当前位置:文档之家› 《数字信号处理》课后答案

《数字信号处理》课后答案

数字信号处理课后答案 1.2 教材第一章习题解答

1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解:

()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-

2. 给定信号:25,41()6,040,n n x n n +-≤≤-??

=≤≤???

其它

(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解:

(1)x(n)的波形如题2解图(一)所示。 (2)

()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)

x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)3()cos()7

8

x n A n π

π=-,A 是常数;

(2)1

()8

()j n x n e π-=。

解:

(1)3214,73w w ππ=

=,这是有理数,因此是周期序列,周期是T=14; (2)12,168w w

π

π==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2

()()y n x n =; (7)0

()()n

m y n x m ==∑。

解:

(1)令:输入为0()x n n -,输出为

'000'0000()()2(1)3(2)

()()2(1)3(2)()

y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=

故该系统是时不变系统。

12121212()[()()]

()()2((1)(1))3((2)(2))

y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-

1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+

故该系统是线性系统。

(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。 令输入为1()x n n -,输出为'

10()()y n x n n n =--,因为

'110()()()y n n x n n n y n -=--=

故延时器是一个时不变系统。又因为

12102012[()()]()()[()][()]T ax n bx n ax n n bx n n aT x n bT x n +=-+-=+

故延时器是线性系统。

(5) 2

()()y n x n =

令:输入为0()x n n -,输出为'

2

0()()y n x n n =-,因为

2'00()()()y n n x n n y n -=-=

故系统是时不变系统。又因为

212121222

12[()()](()()) [()][()] ()()

T ax n bx n ax n bx n aT x n bT x n ax n bx n +=+≠+=+

因此系统是非线性系统。

(7) 0

()()n

m y n x m ==

令:输入为0()x n n -,输出为'

()()n

m y n x m n ==

-∑,因为

0'

00

()()()n n m y n n x m y n -=-=

≠∑

故该系统是时变系统。又因为

1212120

[()()](()())[()][()]n

m T ax n bx n ax m bx m aT x n bT x n =+=+=+∑

故系统是线性系统。

6. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。

(1)1

1

()()N k y n x n k N

-==

-∑;

(3)00

()()n n k n n y n x k +=-=

(5)()

()x n y n e

=。

解:

(1)只要1N ≥,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果()x n M ≤,则()y n M ≤,因此系统是稳定系统。

(3)如果()x n M ≤,00

0()()21n n k n n y n x k n M +=-≤

≤+∑

,因此系统是稳定的。系统是非因

果的,因为输出还和x(n)的将来值有关.

(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果()x n M ≤,则

()

()()x n x n M y n e e

e =≤≤,因此系统是稳定的。

7. 设线性时不变系统的单位脉冲响应()h n 和输入序列()x n 如题7图所示,要求画出输出输出()y n 的波形。 解:

解法(1):采用图解法

()()()()()m y n x n h n x m h n m ∞

==*=-∑

图解法的过程如题7解图所示。

解法(2):采用解析法。按照题7图写出x(n)和h(n)的表达式:

()(2)(1)2(3)1

()2()(1)(2)

2

x n n n n h n n n n δδδδδδ=-++-+-=+-+-

因为

()*()()

()*()()

x n n x n x n A n k Ax n k δδ=-=-

所以 1

()()*[2()(1)(2)]

21

2()(1)(2)

2

y n x n n n n x n x n x n δδδ=+-+-=+-+-

将x(n)的表达式代入上式,得到

()2(2)(1)0.5()2(1)(2) 4.5(3)2(4)(5)

y n n n n n n n n n δδδδδδδδ=-+-+-+-+-+-+-+-

8. 设线性时不变系统的单位取样响应()h n 和输入()x n 分别有以下三种情况,分别求出输出()y n 。

(1)45()(),()()h n R n x n R n ==;

(2)4()2(),()()(2)h n R n x n n n δδ==--; (3)5()0.5(),()n

n h n u n x R n ==。 解:

(1) 4

5

()()*()()()m y n x n h n R m R n m ∞

=-∞

==

-∑

先确定求和域,由4()R m 和5()R n m -确定对于m 的非零区间如下:

03,4m n m n ≤≤-≤≤

根据非零区间,将n 分成四种情况求解: ①0,()0n y n <=

②0

03,()11n

m n y n n =≤≤=

=+∑ ③3

4

47,()18m n n y n n =-≤≤==-∑

④7,()0n y n <= 最后结果为

0, 0,7()1, 038, 47n n y n n n n n <>??

=+≤≤??-≤≤?

y(n)的波形如题8解图(一)所示。 (2)

444()2()*[()(2)]2()2(2) 2[()(1)(4)(5)]

y n R n n n R n R n n n n n δδδδδδ=--=--=+-----

y(n)的波形如题8解图(二)所示. (3)

55()()*() ()0.5

()0.5

()0.5()

n m

n

m m m y n x n h n R m u n m R m u n m ∞

--=-∞

=-∞

==

-=-∑

y(n)对于m 的非零区间为04,m m n ≤≤≤。 ①0,()0n y n <=

②111

10.504,()0.5

0.5

0.5(10.5)0.520.510.5

n n

n

m

n n n n m n y n ------=-≤≤===--=--∑ ③54

1

10.55,()0.5

0.5

0.5310.510.5n

m

n n m n y n ---=-≤===?-∑ 最后写成统一表达式:

5()(20.5)()310.5(5)n n y n R n u n =-+?-

11. 设系统由下面差分方程描述:

11

()(1)()(1)22

y n y n x n x n =

-++-; 设系统是因果的,利用递推法求系统的单位取样响应。

解:

令:()()x n n δ=

11

()(1)()(1)22h n h n n n δδ=-++-

2

11

0,(0)(1)(0)(1)12211

1,(1)(0)(1)(0)1

2211

2,(2)(1)2211

3,(3)(2)()22n h h n h h n h h n h h δδδδ==

-++-===++====

=== 归纳起来,结果为

11

()()(1)()2

n h n u n n δ-=-+

12. 有一连续信号()cos(2),a x t ft π?=+式中,20,2

f Hz π

?==

(1)求出()a x t 的周期。

(2)用采样间隔0.02T s =对()a x t 进行采样,试写出采样信号()a x

t 的表达式。 (3)画出对应()a x

t 的时域离散信号(序列) ()x n 的波形,并求出()x n 的周期。

————第二章———— 教材第二章习题解答

1. 设()jw

X e 和()jw

Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。 解:

(1)00

[()]()jwn

n FT x n n x n n e

-=-∞

-=

-∑

令'

'

00,n n n n n n =-=+,则

'

00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞

-+-=-∞-=

=∑

(2)*

*

**[()]()[()]()jwn

jwn jw n n FT x n x n e x n e X e -∞

-=-∞

=-∞

=

==∑∑

(3)[()]()jwn

n FT x n x n e

-=-∞

-=

-∑

令'

n n =-,则

'

''

[()]()()jwn jw n FT x n x n e

X e ∞

-=-∞

-=

=∑

(4) [()*()]()()jw

jw

FT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞

=-∞

=

-∑

[()*()][()()]jwn

n m FT x n y n x m y n m e

-=-∞=-∞

=

-∑∑

令k=n-m ,则

[()*()][()()] ()() ()()

jwk jwn

k m jwk

jwn

k m jw jw FT x n y n x m y k e

e

y k e x m e

X e Y e ∞

--=-∞=-∞∞

∞--=-∞

=-∞

==

=∑∑∑∑

2. 已知0

01,()0,jw

w w X e w w π

?

求()jw

X e 的傅里叶反变换()x n 。 解: 0

0sin 1

()2w jwn w w n

x n e dw n

π

π-=

=

?

3. 线性时不变系统的频率响应(传输函数)()

()(),jw

jw

j w H e H e e θ=如果单位脉冲响应

()h n 为实序列,试证明输入0()cos()x n A w n ?=+的稳态响应为

00()()cos[()]jw y n A H e w n w ?θ=++。

解:

假设输入信号0()jw n

x n e

=,系统单位脉冲相应为h(n),系统输出为

00000

()

()()*()()()()jw n

jw n m jw n

jw m

jw m m y n h n x n h m e

e

h m e

H e

e

--=-∞

=-∞

==

==∑

∑上式说明,当输入信号为复指数序列时,输出序列仍是复指数序列,且频率相同,但幅度和相位决定于网络传输函数,利用该性质解此题。

0000000000000()()1

()cos()[]2

1

()[()()]

21

[()()]

2

jw n jw n j j jw n jw jw n jw j j jw n jw j w jw n jw j w j j x n A w n A e e e e y n A e e H e e e H e A e e H e e e e H e e ?????θ???---------=+=+=

+=+ 上式中()jw

H e 是w 的偶函数,相位函数是w 的奇函数,

000000()()00()(),()()

1

()()[]2

()cos(())jw jw jw jw n j w jw n j w j j jw H e H e w w y n A H e e e e e e e A H e w n w θθ??θθ?θ----==--=

+=++ 4. 设1,0,1()0,n x n =?=?

?其它

将()x n 以4为周期进行周期延拓,形成周期序列 ()x n ,画出()x n 和 ()x

n 的波形,求出 ()x n 的离散傅里叶级数 ()X k 和傅里叶变换。 解:

画出x(n)和()x

n 的波形如题4解图所示。 23

1

4

2

2

4

4

4

4

()[()]()1 ()2cos()4

j

kn j kn j k n n j k

j k j k j k X k DFS x n x n e

e

e

e e

e

k e

ππ

π

π

π

π

π

π

---==---====+=+=?∑∑ ,

()X

k 以4为周期,或者 1

1111

222

24

111

24441sin 1()2()1sin 1()

4

j k j k j k j k

j kn j k j k j k j k j k n k e e e e X k e e k e e e e ππππππππππππ--------=--====--∑ , ()X

k 以4为周期

4

22()[()]()()4

4 ()()22

cos()()

42

jw k k j k

k X e FT x

n X k w k X k w k k e

w k π

ππδπ

πδπ

π

π

δ∞

=-∞

∞=-∞∞

-=-∞

==-=

-=-

∑∑∑

5. 设如图所示的序列()x n 的FT 用()jw

X e 表示,不直接求出()jw

X e ,完成下列运算: (1)0

()j X e ;

(2)

()jw

X e dw π

π-

?;

(5)2

()jw X e dw π

π

-?

解:

(1)7

3

()()6j n X e x n =-=

=∑

(2)

()(0)24jw X e dw x π

π

ππ-=?=?

(5)

7

2

2

3

()2()28jw

n X e dw x n π

π

ππ=--==∑?

6. 试求如下序列的傅里叶变换: (2)211

()(1)()(1)22

x n n n n δδδ=

+++-; (3)3()(),01n

x n a u n a =<< 解:

(2)

22

11()()1221

1()1cos 2jw

jwn

jw jw n jw jw X e x n e e e e e w

--=-∞

-=

=++=++=+∑

(3) 30

1

()()1jw

n jwn

n jwn jw

n n X e a u n e

a e ae ∞

---=-∞

====

-∑

7. 设:

(1)()x n 是实偶函数,

(2)()x n 是实奇函数,分别分析推导以上两种假设下,()x n 的傅里叶变换性质。 解: 令 ()()jw

jwn

n X e x n e

-=-∞

=

(1)x(n)是实、偶函数,()()jw

jwn

n X e x n e

-=-∞

=∑

两边取共轭,得到

*()()()()()jw

jwn

j w n

jw n n X e x n e

x n e

X e ∞

---=-∞

=-∞

=

=

=∑∑

因此*

()()jw

jw

X e X e

-=

上式说明x(n)是实序列,()jw

X e 具有共轭对称性质。

()()()[cos sin ]jw

jwn

n n X e x n e

x n wn j wn ∞

-=-∞

=-∞

=

=

+∑∑

由于x(n)是偶函数,x(n)sinwn 是奇函数,那么

()sin 0n x n wn ∞

=-∞

=∑

因此()()cos jw

n X e x n wn ∞

=-∞=

该式说明()jw

X e 是实函数,且是w 的偶函数。

总结以上x(n)是实、偶函数时,对应的傅里叶变换()jw

X e 是实、偶函数。 (2)x(n)是实、奇函数。

上面已推出,由于x(n)是实序列,()jw

X e 具有共轭对称性质,即

*()()jw jw X e X e -=

()()()[cos sin ]jw

jwn

n n X e x n e

x n wn j wn ∞

-=-∞

=-∞

=

=

+∑∑

由于x(n)是奇函数,上式中()cos x n wn 是奇函数,那么

()cos 0n x n wn ∞

=-∞

=∑

因此()()sin jw

n X e j

x n wn ∞

=-∞

=∑

这说明()jw

X e 是纯虚数,且是w 的奇函数。

10. 若序列()h n 是实因果序列,其傅里叶变换的实部如下式: ()1cos jw

R H e w =+ 求序列()h n 及其傅里叶变换()jw

H e 。 解:

/211()1cos 1[()]()221

,12()1,0

1

,12

0,01,0()(),01,1

2(),00,()()12cos

2

jw

jw jw

jwn

R e e n e e e jw

jwn jw

jw n H e w e e FT h n h n e n h n n n n n h n h n n n h n n w

H e h n e e

e ∞

--=-∞

---=-∞

=+=++==?=-??

==???=?<=??????

====??????>???=

=+=∑∑

其它n

12. 设系统的单位取样响应()(),01n

h n a u n a =<<,输入序列为()()2(2)x n n n δδ=+-,完成下面各题:

(1)求出系统输出序列()y n ;

(2)分别求出()x n 、()h n 和()y n 的傅里叶变换。 解: (1)

2

()()*()()*[()2(2)] ()2(2)

n n

n y n h n x n a u n n n a u n a

u n δδ-==+-=+-

(2)

20

2()[()2(2)]121

()()112()()()1jw

jwn

j w

n jw

n jwn

n jwn jw

n n j w

jw jw

jw

jw

X e n n e e H e a u n e

a e ae

e Y e H e X e ae δδ∞--=-∞

---=-∞

=--=+-=+=

==

-+==

-∑∑

∑ 13. 已知0()2cos(2)a x t f t π=,式中0100f Hz =,以采样频率400s f Hz =对()a x t 进行

采样,得到采样信号 ()a x

t 和时域离散信号()x n ,试完成下面各题:

(1)写出()a x t 的傅里叶变换表示式()a X j Ω;

(2)写出 ()a x

t 和()x n 的表达式; (3)分别求出 ()a x

t 的傅里叶变换和()x n 序列的傅里叶变换。 解:

(1)

000()()2cos() ()j t j t a a j t

j t

j t

X j x t e dt t e dt

e

e

e

dt

∞∞

-Ω-Ω-∞-∞

Ω-Ω-Ω-∞

Ω==Ω=+???

上式中指数函数的傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以 表示成:

00()2[()()])a X j πδδΩ=Ω-Ω+Ω+Ω

(2) 0

?()()()2cos()()a a

n n x

t x t t nT nT t nT δδ∞∞

=-∞

=-∞

=-=Ω-∑∑

0()2cos(), x n nT n =Ω-∞<<∞

001

2200, 2.5s

f rad T ms f ππΩ===

= (3)

01?()()2 [()()]

a a s k s s k X j X j jk T k k T

π

δδ∞

=-∞

=-∞

Ω=Ω-Ω=

Ω-Ω

-Ω+Ω+Ω-Ω∑∑

式中2800/s s f rad s ππΩ==

0000

0()()2cos()2cos() []2[(2)(2)]

jw

jwn

jwn

jwn

n n n jw n

jw n jwn n k X e x n e nT e

w n e

e

e e w w

k w w k π

δπδπ∞

---=-∞=-∞

=-∞

∞--=-∞

=-∞

==

Ω=

=

+=--++-∑∑∑∑∑

式中000.5w T rad π=Ω=

上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它的傅里叶变换表达式。

14. 求以下序列的Z 变换及收敛域: (2)2(1)n

u n ----;

(3)2()n

u n --;

(6)2[()(10)]n

u n u n --- 解:

(2) 110

11

[2()]2()2,122

n

n n

n n n n ZT u n u n z

z z z ∞

-------=-∞

====

>

-∑

∑ (3)

1

1

11[2(1)]2

(1)2

2211

,12122

n

n

n

n

n

n n

n n n ZT u n u n z

z

z z z z z ∞

-----=-∞

=-=-----=---=

-=--=

=<--∑∑∑

(6)

9

1010

11

[2()(10)]212 ,012n

n n

n ZT u n u n z z

z z

---=------=-=

<≤∞-∑

16. 已知:

1132

()11212

X z z z --=

+

-- 求出对应()X z 的各种可能的序列的表达式。

解:

有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。 (1)当收敛域0.5z <时,

1

1

()()2n c

x n X Z z dz j π-=

?

令11

1115757()()(10.5)(12)(0.5)(2)

n n n

z z F z X z z

z z z z z z -------===---- 0n ≥,因为c 内无极点,x(n)=0;

1n ≤-,C 内有极点0,但z=0是一个n 阶极点,改为求圆外极点留数,圆外极点有120.5,2z z ==,那么

0.52

()Re [(),0.5]Re [(),2]

(57)(57) (0.5)(2)

(0.5)(2)(0.5)(2)

1

[3()22](1)

2

n n

z z n n x n s F z s F z z z z z z z z z z z u n ===----=-------=-+--

(2)当收敛域0.52z <<时,

(57)()(0.5)(2)

n

z z F z z z -=--

0n ≥,C 内有极点0.5;

1

()Re [(),0.5]3()2

n x n s F z ==

0n <,C 内有极点0.5,0,但0是一个n 阶极点,改成求c 外极点留数,c 外极点只有一

个,即2,

()Re [(),2]22(1)n x n s F z u n =-=---

最后得到1

()3()()22(1)2

n n

x n u n u n =--- (3)当收敛域2z <时,

(57)()(0.5)(2)

n

z z F z z z -=--

0n ≥,C 内有极点0.5,2;

1

()Re [(),0.5]Re [(),2]3()222

n n x n s F z s F z =+=+

n<0,由收敛域判断,这是一个因果序列,因此x(n)=0。

或者这样分析,C 内有极点0.5,2,0,但0是一个n 阶极点,改成求c 外极点留数,c 外无极点,所以x(n)=0。 最后得到

1

()[3()22]()2

n n x n u n =+

17. 已知()(),01n

x n a u n a =<<,分别求: (1)()x n 的Z 变换; (2)()nx n 的Z 变换; (3)()n

a u n --的z 变换。 解:

(1)1

1

()[()](),1n

n

n

n X z ZT a u n a u n z

z a az

--=-∞

==

=

>-∑ (2)1

12

[()](),(1)

d az ZT nx n z X z z a dz az --=-=>- (3)10

1

[()],1n

n n

n n n n ZT a u n a z

a z z a az

-∞

----==-=

==

<-∑∑ 18. 已知1

12

3()252z X z z z ----=-+,分别求:

(1)收敛域0.52z <<对应的原序列()x n ; (2)收敛域2z >对应的原序列()x n 。 解:

1

1

()()2n c

x n X z z dz j π-=

?

11

1

1233()()2522(0.5)(2)

n n n z z F z X z z

z z z z z -------?===-+-- (1)当收敛域0.52z <<时,0n ≥,c 内有极点0.5,

()Re [(),0.5]0.52n n x n s F z -===,0,n <

c 内有极点0.5,0,但0是一个n 阶极点,改求c 外极点留数,c 外极点只有2,

()Re [(),2]2n x n s F z =-=,

最后得到

()2()2(1)2

n

n n x n u n u n --=+--=

(2(当收敛域2z >时,

0,n ≥c 内有极点0.5,2,

()Re [(),0.5]Re [(),2]x n s F z s F z =+

30.5(2)

22(0.5)(2)

0.52

n

n

n n

z z z z z -?=+-=--=-

0,n

点,因此()0x n =, 最后得到

()(0.52)()n n x n u n =-

25. 已知网络的输入和单位脉冲响应分别为

()(),()(),01,01n n x n a u n h n b u n a b ==<<<<,

试:

(1)用卷积法求网络输出()y n ; (2)用ZT 法求网络输出()y n 。 解:

(1)用卷积法求()y n

()()()()()m

n m m y n h n x n b

u m a u n m ∞

-=-∞

=*=

-∑,0n ≥,

1111

1

1()1n n n n n

n

n m m

n

m m

n

m m a b a b y n a

b a a b a a b a b --+++---==--====--∑∑,0n <,()0y n = 最后得到

11

()()n n a b y n u n a b

++-=-

(2)用ZT 法求()y n

11

11

(),()11X z H z az bz --=

=

-- ()()

1

1

1

()()()11Y z X z H z az bz --==

--

1

1()()2n c

y n Y z z dz j

π-=

? 令()()

11

1

11

()()()()11n n n z z F z Y z z

z a z b az bz -+---===---- 0n ≥,c 内有极点,a b

1111

()Re [(),]Re [(),]n n n n a b a b y n s F z a s F z b a b b a a b

++++-=+=+=---

因为系统是因果系统,0n <,()0y n =,最后得到

11

()()n n a b y n u n a b

++-=-

28. 若序列()h n 是因果序列,其傅里叶变换的实部如下式:

21cos (),112cos jw R a w

H e a a a w

-=

<+-

求序列()h n 及其傅里叶变换()jw

H e 。 解:

221cos 10.5()

()12cos 1()

jw jw jw

R jw jw

a w a e e H e a a w a a e e ----+==+-+-+ 121110.5()10.5()

()1()(1)(1)

jw jw R a z z a e e H z a a z z az az -----+-+==+-+--

求上式IZT ,得到序列()h n 的共轭对称序列()e h n 。

11

()()2n e R

c

h n H z z dz j π-=

?

21

1

1

0.50.5()()()()

n n R az z a F z H z z

z a z a z a ----+-==--- 因为()h n 是因果序列,()e h n 必定是双边序列,收敛域取:1

a z a -<<。

1n ≥时,c 内有极点a ,

211

0.50.51()Re [(),]()()()

2n n

e az z a h n s F z a z z a a z a a z a z a ---+-==-==--- n=0时,c 内有极点a ,0,

21

1

10.50.5()()()()

n R az z a F z H z z

z a z a z a ----+-==--- 所以

()Re [(),]Re [(),0]1e h n s F z a s F z =+=

又因为

()()e e h n h n =-

所以

1,0()0.5,00.5,0n e n n h n a n a n -=??

=>??

1,0(),0

()2(),0,0()0,00,0e n n e n h n n h n h n n a n a u n n n =??=????

=>=>=??????<

01

()1jw

n jwn jw

n H e a e ae

--===

-∑

3.2 教材第三章习题解答

1. 计算以下诸序列的N 点DFT,在变换区间01n N ≤≤-内,序列定义为 (2)()()x n n δ=;

(4)()(),0m x n R n m N =<<; (6)2()cos(

),0x n nm m N N

π

=<<; (8)0()sin()()N x n w n R n =?; (10)()()N x n nR n =。 解: (2)1,,1,0,1)()()(1

1

-====

∑∑-=-=N k n W

n k X N n N n kn N

δδ

(4)1,,1,0,)

sin(

)

sin(

11)()

1(1

-==--=

=

---=∑N k m N

mk N

e

W

W W

k X m k N

j

k N

km N N n kn N

π

π

π

10,,0,1

1111212121)(2)(2)(2)(210

)(210)(2-≤≤?????-≠≠-===????

??????

--+--=+=+-+----=+--=-∑∑N k m

N k m k m N k m k N e e e e e e k m N j N k m N j k m N

j N k m N j N n n k m N j N n n k m N j 或且π

π

πππ

π

(6)kn N j mn N

j N n mn N j N n kn N e e e W mn N k X π

π

π

π221021

0)(2

12cos )(---=-=+=???? ??=∑∑ (8)解法1 直接计算

[]

)(21)()sin()(0008n R e e j

n R n w n x N n jw n

jw N --=

= []

∑∑-=---=-==10

210

80021)()(N n kn N j n

jw n jw N n kn N

e e e j W

n x k X π

??

?

?

????-----=??????-=+--=+--∑)2()2(102200000011112121k N

w j N jw k N w j N jw N n n N w j n N w j e e e e j e e j π

πππ)()( 解法2 由DFT 的共轭对称性求解

因为

[])()sin()cos()()(0070n R n w j n w n R e n x N N n jw +==

[])(Im )()sin()(708n x n R n w n x N ==

所以

[][][])()(Im )(7078k X n x j DFT n jx DFT ==

[]

)()(2

1)()(77708k N X k X j

k jX k X ---=-=*

???

?????-----=????????-----=+-*---)11(1121)11(1121)2()2()(2()2(00000000k N

w j N jw k N w j N jw k N N w j N jw k N w j N jw e e e e j e e e e j π

πππ结果与解法1所得结果相同。此题验证了共轭对称性。

(10)解法1

1,,1,0)(1

0-==∑-=N k nW k X N n kn

N

上式直接计算较难,可根据循环移位性质来求解X(k)。 因为 )()(n nR n x N =

所以 )()()())1(()(n R n N n R n x n x N N N =+?--δ 等式两边进行DFT 得到

)()()(k N N W k X k X k

N δ=+-

故 1,2,1,1]

1)([)(-=--=

N k W k N k X k

N

δ 当0=k 时,可直接计算得出X (0)

2

)

1()0(10

1

00

-=

=*=∑∑-=-=N N n W n X N n N n N

这样,X (k )可写成如下形式:

???

?

???-=--=-=1,2,1,10,2)

1()(N k W N k N N k X k N

解法2

0=k 时,

2

)

1()(1

-=

=∑-=N N n k X N n 0≠k 时,

N

N W N W

k X W k X N W N W W W k X W W N W W W k X N n kn

N N n kn N

kn

N

k N N k N k N k N kn N k

N N

k N k N k N -=---=--=--+-+++++=-+++++=∑∑-=-=--1

1

1

)1(432)1(32)1(1)1()()()

1()2(320)()1(320)(

所以,

0,1)(≠--=

k W N

k X k

N

???

?

???-=--=-=1,2,1,10,2)

1()(N k W N k N N k X k N

2. 已知下列()X k ,求()[()];x n IDFT X k =

(1),2(),2

0,j j N e k m N X k e k N m k θ

θ

-?=??

?==-?????

其它;

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

2020年数字信号处理大作业新版修订

2019~2020年度《数字信号处理》大作业题目与要求 大作业要求: 本学期大作业总分40分,学生可选择任意数量的题目完成,只要所选题目总分达到40分即可,所选题目总分如果超过40分,超过的部分不计入大作业总分。大作业以电子版的形式提交,内容应包括详细的程序设计思路与题目分析(题目分析指的是对该题目中所用到的知识点的说明,不要照搬书上或网上的内容,写出你自己对该知识点的理解。),程序截图,程序源码,其中设计思路和程序截图可写在同一个文档中,程序源码可以是.txt或.m 文件,并在源码中标注代码注释。另:题目中有GUI设计要求的部分占该题目分值的20%,功能实现部分占该题目分值的80%。 注:以下题目均用MATLAB完成。 大作业题目: 1、实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、卷积和),并以GUI的形式将这些运算整合起来,使用者可通过向GUI输入任意有限长序列得到对应的运算结果。(5分) 2、设计一个GUI,实现奈奎斯特采样定理,要求:1、在GUI中输入任意一个模拟信号,显示该模拟信号的时域和频域谱图;2、在GUI中设置任意采样频率,对输入的模拟信号进行采样处理,显示采样信号的时域和频域谱图; 3、在GUI中实现采样信号向模拟信号的恢复功能,要求显示恢复后的模拟信号的时域和频域谱图。(10分) 3、通过GUI动态展示z变换与s变换之间的所有关系。(5分) 4、设计一个GUI,通过向GUI输入任意系统函数,得到其对应系统的相关信息(包括:系统频率响应中的幅度响应和相位响应、系统零极点的分布、系统的稳定性判定)。(10分) 5、设计一个GUI,实现利用DFT(或FFT)完成任意时域信号的频谱分析,要求:1、可在GUI中输入时域数字或模拟信号;2、可设置DFT点数;3、在GUI中显示输入信号经DFT(或FFT)处理后的频谱图;3、若输入信号为模拟信号,需完成对该模拟信号的采样,采样频率可在GUI中设置。(10分) 6、在GUI中,实现IIR滤波器的直接型、级联型和并联型三种结构之间的任意转换,要求:在GUI中输入任意一型的系统函数后可在该GUI中显示出对应的另外两型的系统函数。(10分) 7、实现巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的设计,以GUI的形式给出。要求:输入所需的模拟低通滤波器参数指标后,程序能将该指标转化为数字低通滤波器指标(在GUI中应能选择转化方式:冲激响应不变法、双线性变换法),并在GUI中显示出所给参数下巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的频率响应中幅度响应的频谱图。(15分) 8、已知某组数字信号(见大作业数据压缩包中HWDATA.mat文件),该信号中除了目标信号之外还掺杂有强噪声,但噪声与目标信号的频率不重叠,要求采用本学期已学的知识对该信

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

什么是数字信号处理

什么是数字信号处理?有哪些应用? 利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。 例如:滤波、检测、参数提取、频谱分析等。 对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。广义理解可为Digital Signal Processing 译为数字信号处理技术。在此我们讨论的DSP的概念是指广义的理解。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 信号处理的实质是对信号进行变换。 信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。 DSP的应用几乎遍及电子学每一个领域。 ▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。 ▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换 ▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图 ▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理, 通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。 在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。 数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF) 数字信号处理特点: 1.大量的实时计算(FIR IIR FFT), 2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见) 数字信号处理技术的意义、内容 数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。 意义: 在21世纪,数字信号处理是影响科学和工程最强大的技术之一 它是科研人员和工程师必须掌握的一门技巧 DSP芯片及其特点 ▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。对应的:冯·诺依曼结构。 ▲采用流水线技术: ▲硬件乘法器:具有硬件连线的高速“与或”运算器 ▲多处理单元:DSP内部包含多个处理单元。 ▲特殊的DSP指令:指令具有多功能,一条指令完成多个动作;如:倒位序指令等 ▲丰富的外设▲功耗低:一般DSP芯片功耗为0.5~4W。采用低功耗技术的DSP芯片只有0.1W/3.3V、1.6V (电池供电) DSP芯片的类别和使用选择 ▲按特性分:以工作时钟和指令类型为指标分类▲按用途分:通用型、专用型DSP芯片 ▲按数据格式分:定点、浮点各厂家还根据DSP芯片的CPU结构和性能将产品分成若干系列。 TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于领先地位,公认为世界DSP霸主。 ?目前市场上的DSP芯片有: ?美国德州仪器公司(TI):TMS320CX系列占有90%

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理作业-答案

数字信号处理作业-答案

数字信号处理作业

DFT 习题 1. 如果)(~ n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1 k X 表示)(~ n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2 k X 表示)(~ n x 的离散傅里叶级数之系数。当然,)(~ 1 k X 是周期性的,周期为N ,而)(~ 2 k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2 k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~ n w 定义为)()()(~~ ~ n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~ n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地,由于)(~ n y 的周期为M ,其离散傅里叶级数之系数)(~ k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=0 0)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理作业-2012

《数字信号处理Ⅰ》作业 姓名: 学号: 学院: 2012 年春季学期

第一章 时域离散信号和时域离散系统 月 日 一 、判断: 1、数字信号处理和模拟信号处理在方法上是一样的。( ) 2、如果信号的取值和自变量都离散,则称其为模拟信号。( ) 3、如果信号的取值和自变量都离散,则称其为数字信号。( ) 4、时域离散信号就是数字信号。( ) 5、正弦序列都是周期的。( ) 6、序列)n (h )n (x 和的长度分别为N 和M 时,则)n (h )n (x *的长度为N+M 。( ) 7、如果离散系统的单位取样响应绝对可和,则该系统稳定。( ) 8、若满足采样定理,则理想采样信号的频谱是原模拟信号频谱以s Ω(采样频率)为周期进行周期延拓的结果。( ) 9、序列)n (h )n (x 和的元素个数分别为21n n 和,则)n (h )n (x *有(1n n 21-+)个元素。( ) 二、选择 1、R N (n)和u(n)的关系为( ): A. R N (n)=u(n)-u(n-N) B. R N (n)=u(n)+u(n-N) C. R N (n)=u(n)-u(n-N-1) D. R N (n)=u(n)-u(n-N+1) 2、若f(n)和h(n)的长度为别为N 、M ,则f(n)*h(n)的长度为 ( ): A.N+M B.N+M-1 C.N-M D.N-M+1 3、若模拟信号的频率范围为[0,1kHz],对其采样,则奈奎斯特速率为( ): A.4kHz B. 3kHz C.2kHz D.1kHz 4、LTIS 的零状态响应等于激励信号和单位序列响应的( ): A.相乘 B. 相加 C.相减 D.卷积 5、线性系统需满足的条件是( ): A.因果性 B.稳定性 C.齐次性和叠加性 D.时不变性 6、系统y(n)=f(n)+2f(n-1)(初始状态为0)是( ): A. 线性时不变系统 B. 非线性时不变系统 C. 线性时变系统 D. 非线性时变系统

长沙理工数字信号处理大作业数字滤波器设计

IIR及FIR数字滤波器 一题干 对模拟信号进行低通滤波处理,要求通带0≤f≤4kHz,通带衰减小于0.5dB,阻带4.5k Hz≤f<∞,阻带衰减大于50dB,设采样频率Fs=20kHz。 (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 (2)分别用脉冲响应不变法和双线性变换法设计IIR低通数字滤波器,求出Ha(z) 的分子、分母多项式系数Bz和Az,并画出幅频响应损耗函数曲线 (3)采用窗函数法(分别用汉宁窗、哈明窗、布莱克曼窗函数)设计满足要求的FIR 低通滤波器,求出h(n),并画出幅频响应损耗函数曲线. (4)用频率采样法设计满足要求的FIR低通滤波器,求出h(n),并画出幅频响应损耗函数曲线。

二求解过程 具体内容如下: (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 程序: wp=2*pi*4000; ws=2*pi*5800; Rp=0.5; As=50; [N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s'); k=0:511; fk=0:20000/512:20000; wk=2*pi*fk; Hk=freqs(B,A,wk); plot(fk/1000,20*log10(abs(Hk))); grid on xlabel('频率/kHz'); ylabel('幅度/dB'); axis([0,6,-65,5]); 波形图:

A = 1.0e+207 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 2.1576 B = 1.0e+207 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1576 N = 46

数字信号处理第三章作业.pdf

数字信号处理第三章作业 1.(第三章习题3)在图P3-2中表示了两个周期都为6的周期性序列,确定这个两个序列的周期卷积的结果3()x n ,并画出草图。 2.(第三章习题5)如果()x n 是一个具有周期为N 的周期性序列,它也是具有周期为2N 的周期性序列。令~1()X k 表示当()x n 看做是具有周期为N 的周期性序列的DFS 系数。而~2()X k 表示当()x n 看作是具有周期为2N 的周期性序列的DFS 系数。当然~1()X k 是具有周期为N 的周期性序列,而~2()X k 是具有周期为2N 的周期性序列,试根据~1()X k 确定~2()X k 。 3.(第三章习题6) (a )试证明下面列出的周期性序列离散傅里叶级数的对称特性。在证明中,可以利用离散傅里叶级数的定义及任何前面的性质,例如在证明性质③时可以利用性质①和②。 序列 离散傅里叶级数 ① *()x n ~*()X k - ②*()x n - ~*()X k ③Re ()x n ???? ~ e ()X k ④Im ()j x n ???? ~()o X k

(b )根据已在(a )部分证明的性质,证明对于实数周期序列()x n ,离散傅里叶级数的下列对称性质成立。 ①~~Re ()Re ()X k X k ????=-???????? ②~~Im ()Im ()X k X k ????=--???????? ③~~()()X k X k =- ④~~arg ()arg ()X k X k ????=--???????? 4.(第三章习题7)求下列序列的DFT (a) {}11 1-,,,-1 (b) {}1 j 1j -,,,- (c) ()cn 0n 1x n N =≤≤-, (d) 2n ()sin 0n 1x n N N π??=≤≤- ??? , 5.(第三章习题8)计算下列各有限长序列的离散傅立叶变换(假设长度为N ) 1 0)()(0) ()()() ()()(00-≤≤=<<-==N n a n x c N n n n n x b n n x a n δδ 6.(第三章习题9)在图P3-4中表示了一有限长序列)(n x ,画出序列)(1n x 和)(2n x 的草图。(注意:)(1n x 是)(n x 圆周移位两个点) )())(()() ())2(()(442441n R n x n x n R n x n x -=-=

数字信号处理

Matlab上机实验 报告 ; 学院:理学院 专业:10 电信 姓名:贺茂海 学号:2010142110 完成日期:2012.10.20

matlab上机实验 实验内容:1)阅读例子程序,观察输出波形,理解每条语句的含义。 (2)已知有限长序列x(n)=[7,6,5,4,3,2],求DFT和IDFT,要求:画出序列傅立叶变换对应的幅度谱和相位谱;画出原信号与傅立叶逆变换IDFT[X(k)]的图形进行比较。 (3)已知周期序列的主值x(n)=[7,6,5,4,3,2],求x(n)周期重复次数为3次时的DFS和IDFS。要求:画出原信号序列的主值和周期序列的图形;画出离散傅立叶变换对应的幅度谱和相位谱。 (4)求x(n)=[7,6,5,4,3,2], 0=

相关主题
文本预览
相关文档 最新文档