当前位置:文档之家› 12、仪表报车辆网络故障案例分析--

12、仪表报车辆网络故障案例分析--

12、仪表报车辆网络故障案例分析--

车辆故障案例分析

最全的网络故障案例分析及解决方案

第一部:网络经脉篇2 [故事之一]三类线仿冒5类线,加上网卡出错,升级后比升级前速度反而慢2 [故事之二]UPS电源滤波质量下降,接地通路故障,谐波大量涌入系统,导致网络变慢、数据出错4 [故事之三]光纤链路造侵蚀损坏6 [故事之四]水晶头损坏引起大型网络故障7 [故事之五] 雏菊链效应引起得网络不能进行数据交换9 [故事之六]网线制作不标准,引起干扰,发生错误11 [故事之七]插头故障13 [故事之八]5类线Cat5勉强运行千兆以太网15 [故事之九]电缆超长,LAN可用,WAN不可用17 [故事之十]线缆连接错误,误用3类插头,致使网络升级到100BaseTX网络后无法上网18 [故事之十一]网线共用,升级100Mbps后干扰服务器21 [故事之十二]电梯动力线干扰,占用带宽,整个楼层速度降低24 [故事之十三]“水漫金山”,始发现用错光纤接头类型,网络不能联通27 [故事之十四]千兆网升级工程,主服务器不可用,自制跳线RL参数不合格29 [故事之十五]用错链路器件,超五类线系统工程验收,合格率仅76%32 [故事之十六]六类线作跳线,打线错误造成100M链路高额碰撞,速度缓慢,验收余量达不到合同规定的40%;34 [故事之十七]六类线工艺要求高,一次验收合格率仅80%36 第二部:网络脏腑篇39 [故事之一] 服务器网卡损坏引起广播风暴39 [故事之二]交换机软故障:电路板接触不良41 [故事之三]防火墙设置错误,合法用户进入受限44 [故事之四]路由器工作不稳定,自生垃圾太多,通道受阻47 [故事之五]PC机开关电源故障,导致网卡工作不正常,干扰系统运行49 [故事之六]私自运行Proxy发生冲突,服务器响应速度“变慢”,网虫太“勤快” 52 [故事之七]供电质量差,路由器工作不稳定,造成路由漂移和备份路由器拥塞54 [故事之八]中心DNS服务器主板“失常”,占用带宽资源并攻击其它子网的服务器57 [故事之九]网卡故障,用户变“狂人”,网络运行速度变慢60 [故事之十]PC机网卡故障,攻击服务器,速度下降62 [故事之十一]多协议使用,设置不良,服务器超流量工作65 [故事之十二]交换机设置不良,加之雏菊链效应和接头问题,100M升级失败67 [故事之十三]交换机端口低效,不能全部识别数据包,访问速度慢70 [故事之十四]服务器、交换机、工作站工作状态不匹配,访问速度慢72 第三部:网络免疫篇75 [故事之一]网络黑客程序激活,内部服务器攻击路由器,封闭网络75 [故事之二]局域网最常见十大错误及解决(转载)78 [故事之三] 浅谈局域网故障排除81 网络医院的故事 时间:2003/04/24 10:03am来源:sliuy0 整理人:蓝天(QQ:) [引言]网络正以空前的速度走进我们每个人的生活。网络的规模越来越大,结构越来越复杂,新的设备越来越多。一个正常工作的网络给人们带来方便和快捷是不言而喻的,但一个带病

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

雪佛兰故障案例分析(三)

29 汽车维修技师·2009年第2 期 郑州 丁俊卿 刘勤中 故障现象:早晨冷启动以后,一直到水温上升到中线以前,怠速时可以听到发动机内部有明显清晰的且频率不规则的“嗒、嗒”异响。 故障诊断:试车,冷启动后,快怠速过程中几乎听不到“嗒、嗒”的异响,当快怠速一结束,立刻可以听到异响,稍微一加速,发动机噪声稍一上升,就遮住了异响,热车以后怠速时不响,但是加速和减速时仍可以听到, 拔下各缸喷油器插头断缸,异响没有明显变化,用听诊器听3缸位置声音大,解体发动机后检查活塞和连杆未发现异常。活塞和缸筒的间隙在正常范围,更换2缸、3缸活塞和连杆,当时试车不响,第二天早上冷车还是响,但热车时加速和减速不响了,说明2缸、3缸正常。 故障排除:更换1缸和4缸的活塞和连杆后试车,异响消失,故障排除。分析可能是活塞销间隙大,冷车运转时发出异响,当发动机预热后由于热胀冷缩,间隙缩小,异响消故障现象:客户反映向左转向时有异响。 故障诊断:试车发现向左转向并且加速时,当转向盘转到某个位置时有时会有“嘣”的响声,手也可以感觉到震动。分析故障原因可能是:①转向柱万向节损坏或松旷;②转向机及 横拉杆球头损坏或松旷;③前悬挂损坏,如下支臂胶套或球头节松旷。 将车举升后检查,稳定杆胶套及球头,还有下支臂等悬挂部件无松旷现象,检查转向横拉杆球头均无松旷现象,紧固转向机固定螺栓,试车无效。 故障排除:紧固转向柱万向节的连接螺栓(位置如图6所示)后试车,异响消失。 故障现象:客户反映车速20km/h 左右时向右转向,会出现摩擦响声。 故障诊断:试车,直行和向左转向行驶时异响不出现。检查车轮及悬挂和车身没有相互干涉的痕迹,更换前轮轴承、减振器、下支臂和转向机都没有解决问题,最后听出是手动变速器内部响。拆下半轴检查,左半轴与差速器干涉,行星齿轮轴上有明显磨损的痕迹。打磨处理半轴,磨去了近3mm,响声减轻,但是向右转向有时还有响声。 故障排除:再次打磨半轴后异响消失。 故障现象:客户反映行驶时耸车,转速很高了变速器也不升挡,油耗也明显升高了。 故障诊断:试车发现,此车从静止开始稳住加速踏板提速,1-2挡换 挡点发动机转速约2300r/min,稍高一点;2-3挡时发动机转速则高达3300r/min,而正常应在2200r/min左右,并且在换挡的过程中有耸车的现象;原地加速时感觉转速提升的速度有一点儿迟缓;用TECH2检查没有故障码,各项数据也没有异常。行驶时变速器的噪音比较大,根据经验判断耸车及油耗高的原因是发动机的动力不足,转速过高,可能的原因是点火能量弱或三元催化器堵塞;行驶时噪音大可能是由于4HP-16变速器后部的输出轴承底板磨损。 故障排除:更换轴承底板,清理故障现象:客户在上立交桥的过程中突然熄火,再也启动不着了。 故障诊断:将车拖回检查,未发现保险丝熔断;用TECH2检查有两个故障码:P1607,控制模块点火关闭计时器性能;P0341,凸轮轴位置(CMP)传感器的性能。启动时查看发动机数据清单,转速信号为240r/min左右,正常。拔下一根高压线后插上一个火花塞,启动时火花正常。将进气软管拆下,向内喷入适量的化清剂,启动仍没有着车的迹象。拆下2缸的火花塞检查,发现电极干燥,拆下1缸火花塞则电极很潮湿,测量缸压,1缸和3缸几乎没有缸压,2缸缸压为500kPa。用手捂住节气门体,启动时吸力不太强,说明汽缸的配气正时有问题,拆下正时皮带罩检查,正时齿形皮带已断裂。启动时因为凸轮轴停转而曲轴在启动机的带动下旋转,所以ECM记 故障案例分析 (三)

华为OLT3个故障案例分析

与华为OLT有关的三个故障案例分析 案例一、门楼张5616增加宽带板 故障现象:门楼张需扩一块32线宽带用户板,管理不通,业务正常。 处理过程: 1、管理不通排查 登录到门楼张需扩板子的设备不通,登录到另一台设备正常。登录到OLT上: Int epon 0/1 Disp ont info 2 1 查看,ONU正常在线 Disp ont snmp-profile 2 0 Disp ont snmp-profile 2 1 比较两个ONU管理模版,一致 Disp ont ipconfig 2 1 查看管理地址 地址 121.7.134.37,掩码 255.255.255.0,网管121.7.134.36 正常情况下网关应该为123.7.139.254,查资料确认为123.7.139.254 Ont ipconfig 2 1 ip-address 121.7.134.37 mask 255.255.255.0 gateway 121.7.134.254 mange-vlan 199 priority 0 下发管理地址 查看该ONU所在PON口以前的定义 PDS-PingDong-MA5680T(config)#display service-port port 0/1/2 ---------------------------------------------------------------------------- INDEX VLAN VLAN PORT F/ S/ P VPI VCI FLOW FLOW RX TX STATE ID ATTR TYPE TYPE PARA ---------------------------------------------------------------------------- 3 2372 QinQ epon 0/1 /2 0 - vlan 199 - - up 4 2372 QinQ epon 0/1 /2 - - vlan 256-512 - - up 5 1307 common epon 0/1 /2 0 - vlan 1307 - - up 166 1307 common epon 0/1 /2 1 - vlan 1307 - - up 167 2372 QinQ epon 0/1 /2 1 - vlan 199 - - up ---------------------------------------------------------------------------- 再次登录ONU,正常。 2、增加宽带用户板 在ONU上 Disp board 0 显示第3块为宽带板,待确认 Board confirm 3 确认板卡 Disp cur 查看以前的配置,用户vlan 320 to 383 共64个,够用 multi-service-port from-vlan 352 board 3 vpi 0 vci 35 single-service rx-cttr 6 tx-cttr 6 Inter adsl 0/3 进入单板 Deact all 激活所有端口 Act all profile-index 3 绑定6M模板 Qui 退出 pppoe sim sta (宽带虚拟拨号测试) disp pppoe sim in pppoe sim stop (测试结束一定要关掉) save

发动机故障案例分析

发动机高速工作不正常故障排除 故障现象:一辆EQ1090载货汽车,低速十工作正常,中高速时有化油器回火,放炮的现象,拉阻风门无好转. 故障检测:据上述现象,先考虑可能是进入燃烧室的燃料不足,引起混合气过稀,但是查看浮子油面正常,进入燃烧室燃料充足.其次考虑点火时间是否正确,重新校正点火时间,启动发动机,上述现象仍无好转.接着检验各缸高压火花,良好.检查火花塞,无异常.测各缸汽缸压力,均符合要求.经以上检验未能发现故障真实原因,故障诊断陷入困境,再次拆下分电器,检查分电器轴与衬套的间隙,测的该间隙值为0.6mm.(不能超过0.07mm).远远超过了规定值. 故障排除:更换衬套,装复分电器,启动发动机.故障排除. 故障分析:由于分电器与衬套的配合间隙过大,发动机在高速运转时,分电器轴带动分火头径向摆动,分配到个缸的高压过早或过迟,造成点火失准,使混合气体燃烧不完全,导致化油器回火,消声器放炮. 看火花塞瓷芯的颜色判断发动机故障 据多年维修汽油机的经验,通过看火花塞瓷芯表面的颜色可以判断汽油机的故障,现介绍如下: 1、瓷芯表面呈白色 汽油机工作正常。 2、瓷芯表面呈微黄、微红或红褐色 汽油机的工作也是正常的,火花塞瓷芯表面之所以呈微黄、微红或红褐色,是由于燃料,添加剂的不同而造成的。 3、瓷芯呈褐黑色 火花塞颜色呈褐黑色,外壳与侧极上附有较厚的硬质块状积炭。有两种原因:一是汽油机烧机油,是由于机油从活塞环或进气门导管进入。二是火花塞本身的原因,用眼看到的有火花塞瓷体破裂或侧电极折断,也有不明显的从外观看不到的原因。可采用对其进行跳火的方法检查,把火花塞平放在气缸盖上,用中央高压线离火花塞接头螺栓5毫米左右,然后拨动断电器触点看火花塞间隙的跳火情况。若火花强烈且蓝白色,说明火花塞正常,若火花微弱或无火花,说明火花塞本身有故障,需要更换。 4、瓷芯呈惨白色

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

仪表故障案例分析汇总

机修厂仪表车间自控及现场仪表 故障案例分析 2015年12月24日

编写: 校对: 审核: 2015年01月04日

机修厂仪表车间故障案例分析 故障发生装置:热电厂二期 设备编号(工位号):5#机抽气逆止阀A、B 故障发生时间:2014.09.18 设备点名称:5#机抽气逆止阀A、B 故障类别(是否频发性故障及该点的稳定性描述): 该故障属于频繁性发生的故障,此抽气逆止阀经常性卡涩,不能正常动作。 故障出现点所涉及到的工艺、工况介绍: 此抽气逆止阀是由220V电磁铁动作控制铁芯,铁芯带着液压水管路阀芯,控制液压水的通断,进而控制抽气逆止阀的开关。 故障出现的过程描述: 抽气逆止阀电磁阀经常性卡涩,远程操作不能正常开关,远程操作电磁阀得电时,电磁场的干扰造成汽轮机1#瓦振波动大,有几次造成汽轮机、发电机跳车。 故障原因分析和判断思路: 抽气逆止阀安装在汽轮机4.5米夹层,安装方向为竖直安装,这样当电磁线圈得电时,产生的磁场,干扰到1#瓦振信号,要解决此问题,必须要使得1#瓦振信号线远离电磁线圈磁场,或者解决磁场泄露,避免干扰源的产生。 故障的有效处理办法:

更改220V电磁线圈的供电线路,和电磁铁方向。原有的供电线路为两个电磁铁分别两路供电,经过计算,改为一路并联供电,线路负荷可以达到要求,更改了电磁铁方向,1#瓦振干扰现象得以解决。故障防范和改进措施: 及时检查信号线路的屏蔽线、接地线是否连接完好,平时巡检注意发现有可能产生强磁场、电场等干扰源的设备和装置,并及时做好记录、上报,会诊后及时处理改进。

机修厂仪表车间故障案例分析 故障发生装置:热电厂二期 设备编号(工位号):FT1048 故障发生时间:2014.10.03 设备点名称:二期供热A低压外供蒸汽流量 故障类别(是否频发性故障及该点的稳定性描述): 该故障并非频繁发生的故障,此测点在环境温度0℃以上时,一般测量稳定。 故障出现点所涉及到的工艺、工况介绍: 该流量测量点地点在A低压蒸汽外供管廊,测量介质为低压饱和蒸汽,压力1.275MPA,温度460℃,取压方式为孔板,配有冷凝罐、导压管取压,罗斯蒙特差压变送器远传。 故障出现的过程描述: 接工艺运行人员联系(A低压外供蒸汽流量显示为0),前去检修时发现罗斯蒙特差压变送器显示器面板全屏显示,用475手操器接通联线,不能HART通讯。测量远传电流,无电流。解开电源线,用万用表测量供电电压,24V电压正常,变送器送计量中心校验,工作正常。信号线校线,两根线之间和对地绝缘都良好。 故障原因分析和判断思路: 经过以上判断,发现变送器完好,供电线路绝缘良好,供电电压完好,那么原因就出在测量回路中存在的阻抗远大于设计值的现象,回路阻抗过大,将和变送器串联,进而造成大量电压降,使得变送器

仪表故障引起的事故案例

事故名称:液位计冻住导致储罐液位抽空工段停车4小时 事故经过:11月20日早,某储罐液位计显示50%左右,但操作工发现泵震动较大,下游无流量,以为泵有问题,倒副泵情况如上,导致整个工段停车 后检查储罐里已经没有介质,实际液位为0,后检查发现远传液位计冻 事故后果:造成工段停车4小时 经验教训:1.经常检查液位计显示情况,特别是DCS趋势为一直线长期无变化时,应立即通知仪表及现场巡检现场确认,冬季尤其如此 2.冬季做好仪表保温伴热工作,现场加强巡检 事故名称:制氢装置LINDE PSA 变压吸附工段多个床层下线停车事故经过:仪表风中含水气量大,到天气突然变冷,易产生水气冷凝现象,导致电磁阀带水,进料调节阀关闭.造成停车 事故后果:造成工段停车24小时 经验教训:PSA厂房里加伴热管,同时把进出口的房门加保温门帘,故障现象有所改善. 事故名称:加氢反应器顶仪表伴热堵漏时,引发火灾 事故经过:加氢反应器顶仪表伴热堵漏时,发生着火现象,因为仪表

引压管漏H2,而且引压管与伴热管紧贴着,引压管(白钢管)被伴热管“腐蚀”形成砂眼,引起氢气泄漏。 事故后果:加氢装置部分停车2小时。 经验教训:腐蚀严重的更换新白钢管,没腐蚀的在引压管与伴热管之间加薄石棉板隔开。 事故名称:制氧装置空冷塔液位计故障造成分子筛带水事故 事故经过:空冷塔液位计采用差压变送器测量,变送器故障后输出一个值,这个值小于液位控制器设定值,使得液位调节阀一直往空冷塔里大开度的加水,造成空冷塔液位过高,使得空气带有带有大量的水进入了分子筛 事故后果:制氧装置停止产氧3天。 经验教训:变送器出故障是很难在点检中发现的,这种情况下在DCS 趋势为一直线长期无变化时,工艺应立即到现场去检查。 事故名称:炼油厂催化反应器热电偶保护套管被催化剂磨穿,导致拆热偶丝的时候催化剂喷出 事故经过:操作工反应催化反应器有一个热偶显示不对,仪表工去现场测量发现热偶坏,此热偶为非铠装带护管热偶,仪表工想抽出坏的

汽车故障案例分析

汽修(合作)二班

沃尔沃780轿车故障诊断的分析 当今天成为昨天的那一刻,它也成为了历史。而历史越悠久,要讲述的内容就越多。1927年标志着沃尔沃汽车的起点。自那以后,各种沃尔沃车型源源不断地驶出各个沃尔沃工厂,构成了汽车历史的一部分。它们都有自己的故事。“品牌历史和文化传承”是专门献给这些汽车,献给我们公司的历史,及献给帮助我们使得沃尔沃传统弥久愈新的狂热的人们。 故障现象:一辆沃尔沃780轿车仪表板上的SRS故障指示灯一直发亮。 故障检修:沃尔沃780轿车SRS气囊系统由碰撞传感器、SRS电脑、SRS气囊、点火装置和SRS故障指示灯等组成。碰撞传感器采用压电晶体式传感器,安装在驾驶座椅下面,用来检测减速度产生的惯性的大小,惯性力与减速度成正比。当汽车遭受碰撞,减速度产生的惯性力大于传感器设定的惯性力阀值时,压电晶体就会向SRS电脑输入电压信号。SRS电脑由微处理器、水银开关式防护碰撞传感器和一套紧急备用电源装置等组成,与碰撞传感器并排安装在驾驶座椅下面。水银开关是同步触发SRS气囊组件点火器的控制部件,仅当水银开关式传感器触发接通SRS点火器电路时,压电晶体式传感器才能触发接通SRS点火器电路,从而引爆SRS气囊。

SRS电脑具有故障自诊断功能和故障记忆功能,可根据仪表板上的SRS故障指示灯的闪烁次数读取故障代码。SRS气囊引爆后,SRS 电脑能保持记忆引爆时的有关参数。 该车SRS气囊系统的控制线路如图一所示,其主要结构参数如下:SRS气囊系统驾驶席SRS气囊点火器电阻为200Ω;碰撞传感器电阻为1.8~2.5Ω;驾驶席与乘员席座椅安全带收紧器点火器电阻均为2.15±0.35Ω;SRS电脑至熔断器盒之间采用3端子或4端子黄色连接器连接,测量连接器插头端子3(黑色导线)与端子2 (黄色导线)之间的电阻为5.6kΩ,端子3(黑色导线)与端子4(红色导线)之间的电阻应为31kΩ,否则应更换碰撞传感器。拔下4端子插头,测量SRS电脑插座上搭铁端子4(接黑色导线)与电源端子6(接红色导线)之间的电阻应为 12.9kΩ,搭铁端子4与电源端子5(接黄色导线)之间的电阻应为5.6kΩ,搭铁端子4与端子3(接绿色导线)之间的电阻应为6.4kΩ,否则应更换SRS电脑。 首先利用随车故障自诊断系统取SRS气囊系统的故障代码。其故障代码的读取方法如下: ①将点火开关转到“ON”位置并等待15s,使SRS电脑进入自诊断状态。 ②拔出点烟器,以便利用其搭铁插座来跨接搭铁线。对于沃尔沃780型轿车,可使用一根20cm长的跨接线,跨接诊断插头第3端子(连接绿色导线)与点烟器搭铁插座。

【干货】典型网络故障案例及处理思路

【干货】典型网络故障案例及处理思路 很多朋友经常提到网络故障,其中在交换机组网时常见的故障比较多。为了便于大家排除这些故障,在此介绍一些常见的典型故障案例及处理思路。 故障1:交换机刚加电时网络无法通信 故障现象 交换机刚刚开启的时候无法连接至其他网络,需要等待一段时间才可以。另外,需要使用一段时间之后,访问其他计算机的速度才快,如果有一段时间不使用网络,再访问的时候速度又会慢下来。 故障分析 由于这台交换机是一台可网管交换机,为了避免网络中存在拓扑环,从而导致网络瘫痪,可网管交换机在默认情况下都启用生成树协议。这样即使网络中存在环路,也会只保留一条路径,而自动切断其他链路。所以,当交换机在加电启动的时候,各端口需要依次进入监听、学习和转发状态,这个过程大约需要3~5分钟时间。

如果需要迅速启动交换机,可以在直接连接到计算机的端口上启动“PortFast”,使得该端口立即并且永久转换至转发状态,这样设备可以立即连接到网络,避免端口由监听和学习状态向转发状态过渡而必须的等待时间。 故障解决 如果需要在交换机加电之后迅速实现数据转发,可以禁用扩展树协议,或者将端口设置为PortFast模式。不过需要注意的是,这两种方法虽然省略了端口检测过程,但是一旦网络设备之间产生拓扑环,将导致网络通信瘫痪。 故障2:5口交换机只能使用4口 故障现象 办公室中有4台计算机,但是只有一个信息插座,于是配置了一台5口(其中一口为UpLink端口)交换机。原以为4台计算机刚好与4个接口连接,1个UpLink端口用于连接到局域网,但是接入到网络之后,与UpLink端口相邻的1号口无法正常使用。 故障分析 UpLink 端口不能被看作是一个单独的端口,这是因为它与相邻端口其实就是一个端口,只是适用的连接对象不同而已。借助UpLink端口,集线设备可以使

典型网络故障总结

典型网络故障总结 网络故障的一般分类 网络故障一般分为两大类:连通性问题和性能问题。它们各自故障排除的关注点如下: ?连通性问题 硬件、系统、电源、媒介故障 配置错误 不正确的相互作用 ?性能问题 网络拥塞 到目的地不是最佳路由 转发异常 路由环路 网络错误 一般网络故障的解决步骤 故障排除系统化是合理地一步一步找出故障原因并解决的总体原则。它的基本思想是系统地将由故障可能的原因所构成的一个大集合缩减(或隔离)成几个小的子集,从而使问题的复杂度迅速下降。 故障排除时有序的思路有助于解决所遇到的任何困难,下图给出了一般网络故障解决的处理流程。 网络故障排除基本步骤 我们以一个故障排除的实例来学习如何应用这些步骤。

案例:某用户网段广播包过多造成该网段的服务器FTP业务传输速度变慢 组网图如下: 某校园网的三个局域网,其中10.11.56.0为一个用户网段,10.11.56.118为一个日志服务器;10.15.0.0是一个集中了很多应用服务器的网段。 用户网段广播包过多造成该网段的服务器FTP业务传输速度慢 1. 故障现象描述 要想对网络故障做出准确的分析,首先应该了解故障表现出来的各种现象,然后才能确定可能产生这些现象的故障根源或症结。因此,对网络故障做出完整、清晰的描述是重要的一步。 如上述案例,用户反映:“日志服务器与备份服务器间备份发生问题。”这就是一个不完整不清晰的故障现象描述。因为这个描述没有讲述清楚下列问题: ●这个问题是连续出现,还是间断出现的? ●是完全不能备份,还是备份的速度慢(即性能下降)? ●哪个或哪些局域网服务器受到影响,地址是什么? 正确的故障现象描述是: 在网络的高峰期,日志服务器10.11.56.11到集中备份服务器10.15.254.253之间进行备份时,FTP传输速度很慢,大约只有0.6Mbps。 2. 故障案例相关信息收集 本步骤是搜集有助于查找故障原因的更详细的信息。主要是三种途径: ●向受影响的用户、网络人员或其他关键人员提出问题; ●根据故障描述性质,使用各种工具搜集情况,如网络管理系统、协议分析仪、相关show命令等; ●测试性能与网络基线进行比较。 如上述案例,可以向用户提问或自行收集下列相关信息: ●网络结构或配置是否最近修改过,即问题出现是否与网络变化有关? ●是否有用户访问受影响的服务器时没有问题? ●在非高峰期日志服务器和备份服务器间FTP传输速度是多少? 通过该步骤,可以收集到了下面一些相关信息: ●最近10.11.56.0网段的客户机不断在增加; ●129.9.0.0网段的机器与备份服务器间进行FTP传输时速度正常为7Mbps,与日志服务器间进行FTP传输时速度慢,只有0.6Mbps;

电业局网络故障诊断案例分析

案例分析-某电业局网络故障诊断 一、故障描述 故障地点: 某电业局 故障现象: 网络严峻堵塞,内部主机上网甚至内部主机间的通讯均时断时续。 故障详细描述:

网络突然出现通讯中断,某些VLAN不能访问互联网,且与其它VLAN的访问也会出现中断,在机房中进行ping包测试,发觉中心交换机到该VLAN内主机的ping包响应时刻较长,且出现间歇性丢包,VLAN与VLAN间的丢包情况则更加严峻。 二、故障详细分析 1.前期分析 初步推断引起问题的缘故可能是: ●交换机ARP表更新问题 ●广播或路由环路故障 ●人为或病毒攻击 需要进一步猎取的信息: ●网络拓扑结构及正常工作时的情况 ●交换机ARP表信息及交换机负载情况 ●网络中传输的原始数据包 2.具体分析 首先,我们从网络治理员那儿,得知了网络中主机共450台左右,

同时得到了网络的简单拓扑图,如图1所示。 (图1 网络原始拓扑简图) 从图1能够明白,网络中划分了6个VLAN,分不是10.230.201.0/24、10.230.202.0/24、10.230.203.0/24、10.230.204.0/24、10.230.205.0/24、10.230.206.0/24、,其中201~205这5个VLAN分不用于一个部门,而206为服务器专用网段。各VLAN同时连接上中心交换机(Passport 8010),中心交换机再连接到防火墙,由防火墙连接到Internet以及省单位。大致了解了网络拓扑后,我们以超级终端方式登录中心交换机,发觉交换机的负载较大,立即清除交换机ARP表并重启,但故障仍然存在,因此我们决定对网络进行抓包分析。

传输故障排除案例集锦(HUAWEI)

1 业务中断的处理 1.1 更换光板类型错误导致对端收光不正常 【系统概述】 某传输组网如图1所示,4个OptiX 2500+设备组成双向复用段保护环;1号站为业务中心点,连接网管。其中,3号站和2号站之间距离较长,使用了BPA 光放板。 1w MSP OptiX 2500+23 4e e e e w w w 图1 系统组网图 【故障现象】 某日机房维护人员发现2号站接收3号站方向的S16有R-LOS 告警,全网正常倒换,业务未受影响,用网管查询2号站的告警,PA 有IP-FAIL (无输入光)告警,3号站的BA 有IP-FAIL 告警。 【故障分析及排除】 BPA 板光口1对应的是BA (功放,将 S16的输出光信号放大14或17dBm );光口2为PA (前放,当输入光功率在-22dBm ~-32dBm 之间时,光口OUT2输出光功率变化范围在-7dBm ~-21dBm )。光信号经过BPA 的尾纤连接及信号流向如图2所示:

OUT IN IN OUT OUT IN S16BA PA S16 3号站2号站 图2 BPA光信号流向 (1) 根据光信号经过BPA的信号流可以看出,由于3号站光放板 的BA未收到光信号,导致了2号站的PA、S16报收无光。 可以判断故障点在3号站; (2) 维护人员带S16、BPA、尾纤、光功率计到3号站; (3) 在3号站测试S16板的输出光功率值,光功率计显示无光信 号。可以判断是S16板故障; (4) 将带的S16板插上,测试S16输出光功率为0dBm,恢复尾 纤连接; (5) BA板告警消失,但S16仍有红灯一闪告警,查询为MS-RDI; (6) 查询2号站S16,仍有R-LOS告警; (7) 在3号站,将换上去的S16板发光功率衰减到-15dBm做自环, 告警消失。判断新换上去的S16并没有损坏; (8) 为什么仍有告警呢?分析原因是3号站的S16板使用有错, SS62S1605与SS62S1604波长是一样的,而色散受限距离不同,可能是色散过大导致对端收光不正常。 (9) 查看3号站原来使用的S16的光板类型,为SS62S1605;刚 换上去的S16类型为SS62S1604; (10) 更换同类型的S16,故障消除。

化工仪表常见故障分析及处理思路

化工生产装置的自动化程度被逐渐提高,化工生产的安全和稳定将会直接受到仪表自控装置的稳定、可靠运行的影响。由于化工仪表的检测、控制、工艺等装置结合的越来越紧密,故障的现象也会越来越复杂,因此必须要相关人员有丰富的实践经验、掌握正确判断分析故障的方法,以及具备及时处理故障的能力。 一、化工仪表常见故障分析思路 由于化工生产操作具有自动化、流程化、全封闭等的特点,特别是随着科学技术快速发展,现代化企业的自动化水平已经较高,工艺操作与检测仪表有着密切关系,操作人员通过检测仪表所显示的温度、物料流量、容器压力、液位、原料成分等各类工艺参数,来对工艺生产是否正常以及产品的质量是否合格做出判断,然后根据化工仪表的指示进行加量或者减量,甚至停车停产。 化工仪表指示出现偏高、偏低、不变化、不稳定等异常现象时,其本身包含工艺与仪表两种可能导致这些现象的因素。其中,前者正确的反映出工艺异常情况;后者则是由于仪表某一环节出现故障而引起工艺参数指示与实际的不符。工艺与仪表两种因素总是容易在一起出现,从而很难立即对故障到底出现在哪里做出判断。要提高仪表故障的判断能力,仪表维护人员除了对仪表工作原理、结构、性能等特点熟悉外,还需要熟悉测量系统中的每个环节。此外,还应对工艺流程及工艺介质、设备的特性有所了解。 总之,在分析现场仪表发生故障的原因时,特别要注意被测控制对象与控制阀特性的变化,这些都有可能是造成现场化工仪表系统出现故障的原因,因此,要从现场仪表系统与工艺操作系统两个方面进行综合考虑,经过仔细分析后,再对故障的原因做出判断。 二、阀门定位器故障的判断和处理措施 阀门定位器为控制阀的主要附件,其将阀杆的位移信号作为输入的反馈测量信号,而控制器所输出信号则被作为设定信号,对两者进行比较,当有偏差时,就对到执行机构的输出信号进行改变,从而使执行机构发生动作,建立阀杆位移与控制器输出信号间的相互对应的关系。所以,阀门定位器系统以阀杆位移作为测量信号,以控制器的输出做为设定信号的反馈控制系统,而该控制系统的操纵变量则是阀门定位器执行机构的输出信号。 三、温度变送器故障的判断和处理措施 热电偶的发生变化时,将会经温度变送器的电桥产生不平衡的微弱电信号,再经放大后转换成为DC4—20mA的电流信号或者1~5Vd电压信号给工作仪表,工作仪表就会显示出其所对应的温度值。其常见的故障现象主要有:输出信号不稳定、无输出信号、输出信号较大或较小和实际的输入信号不符等。在遇到这样的故障时的处理思路如下:首先对工作电源进行判断看其是否正常,并对仪表接线进行检查;其次对现场温度传感器、温度变送器的好与坏进行判断,再的对PLC模块输入点、输出点正常与否进行判断。

常见的仪表故障及判断处理

常见的仪表故障及判断 处理 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

常见的仪表故障及判断处理 一、自动化仪表系统故障的判断思路 由于生产操作管道化、流程化、全封闭等特点,特别是现在的化工企业自动化水平很高,工艺操作与检测仪表密切相关,工艺人员通过检测仪表显示的各类工艺参数,比如反应温度、容器的压力和液位、物料流量、原料的成分等来判断工艺生产是否正常,产品的质量是否合格。仪表指示出现异常现象(指示不变化,不稳定,偏高、偏低等),本身包含两种因素:一是工艺因素,仪表已经真实准确的反映出工艺异常情况;二是仪表因素,由于仪表(测量系统)某一环节出现故障而导致工艺参数指示与实际不符。这两种因素总是混淆在一起,很难马上判断出故障到底出现在哪里。仪表维护人员要提高仪表故障判断能力,除了对仪表工作原理、结构、性能特点熟悉外,还需熟悉测量系统中每一个环节。在分析现场仪表故障前,要比较透彻地了解相关仪表系统的生产过程、生产工艺情况及条件,了解仪表系统的设计方案、 设计意图,仪表系统的结构、特点、性能及参数要求,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障仪表的记录曲线,进行综合分析。总之,分析现场仪表故障原因时,要特别注意被测控制对象和控制阀的特性变化,这些都可能是造成现场仪表系统故障的原因。所以,我们要从现场仪表系统和工艺操作系统两个方面综合考虑、仔细分析,这才能帮助仪表维护人员拓宽思

路,有助于分析和判断故障现象,及时查找原因所在,快速排除故障。 二、五大测量参数仪表控制系统故障分析步骤 1、流量控制仪表系统故障分析步骤 过程控制系统中,流量检测和调节是较复杂的系统,流量仪表查故障时,不应仅局限于一次表、二次表、管线、三阀组等几个方面,还应从设计安装和现场工况等进行全面检查。 (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到DCS之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因工艺方面有系统压力不够、泵堵、系统管路堵塞、冬天开车介质结晶、以及操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。 (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。 (3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成。

信号设备故障案例汇总

信号设备故障案例 为了提高信号维修人员处理设备故障的业务技能,缩短故障延时,减少对运输正常秩序的干扰,我们收集编写了《信号设备故障案例》手册,供信号技术管理和维修人员学习参考。这是首次将一些典型故障案例收集汇编成册,希各单位在日常维护和故障处理过程中,注意收集资料,踊跃提供典型案例,以便今后定期汇编。 1、某站15#为单动液压提速道岔。操纵动作正常,定位表示正常,反位无表示 原因分析: A、首先,来回扳动试验观察。发现芯轨小表示正常,尖轨反位小表示无,判定是尖轨表示电路故障; B、用MF14型万用表在分线盘对尖轨的X1、X3、X5线测量交直流电压,发现X1、X3和X3、X5间交流电压为110V,高于正常值(60V),而无直流电压,基本判断为室外经二极管的表示电路开路; C、到室外继续查找,此时应注意15#道岔为定位2、4闭合。先在尖轨XB1箱合内测1、2号端子电压,有100V左右交流电压,继续量7、12号端子电压,仍为100V交流电压,说明ZYJ转辙机内表示电路无故障,再到SH6转换锁闭器的HZ24电缆合处量7、12端子电压,发现交直流电压为0,可判断XB1至HZ24的电缆断线,此时可借用临时线或备用芯线来判断是那根芯线断线。经确认XB1箱12号至HZ24的12号端子的电缆芯线断线,更换备用芯线恢复。 提示:故障修复后,应及时修复故障电缆,确保备用电缆完好。 2、某站10/12#道岔定位无表示 原因分析:分线盘测试有交流110V左右电压而无直流电压,判断为室外开路故障,室外检查后发现故障为12#-B机TS-1接点受潮结冰,接触不良,更换接点恢复。

提示:转辙机内部应保持干燥,否则,设备内部潮湿,冬季天气寒冷,极易造成转辙机内部接点结冰接触不良。 3、某站1/3#道岔操定位后无表示 原因分析:电务人员接到通知后到机械室,观察继电器状态,3#道岔芯轨B机无表示,分线盘上测量有交流但无直流电压,另一人立即赶到3#B 机,在HZ-24内测试有电压,经检查,机内TS-1-11#接点接触不良(银接点脱落)。更换后恢复正常。 4、某站14#道岔(为内锁闭道岔)操反位不到底 原因分析:观察控制台电流表显示2.5A,室外检查道岔已密贴,转辙机速动爪已落下,经检查自动开闭器检查柱与柱孔卡死(缺油)。动接点因检查柱卡死而未能转换,造成道岔到位后电机空转。检查柱注油后恢复。 5、某站18/22#复式交分道岔操纵不到位 原因分析:观察控制台电流表显示2.5A,判断为室外机械故障。经检查道岔不密贴,电机空转,尖轨根部活接头处抗劲大轨缝顶死,道岔操不到底,造成道岔无表示。松动尖轨根部螺栓后,故障现象消失。 6、某站1/3#道岔反位至定位操不动 原因分析:同时按下控制台总定和1/3#道岔按钮,道岔反位表示灯不灭,检查室内1DQJ不动作,3DG SJ落下,说明原进路未解锁,但由于光管表示灯坏,白光带不亮,看不出未解锁,造成道岔操不动。由于处理过程忙乱,导致故障延时过长。用人工解锁办法使3DG解锁,道岔操纵正常。 7、某站444/446#道岔(为内锁闭道岔)转换不到位 原因分析:来回操纵该道岔,确认定、反位均无法转换到位,控制台电流表有较大电流,室内分线盘测试X1-X4、X2-X4有直流200V左右电压,X5-X4、X6-X4无直流电压输出,判断为A机动作,B机不动作(双机牵引AT型道岔),检查发现2DQJF接点在四开状态,第2组接点支架断开,继电器接点架与衔铁销子折断,更换2DQJF继电器恢复正常。 8、某站2#道岔发生挤岔事故 原因分析:发生挤岔事故后,检查轨面锈蚀严重,且有一层氧化层,现场测试2DG受电端BZ4二次侧有交流电压15V、楼内分线盘有交流13.5V

相关主题
文本预览
相关文档 最新文档