗震设计规范规定,对于此类重要、复杂并超过规定高度的建筑,其抗震设计中的地震作用计算都要通过时程分析法进行补充验证。而在时程分析法的计算过程中最重要,最影响地震作用计算结果的莫过于地震波的选取。所以,本文将从地震波选取原则、地震动幅值、频谱特性、持续时间、地震波数量、地震波转动分量等多个方面对地震波的选取进行浅析。 2、地震波的选取原则 时程分析中的地震波如何选取的问题,一直是时程分析法中的一个难点。在选择地震波输入时,要满足两点要求: 1)首先要使选择输入的地震波的某些参数和建筑物所在地的条件相一致。参数主要包括:场地的土壤类别、地震烈度、地震强度参数、卓越周期和反应谱等。 2)其次还要满足地震活动三要素的要求。即频谱特性、地震加速度时程曲线持续时间和幅值,选取的地震波中的这三者,要满足相关规定。相关规定要求:选用数字化的地震波应按照建筑场地类别和设计地震分组进行选取,选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱分析法所采用的地震影响系数曲线在统计意义上相符。在统计意义上相符是指:其平均地震影响曲线与振型分解反应谱法所用到的地震影响系数曲线相比,在各个周期点上相差不大于20%。弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于阵型分解反应谱法计算结果的65%。多条时程曲线计算结果的结构底部剪力平均值不应小于振型分解反应谱计算结果的80%[1]。 3、地震动幅值 地震动幅值有两种意义,即可以指地震加速度、位移和速度中的任何一种的最大值,又可以指在某种意义下的等代值。在一定程度上,地震波的峰值能够反应并代表地震波的强度,所以,建筑物所在地的设防烈度所要求的多遇地震或罕

地震对建筑的影响

地震对建筑的影响 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。

(3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒 房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏; 层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏级的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和 1995年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成 钢结构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

地震时程分析中重力荷载的考虑

ANSYS地震时程分析中如何考虑重力作用 在用ANSYS做结构的地震时程分析时,结构施加地震波的初始状态往往是一种不受任何外力的自由状态,这与现实的结构地震情况是不一致的,别的荷载不说,重力荷载在地震时程分析的初始时就存在,在地震响应的整个过程中也起作用。重力荷载在地震反应分析中应该如何施加,我做了如下探讨: 第一种方式,参照小木虫论坛上介绍的一个思路,先在一个极短的时间内关闭时间积分效应,施加重力加速度,然后再打开时间积分效应,进行正常的地震时程分析。具体命令如下 /solu antype, trans timint, off !关闭积分效应 time, 1e-5 acel,,9.8, nsubst, 2 kbc, 1 lswrite, 1 solve timint, on !接着打开积分效应 NSUBST,5 *do,t,1,50,1 time,0.02*t acel,0*9.8*H1(t),0,0*9.8*H2(t) kbc,0 outres,all,none outres,nsol,all allsel,all solve *enddo 为了避免地震加速度的干扰,我把输入的两个水平向地震加速度都设置为0,计算了1秒时间,计算得到的结构顶点竖向位移见图1,图1中在初始的1e-5秒的时间内施加重力荷载后,结构有一个向下2mm的位移;重新打开时间积分效应后,结构在没有重力加速度的情况下发生回弹,最后位移稳定在0。 第二种方式,直接在施加的加速度荷载上把重力加速度9.8m/s2,同样把水平方向加速度乘0,避免其干扰,命令如下: /solu antype, trans timint, on !接着打开积分效应 NSUBST,5

地质灾害对建筑物的影响

地质灾害对建筑物的影响 地质灾害对建筑物的影响 摘要:随着时代的发展,人们对生活水平的需求逐渐提高,建筑物的建设变得尤其重要,建筑物的设计、建造都在一定程度上反映了人们的生活水平。然而,建筑物的建设也影响了自然界的正常发展,大自然也通过各种方式向我们人类发出了警告,也反映在许多地质灾害在各地时有发生,均不同程度的造成人员或经济损失。所以在建造建筑物的同时也应慎重考虑地质灾害对建筑物的影响。地质灾害对建筑物的影响越来越严重,如何进行防、冶,从选址到建设的过程应该注意的环节,已建好的建筑物如何进行监测防冶等等。本文依据广西柳州市帽合地区发生的地质灾害塌陷进行了讨论与总结,讨论了从选址到建设的过程应该注意的环节,如何防冶,已建好的如何进行监测防冶等等。 关键词:地质灾害;对建筑物的影响;检测防治;环节 Abstract: with the development of The Times, people life level requirements gradually improve, building construction becomes especially important, building design, construction in a certain extent reflects people's living level. However, the construction of the building have also affected the normal development of the nature, nature also by various means to our human issued a warning, also reflected in many geological disasters have occurred at all, all different degree of caused the personnel or economic loss. So in the construction of buildings should also be careful consideration of the effect of geological disasters in buildings. The influence of geological hazards on building more and more serious, how to prevent and smelting, from the process of construction site to should pay attention to link, has built good building monitoring the smelting how, and so on. Based on the liuzhou

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

地震对市政建设的影响

摘要:地震是一种危害极大的自然现象,即使能够做出有效的地震短临预报,市政工程建设本身的破坏仍无法避免。地震灾害的实例表明,破坏性地震造成的人员伤亡和经济损失,主要是由于建筑物、工程设施的破坏倒塌、以及伴随的次生灾害造成的。本文的目的是探讨如何使市政建设建筑物能够有效抵御强烈地震的袭击,以及其他国家和地区在这方面成熟的经验。 地震在我国的分布 中国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,受太平洋板块、印度板块和菲律宾海板块的挤压,地震断裂带十分发育。在中国发生的地震又多又强,其绝大多数又是发生在大陆的浅源地震,震源深度大都在20公里以内。因此,中国是世界上多地震的国家,也是蒙受地震灾害最为深重的国家之一。影响中国的是环太平洋地震带和欧亚地震带,台湾地区是环太平洋地震带影响地区的主要代表,而四川、西藏、云南等中国西部地区受欧亚地震带影响较多,这些地区成为地震频发区。 2004年6月,国家重大科学工程项目“中国地震活动断层探测技术系统大城市活动断层探测与地震危险性评价”开始实施,中国地震局地质研究所研究员徐锡伟是该项目首席专家。项目选择在北京、上海、天津、福州、沈阳等内地的21个大城市进行了探测研究。该项目于2008年4月顺利完成,已基本查明了21个城市及其邻区的主要断层的分布、最新活动性和发震危险性,特别是排除了上海、天津、广州、沈阳、银川、青岛等城市的其中80条断层的活动性。 地震对城市建筑物的破坏 地震波分为体波和面波两种,体波包括横波和纵波.一般纵波先到达地表对建筑物造成影响,给人上下抖动的感觉,横波比纵波稍晚,给人前后摇摆不定的感觉。而最后到达的是面波,沿着地表蛇行前进,往往对建筑物施加较大的剪切力,大多数建筑物倒塌是由于面波的作用。地震对建筑物的破坏作用是通过地基和基础传递给上部结构的。地震时地基和基础起着传播地震波河支承上部的双重作用。在地震的作用下,引起地基承载力降低或使地基产生不均匀沉降,从而导致建筑的破坏。地震的震害现象主要有砂土地基的振动液化、滑坡、地裂及震陷等。另外,由于地震产生的惯性力使建筑物受到水平方向的作用力,也会引起建筑物主体结构的破坏。 地震对建筑物的影响不仅与地震烈度有关,还与建筑物场地效应、地基土动力特性有关。对同一类土,因地形不同,可以出现不同的场地效应,房屋的震害因而不同。在同样的场地条件下,粘土地基和砂土地基、饱和土和非饱和土地基上房屋的震害差别也很大。地震对建筑物的破坏还与基础形式、上部结构的体型、结构形式及刚度有关。 全球处于地震带上的城市防震措施 日本是一个地震频发的国家,每年发生有感地震约1000多次,全球10%的地震均发生在日本及其周边地区。其中6级以上的地震每年至少发生1次,据不完全统计,世界范围内发生的里氏6级以上的地震,大约有20%发生在日本。然而,地震并没有给日本带来巨大人员伤亡等损失,绝大部分建筑保持完好。是什么原因造成如此大的反差呢?这与日本房屋建筑防震措施是密不可分的。 早在1923年关东大地震之后,日本就制定法律,要求建造房屋时必须计算防震程度,1995年颁布了建筑防震标准——《建筑基准法》。《基准法》规定,高层建筑必须能够抵御里氏7级以上的强烈地震。一个建筑工程为获得开工许可,除了设计、施工图纸等文件外,还必须提交建筑抗震报告书。抗震报告书的主要内容包括,根据地震的不同强度,计算不同的建筑结构在地震中的受力大小,进而确定建筑的梁柱位置、承重以及施工中钢筋、混凝土的规格

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3) Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

地震的好处与坏处

地震的好处与坏处 Prepared on 22 November 2020

地震的好处 对于受灾地区的人们来说是灾难,而对于全球地震是缓解地球本身的压力,释放过多能量,保持岩石圈受力平衡的有效而唯一的途径. 同时地震也会把地下的矿物带到地表,火山喷发的火山灰使土壤变得肥沃,有利于农业生产.而海底地震引起的海啸和海风给内陆地区带来难得一遇的水汽对于缓解干旱,净化空气起到了一定的作用. 地震的危害 地震,是地球上所有自然灾害中给人类社会造成损失最大的一种地质灾害。破坏性地震,往往在没有什么预兆的情况下突然来临,大地震撼、地裂房塌,甚至摧毁整座城市,并且在地震之后,火灾、水灾、瘟疫等严重次生灾害更是雪上加霜,给人类带来了极大的灾难。据统计,全球每年要发生500万次左右地震,虽然大部分地震因为发生在海洋或地壳深处或是由于震级太小而不被人感觉到,但每年仍有不少地震给震区人民带来巨大的生命财产损失,仅上个世纪以来,全世界就有120多万人死于地震,几乎每个地方都受到过地震的侵扰。 地震是一种破坏力很大的自然灾害,除了直接造成房倒屋塌和山崩、地裂、砂土液化、喷砂冒水外,还会引起火灾、爆炸、毒气蔓延、水灾、滑坡、泥石流、瘟疫等。除此之外,地震还会带来,主要有: 1.火灾:由房屋倒塌、煤气泄漏和明火引起;

2.水灾:由水坝决口或山崩壅塞河道等引起; 3.毒气泄漏:由建筑物或装置破坏等引起; 4.瘟疫:由震后生存环境的严重破坏所引起。 地震是地壳快速释放能量过程中造成的震动,期间会产生地震波,其中地震波又分为S波及P波。地震可由地震仪所测量,地震的震级是用作表示由震源释放出来的能量,通常以“里氏地震规模”来表示;烈度则透过“修订麦加利地震烈度表”来表示,某地点的地震烈度是指地震引致该地点地壳运动的猛烈程度,是由震动对个人、家具、房屋、地质结构等所产生的影响来断定。在地球的表面,地震会使地面发生震动,有时则会发生地面移动。震动可能引发山泥倾泻甚或火山活动。如地震在海底发生,海床的移动甚至会引发海啸。 (一)什么叫地震灾害 1、地震灾害。强烈的地震,会引起地面强烈的振动,直接和间接地对社会及自然造成破坏。直接破坏如:由于地面强烈震动引起的地面断裂、变形、冒水、喷沙和建筑物损坏、倒塌以及对人畜造成的伤亡和财产损失等等。这种由地震引起的破坏,统称为地震灾害。 2、地震次生灾害。地震次生灾害是指:由于强烈的地震使山体崩塌,造成滑坡和泥石流;水坝河堤决口造成水灾;震后造成瘟疫流行;引燃易燃易爆物造成火灾、爆炸;由于破坏管道造成毒气泄漏;细菌和放射性物质的扩散对人畜生命造成威胁等等。

框架结构地震响应时程分析的计算模型

框架结构地震响应时程分析的计算模型 摘要:在结构进行地震响应时程分析时,必须首先确定结构的计算模型,以便确立结构的层间刚度。在地震作用下,结构计算模型是结构进行地震响应时分析的主体,由几何模型和物理模型两部分组成。其中几何模型反映了结构计算模型的几何构成,物理模型反映了材料或构件的力学性能。目前在工程上常用的计算模型主要有层间模型、杆系模型和杆系—层间模型。本文针对这三种模型进行全面的分析,并对它们的优缺点展开论述。 1前言 在求解结构在地震作用下的运动方程时,必须要计算结构的刚度矩阵[k],而要计算结构的刚度矩阵[k],就得确定结构的计算模型。因此,确定结构的计算模型是结构进行动力分析时必不可少的内容。对于多层框架结构,目前应用最广泛的模型是层间模型、杆系模型和杆系—层间模型。 2 层间模型 层间模型是在假定建筑各层楼板在其自身平面内刚度无穷大,水平地震作用下同层各竖向位移相同,以及建筑结构刚度中心和质量中心相重合,水平地震作用下没有绕竖轴扭转发生的基础上建立起来的。在这种模型中,将结构视为一根竖向杆,结构的质量集中于各楼层处,如图1(a)所示。 (a) (b) (c) (d) 图1 层间模型 (a)层间模型一般形式;(b)层间剪切模型;(c)层间弯曲模型;(d) 层间弯剪模型计算时,层间模型取各层为基本计算单元,采用层恢复力模型来表示地震作用过程中层刚度随层剪力的变化关系,而不考虑弹塑性阶段层刚度沿层高的变化。其几何模型相当于串联质点模型,物理模型的重要参数是层间刚度及其非线性变化规律。根据结构形式、构造特点以及结构侧向变形情况不同,层间模型又分为层间剪切模型、层间弯曲模型及层间弯剪模型,如图1(b)—(d)所示。其中,层间弯曲模型主要用于结构侧向变形以弯曲为主的剪力墙结构中。 而在进行框架结构动力分析时,常用的层间模型是层间剪切模型和层间弯剪模型。当框架横梁与柱的线刚度之比较大时,即“强梁弱住”型框架结构,在振动过程中各楼层始终保持水平,结构的变形表现为层间的错动,其侧向变形主要是层间剪切变形,那么应该采用层间剪切模型。 当框架梁对柱的约束相对较弱时,如一些高层框架,即“强柱弱梁”型结构,其侧向变形包含有层间弯曲和剪切两种成分,层间剪切模型已不能完全反映其变形特点,那么应该采用层间弯剪模型。 层间模型的优点在于自由度数较少,动力方程逐步积分所耗时也较少,但方法比较粗糙,计算精度较差,无法求出结构各杆件的时程反应,也不能确定结构各杆单元的内力和变形。因此,在工程实践中,层间模型主要是用于确定结构的层间剪力和层间侧移,以校核结构在地震作用下层间剪力是否超过层间极限承载力和检验结构在地震作用下的薄弱层位置。 3 杆系模型 杆系模型是较为精确的计算模型,它是在假定楼板在其自身平面内为绝对刚性的基础上建立起来的。这种模型将整个框架结构的梁柱构件离散为杆元,以结构的各杆件作为基本计算单元,将结构的质量集中于框架的各个节点,如图2所示。

相关主题
相关文档 最新文档