当前位置:文档之家› 2轮Trivium的多线性密码分析 - 电子与信息学报201012

2轮Trivium的多线性密码分析 - 电子与信息学报201012

2轮Trivium的多线性密码分析 - 电子与信息学报201012
2轮Trivium的多线性密码分析 - 电子与信息学报201012

第8章-线性判别分析--机器学习与应用第二版

第8章线性判别分析 主成分分析的目标是向量在低维空间中的投影能很好的近似代替原始向量,但这种投影对分类不一定合适。由于是无监督的学习,没有利用样本标签信息,不同类型样本的特征向量在这个空间中的投影可能很相近。本章要介绍的线性判别分析也是一种子空间投影技术,但是它的目的是用来做分类,让投影后的向量对于分类任务有很好的区分度。 8.1用投影进行分类 线性判别分析(Linear discriminant analysis,简称LDA)[1][2]的基本思想是通过线性投影来最小化同类样本间的差异,最大化不同类样本间的差异。具体做法是寻找一个向低维空间的投影矩阵W,样本的特征向量x经过投影之后得到新向量: y Wx = 同一类样本投影后的结果向量差异尽可能小,不同类的样本差异尽可能大。直观来看,就是经过这个投影之后同一类的样本尽量聚集在一起,不同类的样本尽可能离得远。下图8.1是这种投影的示意图: 图8.1最佳投影方向 上图中特征向量是二维的,我们向一维空间即直线投影,投影后这些点位于直线上。在上图中有两类样本,通过向右上方的直线投影,两类样本被有效的分开了。绿色的样本投影之后位于直线的下半部分,红色的样本投影之后位于直线的上半部分。由于是向一维空间投影,这相当于用一个向量w和特征向量x做内积,得到一个标量: T y=w x

8.2寻找投影矩阵 8.2.1一维的情况 问题的关键是如何找到最佳投影矩阵。下面先考虑最简单的情况,把向量映射到一维空间。假设有n 个样本,它们的特征向量为i x ,属于两个不同的类。属于类1C 的样本集为1D ,有1n 个样本;属于类2C 的样本集为2D ,有2n 个样本。有一个向量w ,所有向量对该向量做投影可以得到一个标量: T y =w x 投影运算产生了n 个标量,分属于与1C 和2C 相对应的两个集合1Y 和2Y 。我们希望投影后两个类内部的各个样本差异最小化,类之间的差异最大化。类间差异可以用投影之后两类样本均值的差来衡量。投影之前每类样本的均值为: x 1m i i D i n ∈= ∑x 投影后的均值为: T T x 1m i i i D i n ∈==∑w x w m 它等价于样本均值在w 上的投影。投影后两类样本均值差的绝对值为: ()T 1212 -=-m m w m m 类内的差异大小可以用方差来衡量。定义类别i C 的类内散布为: ()2 2i i i y Y s y m ∈=-∑ 这是一个标量,和方差相差一个倍数,衡量了某一类的所有样本与该类中心的距离。()() 22121/n s s + 是全体样本的方差,2212s s + 称为总类内散布。我们要寻找的最佳投影需要使下面的目标函数最大化: () ()2 122212m m w L s s -=+ 即让类间的均值差最大化(分子),类内的差异最小化(分母)。为了把这个目标函数写成w 的函数,定义类内散布矩阵为: ()() T x S x m x m i i i i D ∈= --∑总类内散布矩阵为:12S S S W =+

线性判别分析使用说明工具产生背景

线性判别分析使用说明 一、工具产生背景 在实际应用中,我们经常会遇到考察对象的分类结果是已知的情况。例如,某商业银行根据信用卡等级评分模型将其划分为3个类别:信用等级高、信用等级中以及信用等级低。判别分析是用来处理这种在已知分类结果的情况下对新数据集的归类。它与聚类分析相反,因为在进行聚类分析之前,所考察对象可以分为哪几类是未知的。判别分析可以通过训练数据集学习每个类别的特征,然后对新的数据集进行分类处理。 从统计学的角度看,判别分析可描述为:已知有k个总体G1,G2,…,Gk,现有样本y,要根据这k个总体和当前样本的特征,判定该样本y属于哪一个总体。其主要工作是根据对已知总体的理解,建立判别规则(判别函数),然后根据该判别规则对新的样本属于那个总体做出判断。 常用的判别分析主要是线性判别分析和二次判别分析,二者拥有类似的算法特征,区别仅在于:当不同分类样本的协方差(描述维度间关系的指标Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]})矩阵相同时,使用线性判别分析;当不同分类样本的协方差矩阵不同时,则应该使用二次判别分析。本文讲解线性判别分析,这也是最常用的判别分析方法。 二、功能按钮说明 软件打开后界面如下: 接下来具体介绍功能的使用: 1、选择训练数据集 选择用于训练模型的数据集。需满足以下条件: 1)首行是字段,且至少有两个字段; 2)必须包含一个分类字段; 3)除了分类字段,其它字段均为数值型。 如下:

其中”Type”为分类字段。 增加训练数据集,可提高模型的预测效果。 2、分类字段 分类字段是必不可少。当选择好训练数据集后会自动将所有字段添加到“分类字段”后的下拉框中,默认首个字段为当前选中的分类字段。 3、选择测试数据集 测试数据集就是待分类的新的数据集。需满足以下条件: 1)首行是字段; 2)每个字段均为数值型; 3)不包含分类字段。 4、优化算法: 指定求解最优化问题的算法,默认为奇异值分解(svd)。 1)奇异值分解(svd) 2)最小平方差(lsqr) 3)特征分解(eigen) 5、先验概率 默认为None,表示每一个分类的先验概率是等可能的。而有时候我们事先知道每个分类可能出现的概率,这时候也可以自定义。此时各分类概率之间需用英文逗号隔开。比如: ”0.2,0.3,0.4,0.1” 表示四个分类的概率分别为0.2,0.3,0.4,0.1且四个概率之和为1,如果概率和不为1则会对概率自动伸缩。而这四个分类分别为“分类字段”指定的按照先后顺序出现的四个唯一值。 6、最小容差 判别类别可以收敛的最小容差,默认为0.0001,一般不需要改动。 7、输出判别结果 输出测试数据集的判别结果。判别结果包含一个判定结果字段,和每条观测属于不同分类的概率。各分类的概率之和为1,判别结果为概率最高的一个分类。 三、生成图表解释 1、权值向量,如下:

量子密码导论

量子密码学导论期末论文 量子密码的简单介绍和发展历程及其前景 0引言 保密通信不仅在军事、社会安全等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在众多的保密通信手段中,密码术是最重要的一种技术措施。 经典密码技术根据密钥类型的不同分为两类:一类是对称加密(秘密钥匙加密)体制。该体制中的加解密的密钥相同或可以互推,收发双方之间的密钥分配通常采用协商方式来完成。如密码本、软盘等这样的密钥载体,其中的信息可以被任意复制,原则上不会留下任何印迹,因而密钥在分发和保存过程中合法用户无法判断是否已被窃听。另一类是非对称加密(公开密钥加密)体制。该体制中的加解密的密钥不相同且不可以互推。它可以为事先设有共享密钥的双方提供安全的通信。该体制的安全性是基于求解某一数学难题,随着计算机技术高速发展,数学难题如果一旦被破解,其安全性也是令人忧心的。

上述两类密码体系的立足点都是基于数学的密码理论。对密码的破解时间远远超出密码所保护的信息有效期。其实,很难破解并不等于不能破解,例如,1977年,美国给出一道数学难题,其解密需要将一个129位数分解成一个64位和一个65位素数的乘积,当时的计算机需要用64?10年,到了1994年,只用了8个月就能解出。 经典的密码体制都存在被破解的可能性。然而,在量子理论支配的世界里,除非违反自然规律,否则量子密码很难破解。量子密码是量子力学与信息科学相结合的产物。与经典密码学基于数学理论不同,量子密码学则基于物理学原理,具有非常特殊的随机性,被窃听的同时可以自动改变。这种特性,至少目前还很难找到破译的方法和途径。随着量子信息技术的快速发展,量子密码理论与技术的研究取得了丰富的研究成果。量子密码的安全性是基于Heisenberg 测不准原理、量子不可克隆定理和单光子不可分割性,它遵从物理规律,是无条件安全的。文中旨在简述量子密码的发展历史,并总结量子密码的前沿课题。 1 量子密码学简介 量子密码学是当代密码理论研究的一个新领域,它以量子力学为基础,这一点不同于经典的以数学为基础的密码体制。量子密码依赖于信息载体的具体形式。目前,量子密码中用于承载信息的载体主要有光子、微弱激光脉冲、压缩态光信号、相干态光信号和量子光弧子信号,这些信息载体可通过多个不同的物理量描述。在量子密码中,一般用具有共轭特性的物理量来编码信息。光子的偏振可编码为量子比特。量子比特体现了量子的叠加性,且来自于非正交量子比特信源的量子比特是不可克隆的。通过量子操作可实现对量子比特的密码变换,这种变换就是矢量的线性变换。不过变换后的量子比特必须是非正交的,才可保证安全性。一般来说,不同的变换方式或者对不同量子可设计出不同的密码协议或者算法,关键是所设计方案的安全性。 在量子密码学中,密钥依据一定的物理效应而产生和分发,这不同于经典的加密体制。目前,在经典物理学中,物体的运动轨迹仅山相应的运动方程所描述和决定,不受外界观察者观测的影响。但是在微观的量子世界中,观察量子系统的状态将不可避免地要破坏量子 系统的原有状态,而且这种破坏是不可逆的。信息一旦量子化,量子力学的特性便成为量子信息的物理基础,包括海森堡测不准原理和量子不可克隆定理。量子密钥所涉及的量子效应主要有: 1. 海森堡不确定原理:源于微观粒子的波粒二象性。自由粒子的动量不变,自由粒子同时 又是一个平面波,它存在于整个空间。也就是说自由粒子的动量完全确定,但是它的位置完全不确定. 2. 在量子力学中,任意两个可观测力学量可由厄米算符A B ∧∧来表示,若他们不对易,则不 能有共同的本征态,那么一定满足测不准关系式: 1,2A B A B ? ∧∧∧∧????≥ ||???? 该关系式表明力学量A ∧和B ∧不能同时具有完全确定的值。如果精确测定具中一个量必然无法精确测定以另一个力学量,即测不准原理。也就是说,对任何一个物理量的测量,都

线性静力学分析实例

学号:p1******* 姓名:朱四海 线性静力学分析实例 1.1 问题的描述 一部件结构如图1-1所示,一端面受固定约束,另一端A、B两点受相反方向切向力,求受载后的Mises应力、位移分布。 ν 材料性质:弹性模量E=2e5,泊松比3.0 = 图1-1 部件模型 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建部件的几何模型。 (1)创建部件。对于如上图1-1所示的部件模型,可以先画出二维截面,再通过拉伸得到。步骤如下:

单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入ep2,Modeling Space(模型所在空间)设为3D,Shape选择Solid(实体),Type采用默认的Extrusion,在Approximate size里面输入600。单击Continue...按钮。 (2)绘制部件二维截面图。ABAQUS/CAE自动进入绘图环境,左侧的工具区显示出绘图工具按钮,视图区内显示栅格,视图区正中两条相互垂直的点划线即当前二维区域的X轴和Y轴。二者相交于坐标原点。 选择绘图工具箱中的工具,窗口提示区显示Pick a center point for the circle--or enter X,Y(选择一个中心点的圆,或输入X,Y的坐标),如图1-3所示。 图1-3 输入圆心坐标 输入圆上任意点坐标为(0,50),回车,第一个圆形就画出来了。继续画第二个圆,圆心坐标为(0,0),圆上任意一点(0,40)。

2二维线性鉴别分析(2DLDA)

2 二维线性鉴别分析(2DLDA ) 2.1 实验原理 由上面的公式计算w G 和b G ,类似于经典的Fisher 准则,二维图像直接投影的广义Fisher 准则定义如下: ()T b T w X G X J X X G X = 一般情况下w G 可逆,也就是根据1w b G G -计算本征值、本征向量,取最大的d 个本征值 对应的本征向量作为二维投影的向量组。需要特别指出的是,尽管b G 和w G 都是对称矩阵, 但1w b G G -不一定是对称矩阵。所以各投影轴之间关于w G 及t G 共轭正交,而不是正交。 本实验为简单起见,使用的为欧式距离。 2.2 实验过程 读取训练样本——〉求样本均值——〉求类内散布矩阵——〉特征值分解——〉对实验样本分类——〉计算分类正确率 2.3 实验结果分析 本实验中的类别数为40,每类的样本数为10,训练数为5,检测数为5。实验的结果正确率为72%,结果正确率偏低。 2.4 matlab 代码 clear all; t0=clock; class_num = 40; class_sample = 10; train_num = 5; test_num = 5; scale = 1; allsamples=[];%所有训练图像 gnd=[]; k=1; path = ['C:\Documents and Settings\dongyan\桌面\模式识别\ORL\ORL\ORL']; for i=1:class_num for j =1:train_num

name =[path num2str(10*i+j-10,'%.3d') '.BMP' ]; [a,map]=imread(name,'bmp'); a = imresize(a,scale); a=double(a); ImageSize=size(a); height=ImageSize(1); width=ImageSize(2); A=reshape(a,1,ImageSize(1)*ImageSize(2)); allsamples=[allsamples;A]; gnd(k)=i; k=k+1; end; end; trainData=allsamples; sampleMean=mean(allsamples);%求所有图片的均值 [nSmp,nFea] = size(trainData); classLabel = unique(gnd); nClass = length(classLabel); classmean=zeros(nClass,height*width);%求每类的均值 for i=1:nClass index = find(gnd==classLabel(i)); classmean(i,:)=mean(trainData(index, :)); end Gb=0; Amean=reshape(sampleMean,height,width);%求类间散布矩阵Gb for i=1:nClass Aimean=reshape(classmean(i,:),height,width); Gb=Gb+(Aimean-Amean)'*(Aimean-Amean); end Gw=0;%求类内散布矩阵 for i=1:nClass for j=train_num*(i-1)+1:train_num*i g=reshape((trainData(j,:)-classmean(i,:)),height,width); Gw=Gw+g'*g; end end

BB84协议的安全性分析及计仿真研究1

BB84协议的安全性分析及计仿真研究 第一章绪论 1.1引言 秘密通信是人类长久以来的愿望。计算机的出现和互联网普及,促使这种愿望变为一种必然需要(对于银行交易、电子商务、个人档案和Internet通信等)。一般情况,有两种方法可以保证消息安全的传输到接收方而不被第三方(未授权者)在传输过程中截取消息的内容。一种方法就是隐藏消息本身的存在,如通过不可见的墨水来写消息;另一种方法是通过加密所传输的消息。 密码技术特别是加密技术是信息安全技术的核心,它与网络协议等安全技术相结合,成为解决认证、数据加密、访问控制、电子签名、防火墙和电子货币等的关键技术。研究传输信息采取何种秘密的交换,以确保不被第三方截获信息。密码技术可分为密码编制学和密码分析学。密码编制学是寻求产生安全性高的有效密码算法,以满足对消息进行加密或认证的要求;而密码分析学是破译密码或伪造认证码,实现窃取机密信息或进行诈骗破坏活动。传统的加密系统,不管是对私钥技术还是公钥技术,其密文的安全性完全依赖于密钥本身的秘密性。由于截获者的存在,从技术层面上来说,真正的安全很难保证,而且密钥的分配总是会在合法使用者无从察觉的情况下被消极窃听[1]。 近年来,由于量子力学和密码学的紧密结合,演变出了量子密码学(Quantum Cryptography),它可以完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决了通信线路被消极窃听的问题。已经有研究表明,使用量子力学的特征可以实现两个陌生人之间通信的完美保密。 1.2传统密码通信 密码通信主要是依赖密钥、加密算法、密码传送、解密算法、解密的保密来保证其安全性,它的基本目的使机密信息变成只有自己或合法授权的人才能认出的乱码。具体操作时都要使用密码将明文(被屏蔽的消息)变成密文(屏蔽后的消息),称为加密,密码称为密钥。完成加密的规则称为加密算法,将密文传送到接收方称为密码传送,把密文变成明文称为解密,完成解密的规则称为解密算法。传统密码通信的最大难题是被人破译而却不被察觉,从而导致严重的后果。 一般而言,传统保密通信可分作两大类,一是非对称密码系统(asymmetrical cryptosystem )另一是对称密码系统(symmetrical cryptosystem )。传统保密通信原理如图1.1 所示。 原理图中Alice和Bob是一般通讯中信息发送者和信息接收者的代称。Alice对信息明文

结构静力分析

第一章结构静力分析 1.1 结构分析概述 结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。 在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。 静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。 模态分析---用于计算结构的固有频率和模态。 谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。 显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 此外,前面提到的七种分析类型还有如下特殊的分析应用: ●断裂力学 ●复合材料 ●疲劳分析 ●p-Method 结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型 从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。 1.2 结构线性静力分析 静力分析的定义 静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。 静力分析中的载荷 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括: ●外部施加的作用力和压力 ●稳态的惯性力(如中力和离心力) ●位移载荷 ●温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

密码学基础知识

【1】古典密码 1、置换密码 置换密码将明文中的字母顺序重新排列,但字母本身不变,由此形成密文。换句话说,明文与密文所使用的字母相同,只是它们的排列顺序不同。 我们可以将明文按矩阵的方式逐行写出,然后再按列读出,并将它们排成一排作为密文,列的阶就是该算法的密钥。在实际应用中,人们常常用某一单词作为密钥,按照单词中各字母在字母表中的出现顺序排序,用这个数字序列作为列的阶。 【例1】我们以coat作为密钥,则它们的出现顺序为2、3、1、4,对明文“attack postoffice”的加密过程见图1: 图1 对明文“attack postoffice”的加密过程 按照阶数由小到大,逐列读出各字母,所得密文为: t p o c a c s f t k t i a o f e. 对于这种列变换类型的置换密码,密码分析很容易进行:将密文逐行排列在矩阵中,并依次改变行的位置,然后按列读出,就可得到有意义的明文。为了提高它的安全性,可以按同样的方法执行多次置换。例如对上述密文再执行一次置换,就可得到原明文的二次置换密文: o s t f t a t a p c k o c f i e 还有一种置换密码采用周期性换位。对于周期为r的置换密码,首先将明文分成若干组,每组含有r个元素,然后对每一组都按前述算法执行一次置换,最后得到密文。 【例2】一周期为4的换位密码,密钥及密文同上例,加密过程如图2: 图2 周期性换位密码

2、 替代密码 单表替代密码对明文中的所有字母都用一个固定的明文字母表到密文字母表的映射 。换句话说,对于明文 ,相应的密文为 = 。 下面介绍几种简单的替代密码。 1. 加法密码

量子密码

量子密码 摘要 论文说明了量子密码的现实可行性与未来可行性,强调了量子密码比传统密码和公开密钥更加方便和安全,探讨了量子密码的理论基础与试验实践。密码技术是信息安全领域的核心技术,在当今社会的许多领域都有着广泛的应用前景。量子密码术是密码技术领域中较新的研究课题,它的发展对推动密码学理论发展起了积极的作用。量子密码技术是一种实现保密通信的新方法,它比较于经典密码的最大优势是具有可证明安全性和可检测性,这是因为量子密码的安全性是由量子物理学中量子不可克隆性Heisenburg 测不准原理来保证的,而不是依靠某些难解的数学问题。自从BB84量子密钥分配方案提出以来,量子密码技术无论在理论上还是在实验上都取得了大量研究成果。 关键词:密码学;量子;偏光器;金钥;量子密码;金钥分配 目录 1.密码学原理............................................................................................................. - 2 - 1.1密码学概念...................................................................................................... - 2 - 1.2对称密钥.......................................................................................................... - 2 - 1.3公开密钥.......................................................................................................... - 2 - 2.量子密码学原理.................................................................................................... - 2 - 2.1量子密码学概念.............................................................................................. - 2 - 2.2量子密码工作原理.......................................................................................... - 3 - 2.3量子密码理论基础.......................................................................................... - 4 - 2.4试验与实践...................................................................................................... - 5 - 3.结论 ........................................................................................................................... - 5 - 参考文献................................................................................................................ - 6 -

ABAQUS线性静力学分析实例

荿蚇衿膃蒂葿螅膂膁 线性静力学分析实例 线性静力学问题就是简单且常见得有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关得材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。线性静力学问题很容易求解,往往用户更关系得就是计算效率与求解效率,希望在获得较高精度得前提下尽量缩短计算时间,特别就是大型模型。这主要取决于网格得划分,包括种子得设置、网格控制与单元类型得选取。在一般得分析中,应尽量选用精度与效率都较高得二次四边形/六面体单元,在主要得分析部位设置较密得种子;若主要分析部位得网格没有大得扭曲,使用非协调单元(如CPS4I 、C3D8I)得性价比很高。对于复杂模型,可以采用分割模型得方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高得二次三角形/四面体单元进行网格划分。一 悬臂梁得线性静力学分析 1、1 问题得描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后得Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图 1、2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。

在Windows操作系统中单击“开始”--“程序”--ABAQUS 6、10 -- ABAQUS/CAE。 (2)在操作系统得DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现得Start Section(开始任务)对话框中选择Create Model Database。 1、3 创建部件 在ABAQUS/CAE顶部得环境栏中,可以瞧到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分得几何形体。可以参照下面步骤创建悬臂梁得几何模型。 (1)创建部件。对于如图1-1所示得悬臂梁模型,可以先画出梁结构得二维截面(矩形),再通过拉伸得到。 单击左侧工具区中得(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示得Create Part对话框。 图1-2 Create Part对话框

线性判别分析LDA

LDA 算法入门 一.LDA 算法概述: 线性判别式分析(Linear Discriminant Analysis , LDA),也叫做Fisher 线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur 引入模式识别和人工智能领域的。线性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。 二. LDA 假设以及符号说明: 假设对于一个n R 空间有m 个样本分别为12,,m x x x ,即每个x 是一个n 行的矩阵,其中 i n 表示属第 i 类的样本个数,假设一共有 c 个类,则 12i c n n n n m ++++= 。 b S : 类间离散度矩阵 w S :类内离散度矩阵 i n :属于i 类的样本个数 i x :第i 个样本 u :所有样本的均值 i u :类i 的样本均值 三. 公式推导,算法形式化描述 根据符号说明可得类i 的样本均值为: 1 i x classi i u x n ∈= ∑ (1.1)

同理我们也可以得到总体样本均值: 1 1m i i u x m ==∑ (1.2) 根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子: ()() 1c T b i i i i S n u u u u ==--∑ (1.3) ()() 1k c T w i k i k i x classi S u x u x =∈=--∑ ∑ (1.4) 当然还有另一种类间类内的离散度矩阵表达方式: ()()() 1 c T b i i i S P i u u u u ==--∑ (1.5) ()()()(){ } 11 (i)(i)E |k c T w i k i k i x classi i c T i i i P S u x u x n P u x u x x classi =∈==--=--∈∑ ∑∑ (1.6) 其中()P i 是指i 类样本的先验概率,即样本中属于i 类的概率()i n P i m =,把 ()P i 代入第二组式子中,我们可以发现第一组式子只是比第二组式子都少乘了1m ,我们将在稍后进行讨论,其实对于乘不乘该1m ,对于算法本身并没有影响,现在我们分析一下算法的思想, 我们可以知道矩阵 ()() T i i u u u u --的实际意义是一个协方差矩阵,这个矩阵 所刻画的是该类与样本总体之间的关系,其中该矩阵对角线上的函数所代表的是该类相对样本总体的方差(即分散度),而非对角线上的元素所代表是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),所以根据公式(1.3)可知(1.3)式即把所有样本中各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。同理可以的得出(1.4)式中为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与类之间(这里所刻画的类特性是由是类

ABAQUS线性静力学分析实例

线性静力学分析实例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 一 悬臂梁的线性静力学分析 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图

启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。

Fisher线性判别分析实验(模式识别与人工智能原理实验1)

实验1 Fisher 线性判别分析实验 一、摘要 Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 二、算法的基本原理及流程图 1 基本原理 (1)W 的确定 各类样本均值向量mi 样本类内离散度矩阵i S 和总类内离散度矩阵w S 12w S S S =+ 样本类间离散度矩阵b S 在投影后的一维空间中,各类样本均值T i i m '= W m 。样本类内离散度和总类内离散度 T T i i w w S ' = W S W S ' = W S W 。样本类间离散度T b b S ' = W S W 。 Fisher 准则函数满足两个性质: ·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 ·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。 根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W : -1w 12W = S (m - m ) 。 (2)阈值的确定 实验中采取的方法:012y = (m ' + m ') / 2。 (3)Fisher 线性判别的决策规则 对于某一个未知类别的样本向量x ,如果y=W T ·x>y0,则x ∈w1;否则x ∈w2。 x 1 m x, 1,2 i i X i i N ∈= =∑T x S (x m )(x m ), 1,2 i i i i X i ∈= --=∑T 1212S (m m )(m m )b =--

(完整版)线性分析与非线性分析的区别

线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,也就是没有达到应力屈服点的结构分析 非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。

2.非线性行为的原因 引起结构非线性的原因很多,主要可分为以下3种类型。 (1)状态变化(包括接触) 许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。(2)几何非线性 结构如果经受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 (3)材料非线性

非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应状况下)等。 3.非线性结构分析中应注意的问题 (1)牛顿-拉普森方法 ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3a所示。 ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程直到问题收敛。 几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它组成单元的方向和刚度。当一个单元的节点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变,如图5.9a所示;其次,如果这个单元的取向改变,它的单元刚度也将改变,如图5.9b所示。小变形和小应变分析假定位移小到足够使所得到的刚度改变无足轻重。这

全国密码学术竞赛判断题

1.有线电报和无线电报是人类进入电子通信时代的标志,其中,有线电报是1873年由美国人莫尔斯发明的(?)。 2.RSA是一种概率密码体制。? 3.衡量一个密码系统的安全性中的无条件安全又称为可证明安全(?) 4.置换密码又称为换位密码。(?) 5.在数字签名中,不仅可以实现消息的不可否认性,还可以实现消息的完整性和机密性。? 6.非对称密码体制也称公钥密码体制,即其所有的密钥都是公开的? 7.群签名中,要求群中的所有成员对被签名文件进行签名。? 8.一个有6个转轮的转轮密码机器是一个周期长度为26的6次方的多表代替密码机械。(?) 9.Rabin是抗选择密文攻击的(?) 10. M-H背包密码体制由于加解密速度快,因而可应用于数字签名。? 11.RSA算法的安全理论基础是大整数因子分解难题。? 12.不属于国家秘密的,也可以做出国家秘密标志(?)。 13.线性密码分析方法本质上是一种已知明文攻击的攻击方法(?) 14.时间-存储权衡攻击是一种唯密文攻击(?) 15.转轮密码机在第二次世界大战中有了广泛的应用,也是密码学发展史上的一个里程碑,而其使用的转轮密码算法属于多表代换密码体制。(?) 16.在互联网及其他公共信息网络或者未采取保密措施的有线和无线通信中传递国家秘密的应依法给予处分;构成犯罪的,依法追究民事责任(?)。 17.宣传、公开展览商用密码产品,必须事先报国家密码局批准(?)。 18.欧拉函数=54。? 19.电子签名需要第三方认证的,由依法设立的电子认证服务提供者提供认证服务(?)。 20.商用密码产品的科研、生产,应当在符合安全、保密要求的环境中进行。销售、运输、保管商用密码产品,应当采取相应的安全措施(?)。 1.RSA体制的安全性是基于大整数因式分解问题的难解性(?) 2.Merkle-Hellman密码体制于1981年被犹太人所攻破(?) 3.若Bob给Alice发送一封邮件,并想让Alice确信邮件是由Bob发出的,则Bob应该选用Bob的私钥?

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

相关主题
文本预览
相关文档 最新文档