当前位置:文档之家› 2018年高考数学专题突破练2利用导数研究不等式与方程的根试题理

2018年高考数学专题突破练2利用导数研究不等式与方程的根试题理

2018年高考数学专题突破练2利用导数研究不等式与方程的根试题理
2018年高考数学专题突破练2利用导数研究不等式与方程的根试题理

专题突破练(2) 利用导数研究不等式与方程的根

一、选择题

1.设函数f (x )=1

3

x -ln x (x >0),则f (x )( )

A .在区间? ????1e ,1,(1,e)上均有零点

B .在区间? ??

??1e ,1,(1,e)上均无零点 C .在区间? ????1e ,1上有零点,在区间(1,e)上无零点 D .在区间? ??

??1e ,1上无零点,在区间(1,e)上有零点 答案 D

解析 因为f ′(x )=13-1

x ,所以当x ∈(3,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈

(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1

3e +1>0,f (1)=13>0,f (e)

=e 3-1<0,所以f (x )在区间? ??

??1e ,1上无零点,在区间(1,e)上有零点.

2.[2016·福建福州质检]已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )

恒成立,则不等式x 2f ? ??

??1x -f (x )>0的解集为( )

A .(0,1)

B .(1,2)

C .(1,+∞)

D .(2,+∞) 答案 C 解析 令F (x )=

f x x ,x >0,则F ′(x )=xf ′ x -f x

x 2

,因为f (x )>xf ′(x ),所以F ′(x )<0,所以函数F (x )=

f x x 在(0,+∞)上为减函数,由不等式x 2f ? ??

??1x -f (x )>0,

得f ? ???

?

1x 1x

>f x

x ,所以1x 0,所以x >1,故选C.

3.[2016·山西四校联考]已知函数f (x )=ax 2

+bx -ln x (a >0,b ∈R ),若对任意x >0,

f (x )≥f (1),则( )

A .ln a <-2b

B .ln a ≤-2b

C .ln a >-2b

D .ln a ≥-2b

答案 A

解析 f ′(x )=2ax +b -1

x

,由题意可知f ′(1)=0,即2a +b =1,由选项可知只需比较

ln a +2b 与0的大小,而b =1-2a ,所以只需判断ln a +2-4a 的符号.构造一个新函数

g (x )=2-4x +ln x ,则g ′(x )=1x -4,令g ′(x )=0,得x =14;当x <1

4

时,g (x )为增函数;

当x >14时,g (x )为减函数,所以对任意x >0有g (x )≤g ? ????14=1-ln 4<0,所以有g (a )=2-4a

+ln a =2b +ln a <0?ln a <-2b ,故选A.

二、填空题

4.已知定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.

答案 (4,+∞)

解析 令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又

g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).

5.若函数f (x )=x 3

-3x +a 有三个不同的零点,则实数a 的取值范围是________. 答案 (-2,2)

解析 由f (x )=x 3

-3x +a =0,得f ′(x )=3x 2

-3,当f ′(x )=0时,x =±1,易知f (x )的极大值为f (-1)=2+a ,f (x )的极小值为f (1)=a -2,要使函数f (x )=x 3

-3x +a 有三个不同的零点,则有f (-1)=2+a >0,且f (1)=a -2<0,即-2

6. 已知R 上可导函数f (x )的图象如图所示,则不等式(x 2

-2x -3)f ′(x )>0的解集为________.

答案 (-∞,-1)∪(-1,1)∪(3,+∞) 解析 由可导函数f (x )的图象,

得?

??

??

x 2

-2x -3>0,x ∈ -∞,-1 ∪ 1,+∞ 或?

??

??

x 2

-2x -3<0,

x ∈ -1,1 ,

解之得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).

7.若二次函数f (x )=ax 2

-4bx +c 对任意的x ∈R 恒有f (x )≥0,其导函数满足f ′(0)<0,则

f 2

f ′ 0

的最大值为________.

答案 0

解析 因为f (x )≥0恒成立,所以?

????

a >0,

16b 2

-4ac ≤0.

又f ′(0)=-4b <0,所以b >0,则

f 2 f ′ 0 =4a -8b +c -4b =2-4a +c

4b

.

因为4a +c ≥24ac ≥8b ,所以4a +c 4b ≥2,故f 2

f ′ 0 ≤2-2=0,当且仅当4a =c ,ac

=4b 2

,即a =b ,c =4b 时,

f 2

f ′ 0

取到最大值0.

三、解答题

8.[2017·南昌调研]已知函数f (x )=kx 2

e

x

,其中k ∈R 且k ≠0.

(1)求函数f (x )的单调区间;

(2)当k =1时,若存在x >0,使ln f (x )>ax 成立,求实数a 的取值范围. 解 (1)定义域为R ,f ′(x )=-kx x -2

e x

, 若k <0,当x <0或x >2时,f ′(x )>0; 当0

若k >0,当x <0或x >2时,f ′(x )<0; 当00.

所以当k <0时,函数f (x )的单调递增区间是(-∞,0),(2,+∞),单调递减区间是(0,2); 当k >0时,函数f (x )的单调递减区间是(-∞,0),(2,+∞),单调递增区间是(0,2). (2)当k =1时,f (x )=x 2

e x ,x >0,

由ln f (x )>ax ,得a <2ln x -x

x

.

设g (x )=2ln x -x x ,x >0,g ′(x )=2 1-ln x

x

2

, 所以当00;

当x >e 时,g ′(x )<0,所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,故g (x )max

=g (e)=2

e

-1,

所以实数a 的取值范围是?

????-∞,2e -1. 9.[2017·唐山摸底]已知函数f (x )=ln x +a x

-2. (1)讨论f (x )的单调性;

(2)若函数y =f (x )的两个零点为x 1,x 2(x 12a . 解 (1)f ′(x )=1x -a x 2=x -a

x

2,(x >0)

所以当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.

(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1

??1x 2-1 2a -x 2<0,

所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).

令x =x 1f (2a -x 1), 所以f (x 2)=f (x 1)>f (2a -x 1),

由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1,故x 1+x 2>2a . 10.[2017·湖北荆州摸底]已知函数f (x )=ax -ln x ,a ∈R . (1)求函数f (x )的单调区间;

(2)当x ∈(0,e]时,求g (x )=e 2

x -ln x 的最小值; (3)当x ∈(0,e]时,证明:e 2

x -ln x -ln x x >52.

解 (1)f ′(x )=a -1x =ax -1

x

(x >0).

①当a ≤0时,f ′(x )<0,所以f (x )在(0,+∞)上单调递减;

②当a >0时,令f ′(x )>0,得x >1a ;令f ′(x )<0,得0

,所以f (x )在? ??

??0,1a 上单调

递减,在? ??

??1a

,+∞上单调递增.

综上,当a ≤0时,f (x )的单调递减区间是(0,+∞),无单调递增区间;当a >0时,f (x )

的单调递减区间是?

??

??0,1a ,单调递增区间是? ??

??1a ,+∞.

(2)因为g (x )=e 2

x -ln x ,则g ′(x )=e 2

-1x =e 2

x -1x

令g ′(x )=0,得x =1e 2,当x ∈? ??

??0,1e 2时,g ′(x )<0;

当x ∈? ????1e 2,e 时,g ′(x )>0,所以当x =1e 2时,g (x )取得最小值,g (x )min =g ? ????1e 2=3.

(3)证明:令φ(x )=ln x x +52,则φ′(x )=1-ln x

x 2,

令φ′(x )=0,得x =e.

当0

2=3,

所以e 2x -ln x >ln x x +52,e 2

x -ln x -ln x x >52

.

11.[2017·山西四校联考]已知函数f (x )=ln x -ax 2

-2x .

(1)若函数f (x )在x ∈????

??14,2内单调递减,求实数a 的取值范围; (2)当a =-14时,关于x 的方程f (x )=-1

2x +b 在[1,4]上恰有两个不相等的实数根,求

实数b 的取值范围.

解 (1)f ′(x )=1x -2ax -2=-2ax 2

-2x +1

x

由题意f ′(x )≤0在x ∈??????14,2时恒成立,

即2a ≥1-2x x

2=? ??

??1x -12

-1.

在x ∈??????14,2时恒成立,即2a ≥????

??? ????1x -12-1max , 当x =14时,? ????1x -12

-1取最大值8,

∴实数a 的取值范围是a ≥4.

(2)当a =-14时,f (x )=-1

2x +b 可变形为

14x 2-3

2

x +ln x -b =0, 令g (x )=14x 2-3

2x +ln x -b (x >0),

则g ′(x )= x -2 x -1

2x .

列表如下:

∴g (x )极小值=g (2)=ln 2-b -2,g (1)=-b -4,

又g (4)=2ln 2-b -2,

∵方程g (x )=0在[1,4]上恰有两个不相等的实数根,

∴????

?

g 1 ≥0,g 2 <0,g 4 ≥0

得ln 2-2

4

.

12.[2017·衡水中学摸底]已知函数f (x )=ax 2

+bx -ln x (a ,b ∈R ).

(1)当a =-1,b =3时,求函数f (x )在????

??12,2上的最大值和最小值; (2)设a >0,且对任意的x >0,f (x )≥f (1),试比较ln a 与-2b 的大小. 解 (1)当a =-1,b =3时,f (x )=-x 2

+3x -ln x ,

且x ∈????

??12,2, f ′(x )=-2x +3-1

x

=-2x 2

-3x +1x =- 2x -1 x -1 x

.

由f ′(x )>0,得1

2

所以函数f (x )在? ??

??12,1上单调递增; 函数f (x )在(1,2)上单调递减,

所以函数f (x )在区间??????12,2仅有极大值点x =1,故这个极大值点也是最大值点, 故函数在??????12,2上的最大值是f (1)=2, 又f (2)-f ? ????12=(2-ln 2)-? ??

??54+ln 2 =34-2ln 2=3

4

-ln 4<0, 故f (2)

??12,2上的最小值为f (2)=2-ln 2.

(2)由题意,函数f (x )在x =1处取到最小值, 又f ′(x )=2ax +b -1x =2ax 2

+bx -1

x

设f ′(x )=0的两个根为x 1,x 2,则x 1x 2=-1

2a <0,

设x 1<0,x 2>0,

则f (x )在(0,x 2)单调递减,在(x 2,+∞)单调递增,故f (x )≥f (x 2), 又f (x )≥f (1),所以x 2=1,即2a +b =1,即b =1-2a 令g (x )=2-4x +ln x ,则g ′(x )=1-4x

x

令g ′(x )=0,得x =14

当00,g (x )在? ????0,14上单调递增; 当14

??14,+∞上单调递减; 因为g (x )≤g ? ??

??14=1-ln 4<0,

故g (a )<0,即2-4a +ln a =2b +ln a <0,即ln a <-2b . 13.[2016·哈三中模拟]已知函数f (x )=e x

-ax -1-x 2

2

,x ∈R .

(1)若a =1

2

,求函数f (x )的单调区间;

(2)若对任意x ≥0都有f (x )≥0恒成立,求实数a 的取值范围;

(3)设函数F (x )=f (x )+f (-x )+2+x 2

,求证:F (1)·F (2)·…·F (n )>(e n +1

+2)n

2 (n

∈N *

).

解 (1)当a =12时,f ′(x )=e x -x -12,令g (x )=f ′(x ),则g ′(x )=e x

-1,

则当x ∈(-∞,0)时,g ′(x )<0,f ′(x )单调递减; 当x ∈(0,+∞)时,g ′(x )>0,f ′(x )单调递增. 所以有f ′(x )≥f ′(0)=1

2>0,

所以f (x )在(-∞,+∞)上单调递增.

(2)当x ≥0时,f ′(x )=e x

-x -a ,令g (x )=f ′(x ),

则g ′(x )=e x

-1≥0,则f ′(x )单调递增,f ′(x )≥f ′(0)=1-a .

当a ≤1,即f ′(x )≥f ′(0)=1-a ≥0时,f (x )在(0,+∞)上单调递增,f (x )≥f (0)=0成立;

当a >1时,存在x 0∈(0,+∞),使f ′(x 0)=0,则f (x )在(0,x 0)上单调递减,则当x ∈(0,x 0)时,f (x )

综上a ≤1.

利用导数研究方程的根和函数的零点--教案

利用导数研究方程的根和函数的零点--教案

利用导数研究方程的根和函数的零点 总结:①方程()0=x f的根()的零点 ? y= f 函数x ()轴的交点的恒坐标 ? f y= x 函数x 的图像与 ②方程()()x g f=的根 x ()()的根 f x x h- ? = g = x 方程0 - ?x f()()()的零点 x g ()()。 g y= x ? = 的图象的交点的横坐标 与 函数x f y 1.设a为实数,函数 ()a 3,当a什么范 - f+ - =2 x x x x 围内取值时,曲线()x f y= 与x轴仅有一个交点。 2、已知函数f(x)=-x2+8x,g(x)=6ln x+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。 解:(I)22 =-+=--+ ()8(4)16. f x x x x

当14,t +<即3t <时,() f x 在[],1t t +上单调递增,22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++ 当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f ==当4t >时,()f x 在[],1t t +上单调递减,2()()8.h t f t t t ==-+综上,2267,3,()16,34, 8,4t t t h t t t t t ?-++? (II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数 ()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。 22()86ln , 62862(1)(3)'()28(0),x x x x m x x x x x x x x x x φφ=-++-+--∴=-+==>Q 当(0,1)x ∈时,'()0,()x x φφ>是增函数;当(0,3)x ∈时,'()0,()x x φφ<是减函数; 当(3,)x ∈+∞时,'()0,()x x φφ>是增函数;当1,x =或3x =时,'()0.x φ= ()(1)7,()(3)6ln 315.x m x m φφφφ∴==-==+-最大值最小值 Q 当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ> ∴ 要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须

2018年高考数学二轮复习第一部分专题一第五讲导数的应用第五讲导数的应用(一)习题

第五讲 导数的应用(一) 限时规范训练 A 组——高考热点强化练 一、选择题 1.曲线y =e x 在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1 ) B .(0,1) C .(1,e) D .(0,2) 解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x ,所以由y ′=e x =1,解得x =0,此时y =e 0 =1,即点A 的坐标为(0,1),选B. 答案:B 2.已知函数f (x )=x 2 +2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( ) 解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A 3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π2 解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π 4 .

答案:B 4.若函数f (x )=2x 3 -3mx 2 +6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.? ????-∞,52 D.? ????-∞,52 解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2 -6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤5 2,故选D. 答案:D 5.函数f (x )=12x 2 -ln x 的最小值为( ) A.12 B .1 C .0 D .不存在 解析:f ′(x )=x -1x =x 2 -1 x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得00, -2+3=-2b 3a ,-2×3=c 3a , f 3=27a +9b +3c -34=-115, 解得a =2. 答案:C 7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时, xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞)

九年级数学第一轮复习《数与式、方程与不等式》过关测试题

数与式、方程与不定式过关测试题 一.选择题:(每小题3分,共30分) 1.2011的相反数是( ) A .-2011 B .2011 C .12011- D .12011 2.用科学记数法表示358 000的结果是( ) A .358×103 B .3.58×105 C .0.358×106 D .3.58×10 6 3.下列运算中,正确的是 ( ) A .2x x x += B .21x x -= C .336()x x = D .824x x x ÷= 4.若分式1 x x -有意义,则x 的取值范围是( )全品 中考网 A .1x ≠ B .1x > C .10x x ≠≠且 D . 1 x = 5. 2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3 6.二元一次方程组2337 x y x y +=??-=?的解是( ) A .21x y =??=? B .21x y =??=-? C .1,1.x y =??=? D .1,1.x y =-??=-? 7.已知21,x x 是方程0242 =-+x x 的两个根,则21x x +=_______;21x x =______( ) A .4,2 B .4,-2 C .-4,2 D .-4,-2 8. 用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2 310y y --= 9.方程(3)(1)3x x x -+=-的解是( ) A .0x = B .3x = C .3x =或1x =- D .3x =或0x = 10.2010年12月25日,人民日报在一版重要位置刊登通讯,报道我省大力推进“四绿”工程建设,让绿色为全省人民群众带来更多实惠。“这里是满眼绿色的省份——全省森林覆盖率达63.1%,居全国第

2020高考数学专题突破练2利用导数研究不等式与方程的根文含解析

专题突破练(2) 利用导数研究不等式与方程的根 一、选择题 1.(2019·佛山质检)设函数f (x )=x 3 -3x 2 +2x ,若x 1,x 2(x 1<x 2)是函数g (x )=f (x )-λx 的两个极值点,现给出如下结论: ①若-1<λ<0,则f (x 1)<f (x 2);②若0<λ<2,则f (x 1)<f (x 2);③若λ>2,则 f (x 1)<f (x 2). 其中正确结论的个数为( ) A .0 B .1 C .2 D .3 答案 B 解析 依题意,x 1,x 2(x 10,即λ>-1,且x 1+x 2=2,x 1x 2=2-λ3.研究f (x 1)0,解得λ>2.从而可知③正确.故选B . 2.(2018·乌鲁木齐一诊)设函数f (x )=e x x +3x -3-a x ,若不等式f (x )≤0有正实数解, 则实数a 的最小值为( ) A .3 B .2 C .e 2 D .e 答案 D 解析 因为f (x )=e x x +3x -3-a x ≤0有正实数解,所以a ≥(x 2-3x +3)e x ,令g (x )=(x 2-3x +3)e x ,则g ′(x )=(2x -3)e x +(x 2-3x +3)e x =x (x -1)e x ,所以当x >1时,g ′(x )>0;当0b >c B .b >a >c C .c >b >a D .c >a >b 答案 C 解析 构造函数f (x )=e x x 2,则a =f (6),b =f (7),c =f (8),f ′(x )=x e x (x -2) x 4 ,当x >2时,f ′(x )>0,所以f (x )在(2,+∞)上单调递增,故f (8)>f (7)>f (6),即c >b >a .故选C . 4.(2018·合肥质检二)已知函数f (x )是定义在R 上的增函数,f (x )+2>f ′(x ),f (0)=1,则不等式ln (f (x )+2)-ln 3>x 的解集为( ) A .(-∞,0) B .(0,+∞) C.(-∞,1) D .(1,+∞)

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

数与式、方程与不等式测试题

数与式、方程与不等式测试题 一、选择题:(每小题3分,共30分) 1.下列运算正确的是( ) A .a ?a 3=a 3 B .(2a )3=6a 3 C .a 6÷a 3=a 2 D .(a 2)3﹣(﹣a 3)2=0 2.若2n +2n +2n +2n =2,则n=( ) A . ﹣1 B . ﹣2 C . 0 D . 14 3. 下列实数中的无理数是( ) A . √1.21 B . √?83 C . √?332 D . 227 4.已知5x =3,5y =2,则52x ﹣3y =( ) A . 34 B . 1 C . 23 D . 98 5.已知???==21y x 和? ??=-=01y x 是方程1=-by ax 的解,则a 、b 的值为 ( ) A .1,1-=-=b a B .1,1=-=b a C .1,0-==b a D .0,1=-=b a 6.不等式 14 3

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

九年级数学第一轮复习《数与式方程与不等式》过关测试题

初三一轮复习数与式、方程与不定式过关测试题 一.选择题:(每小题3分,共30分) 1.2011的相反数是( )A .-2011 B .2011 C .12011- D .12011 2.用科学记数法表示358 000的结果是( )A .358×103 B .3.58×105 C .0.358×106 D .3.58×10 6 3.下列运算中,正确的是 ( )A .2x x x += B .21x x -= C .336()x x = D .824x x x ÷= 4.若分式1x x -有意义,则x 的取值范围是( ) A .1x ≠ B .1x > C .10x x ≠≠且 D . 1 x = 5. 2()x y =+,则x -y 的值为( )A .-1 B .1 C .2 D .3 6.二元一次方程组2337 x y x y +=??-=?的解是( ) A .21x y =??=? B .21 x y =??=-? C .1,1.x y =??=? D .1,1.x y =-??=-? 7.已知21,x x 是方程0242=-+x x 的两个根,则21x x +=_______;21x x =______( ) A .4,2 B .4,-2 C .-4,2 D .-4,-2 8. 用换元法解分式方程 13101 x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2 310y y --= 9.方程(3)(1)3x x x -+=-的解是( ) A .0x = B .3x = C .3x =或1x =- D .3x =或0x = 10.2010年12月25日,人民日报在一版重要位置刊登通讯,报道我省大力推进“四绿”工程建设,让绿色为全省人民群众带来更多实惠。“这里是满眼绿色的省份——全省森林覆盖率达63.1%,居全国第一。” 福建省提出,今冬明春造林650万亩,到2013年森林覆盖率达65%以上,继续保持森林覆盖率居全国首位。并进一步增强人们的幸福指数。设从2010年起我省森林覆盖率年平均增长率为x ,则可列方程( ) A .63.1%(12)65%x += B .63.1%(13)65%x += C .263.1%(1)65%x += D .3 63.1%(1)65%x += 二.填空题:(每小题4分,共20分) 11.分解因式:24x -= . 12.请写出一个比大的负整数 . 13. 已知22x =,则2 14x -的值是 .14.方程4x+y=20的正整数解有_________组.

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

数与式方程与不等式1

2014年中考数学总复习专题测试试卷(一) (数与式 方程与不等式 (试卷满分90分,考试时间 120分钟) 一、 选择题(本题共10小题,每小题4分,满分40分) 每一个小题都给出代号为A,B,C,D 的四个结论, 正确结论的代号写在题后的括号内.每一小题:选对得 超过一个的(不论是否写在括号内)一律得 0分。 1点A (m -4,1-2m )在第三象限,那么 m 值是 a, b 满足方程组 a 2 b 「 3 — m ' 、2a + b = —m + 4, 3X 5^ m 2 的解x 与y 的和为0,则m 的值为 2x 3y 二 m A. B . m :: 4 C. 1 ::: m ::: 4 2 D. A. 3 B. C. D. 3.方程 2x A. - 1 1 —1 = 的解是 B . 2 或一1 C.- 2 或 3 D. 3 4. ( 2011 山东烟台)如果 J n ■- '… A. a < - 5 .(本小题 B. a < - 5 分)(2011 C. a > - 山东荷泽)实数 D. a> - a 在数轴上的位置如图所示,则 V " 「、'、; L 化简后为 5 a 1.0 A. 7 B. - 7 C. 2a - 15 D.无法确定 A. B . m -1 C . 0 D. 1 A.- 2 & (本小题5 量的四分之 一, B . 0 C. 2 D. 分)(2011浙江)中国是严重缺水的国家之一,人均淡水资源为世界人均 所以我们为中国节水,为世界节水.若每人每天浪费水 0.32L ,那么 ( D. 3.2 X 104L 万人每天浪费的水,用科学记数法表示为 A. 3.2 X 107L B. 3.2 X 106L C. 3.2 X 105L 9.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如 100 ) 其中只有一个是正确的,把 4分,不选、 选错或选出的代号 6.已知 则a - b 的值为 7.若方程组

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

利用导数求解函数的零点或方程的根的问题

高中数学:利用导数求解函数的零点或方程的根的问题 (2019·石家庄模拟)已知函数f (x )=2a 2ln x -x 2(a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间; (3)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解:(1)当a =1时,f (x )=2ln x -x 2, ∴f ′(x )=2x -2x ,∴f ′(1)=0, 又f (1)=-1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y +1=0. (2)∵f (x )=2a 2ln x -x 2, ∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x , ∵x >0,a >0, ∴当0<x <a 时,f ′(x )>0,当x >a 时,f ′(x )<0. ∴f (x )在(0,a )上是增函数,在(a ,+∞)上是减函数. (3)由(2)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下: ①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点; ②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e <e 2, ∴f (x )在(1,e 2)内有一个零点; ③当a 2(2ln a -1)>0,即a >e 时, 由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2lne 2-e 4=4a 2-e 4=(2a -e 2)(2a +e 2), 当2a -e 2<0,即 e <a <e 22时,1<e <a <e 22<e 2,f (e 2)<0, 由函数的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,

数与式方程与不等式学习知识点

【第一单元数与式】 第1课时实数 考点一实数的有关概念 1.数轴规定了_______、_______、_______的直线,叫做数轴._____和数轴上的点是一一对应的. 2.相反数(1)实数a的相反数为_______;(2)a与b互为相反数?_________;(3)相反数的几何意义:在数轴上,表示相反数的两个点位于原点的两侧,且到原点的距离________. 3.倒数(1)实数a的倒数是____,其中a____0;(2)a和b互为倒数?_______. 4.绝对值在数轴上表示一个数的点离开_____的距离叫做这个数的绝对值.即一个正数的绝对值等于它_____,0的绝对值是___,负数的绝对值是它的_______. 考点二实数的分类1.按实数的定义分类 即|a|= ? ? ?? a(a>0) 0(a=0)

实数??? ?????????? 有理数??????? 整数????? ?? ?? ?正整数零自然数 负整数分数???????? ??正分数负分数有限小数或无 限循环小数无理数????? ? ????正无理数负无理数无限不循环小数 考点三 平方根、算术平方根、立方根 1.若x 2=a(a ≥0),则x 叫做a 的_______,记作±a ;正数a 的_____________叫做算术平方 根,记作 a. 2.平方根有以下性质 (1)正数有两个平方根,它们_________;(2)0的平方根是0;负数没有平方根. 3.如果x 3=a ,那么x 叫做a 的立方根,记作3a. 考点四 科学记数法、近似数、有效数字 1.科学记数法 把一个数N 表示成a ×10n (1≤|a|<10,n 是整数)的形式叫科学记数法.当

利用导数研究方程的根_49

利用导数研究方程的根 方程的根就是与之对应的函数的零点,通过导数的方法研究函数的性质后可以确定函数零点的情况,这就是使用导数的方法研究方程的根的基本思想.利用导数研究方程根的过程中用的主要数学思想方法就是数形结合,即首先通过导数研究函数的性质,根据函数的性质画出函数的图像,然后根据函数的图像确定方程根的情况.本题型作为高考题型在逐年升温,现从近几年高考试题中列举数例作分类探讨如下: 一、函数y=f(x)的图像与x轴的交点问题. 1、(09江西)设函数f(x)=?+6x?a ⑴对于任意的实数x ,(x)≥m恒成立,求m的最大值. ⑵若方程f(x)=0有且仅有一个实根,求a的取值范围. 解析: ⑴略 ⑵(x)=3?9x+6=3(x?1)(x?2) 因为当x<1时,(x)>0 ;当12时,(x)>0 所以当x=1时, f(x)取得极大值,f(1)=? a ;当x=2时 f(x)取得极小值f(2)=2?a y=f(x)草图如下: 1 要使f(x)=0有且仅有一个实根,必须且只需f(x)取得极小值f(2)>0或f(x)取得极大值f(1)<0 解得,a>或a<2 . 变式引申①若方程f(x)=0有且仅有两个实根,求a的取值范围

y=f(x)草图如下: 要使f(x)=0f(1)=0或f(x)取得极小值f(2)=0 解得a=2或a= 变式引申②要使f(x)=0有且仅有三个实根, 求a的取值范围 y=f(x)草图如下 要使f(x)=0有且仅有且只需极大值? 解得2 极小值? 从上题的解答我们可看出:用导数来探讨y= f(x)图像与x轴的交点问题,有以下几个步骤: ⑴、构造函数y= f(x)。 ⑵、求导(x)。 ⑶、研究函数f(x)的单调性和极值。 ⑷、画出函数y= f(x)的草图,观察与x轴的交点情况,列出不等式或方程。 ⑸、解不等式或方程,得解。 二、函数y= f(x)图像与直线y=b的交点问题 2、(2008江西)已知函数f(x)=+? +(a>0) ⑴、求函数y= f(x)的单独区间 ⑵、若y= f(x)的图像与直线y=1恰有两个交点,求a的取值范

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

相关主题
文本预览
相关文档 最新文档