当前位置:文档之家› 磁性测量实验(直流&交流)实验报告

磁性测量实验(直流&交流)实验报告

磁性测量实验(直流&交流)实验报告
磁性测量实验(直流&交流)实验报告

磁性测量实验 软磁直流静态磁性测量

(用冲击/扫描法测量磁性材料的磁化曲线及磁滞回线)

一、 实验原理

1、 静态磁性参数

如果不计及磁化时间效应,磁性材料在稳恒磁场作用下所定义和测量得到的磁参数就是所谓的静态磁参数。磁化曲线记录了材料磁化过程的磁化信息,而磁滞回线则表征和包含了磁性材料的全部磁性信息,有磁性材料身份证之称。下左图C 为磁化曲线,A 和B 为初始和最大磁化率,M 和H 分别为磁化强度和外磁场。下右图为典型磁性材料的磁滞回线,B s 、B r 、B r /B s 、H c 、(BH)max 、μ0和μM 分别为饱和磁感应强度、剩余磁感应强度、矩形比、矫顽力、最大磁能积、初始磁导率和最大磁导率。

2、 测量方法

本实验课采用冲击法和磁场扫描法这两种方法来进行。两种方法由于磁化速度的不同,在磁场方面数据稍有不同,而磁感方面的数据则差不多。在进行一些饱和场不高或矫顽力小的试样测试时用冲击法;而矫顽力较大的磁滞材料是用扫描法。本实验中提供两种不同矫顽力大小的磁性材料。整个测量过程完全由微机控制,实验者可根据自己的要求选择不同的测量方法和输入参数来完成测量。

二、 实验内容及步骤

1、 直流冲击法

A. 启动测量程序,进入测量程序主菜单。

B. 测量前的准备工作

H

H

B

M

B

A

C

在进行正式测量之前,用户必须输入样品的有关参数。主要包括“样品参数”

和“测试条件”。样品参数有“截面积、磁路长度、磁化匝数和测量匝数”。由于输

入参数随测量磁性材料变化而不同,因此具体的输入参数可向实验指导老师咨询。

C.正式测量

如果步骤B中设定的参数无误,就可以开始测量了。通过点击相应功能模块就可以完成测量工作。

2、磁场扫描法

磁场扫描法与冲击法类似,材料参数和测量参数的选择可参考冲击法类似步骤。

三、实验结果

1.直流冲击法

实验样品为坡莫合金。由测量所得数据绘出样品的磁化曲线,如下图:

μm

=133.279 m?/m

实验所得曲线为S型,符合经验。实验测得样品初始磁导率μ0=30.789m?/m,最大磁导率μm=133.279m?/m。

2.磁场扫描法

实验样品为铁氧体。扫描法测出的是样品的磁滞回线,本实验共测两组。其中一组从B=0起测,另一组在测量前没有退磁,获得了饱和磁滞回线。如下图所示。

第二幅图的磁滞回线是没有经过退磁处理的样品的。与第一幅图比较,很明显看出第二个磁滞回线是第一个的发展,无论从两头的长短、最大磁化强度(高矮)、中间部分的肥瘦,都明显比第一次要多。而且,无法从第二幅图中,读出初始磁导

0.2

0.30

300

900

H (A m )

B (?)

H c =62.1A /m

B s =0.27? 0.2

0.3

H (A m )

B (?)

B s =0.227?

率和最大磁导率。因此,第二幅图的磁滞回线所代表的样品磁性基本信息并不可靠。我们用第一个磁滞回线的数据来整理出样品的磁性信息。

软磁交流动态磁性测量

一、实验原理

交流动态磁性测量实际上是测量在一定交流频率下的相应磁性参量,他们包括

上述动态参数都将随动态外场的驱动频率变化而改变。本交流动态磁性测量设备日的频率变化范围为20Hz~400KHz。

二、实验内容及步骤

A.启动测量程序,进入测量程序主菜单。

B.测量前的准备工作

在进行正式测量前,用户必须输入样品的有关参数。主要包括“样品参数”

和“测试条件”。样品参数有“截面积、磁路长度、磁化匝数和测量匝数”。

C.正式测量

如果步骤B中设定的参数无误,就可以开始测量了。通过点击相应功能模块就可以完成测量工作。

三、实验结果

本实验样品为铁氧体。实验测量了三个频率下样品的磁性相应,分别是10kHz、20kHz、25kHz。三组测量所得磁滞回线图谱及磁性参量分别如下:

A.10kHz

测量B~H磁滞回线如下:

B. 20kHz

测量B~H 磁滞回线如下: 0.16400H (A

m )

B (?)

0.16

400

20kHz 交流动态测量B (?)

H (A m )

C. 25kHz

测量B~H 磁滞回线如下:

四、 实验分析

从原理上来理解,交流磁场变化频率对磁滞回线的影响根本在于样品自身的磁

0.16400

H (A m )

B (?)

感应强度对外磁场变化的响应灵敏度,频率越低,留给材料的磁性响应时间久越长,磁滞回线越趋近于椭圆;反之磁滞回线的形状将更尖削。因此,反通过磁滞回线定义的磁性参数,都可以由此原理来解释变化情况,如矫顽力、最大磁感应强度、剩余磁感应强度、幅值磁导率等。

由于频率的升高,样品在响应外磁场过程中消耗的能量也越高,体现在磁滞回线的面积在增大。虽然其并没有一个特定的长大方向,但其形状的确变得尖削。

值得注意的是,这三张磁滞回线图的形状都比较奇怪。其中部被收紧形成腰部形状,多了两个二次曲率的突变,就像花生一样;而一般的磁滞回线图都是光滑S 形的。这种情况需要进一步去探究。

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

建筑工程测量实验报告

江西理工大学建筑工程测量 实验报告 专业建筑学 年级13级 班级**** 学号**** 姓名**** 2015年月日

目录 第一部分实验项目内容及要求第二部分实验报告 第三部分实验心得体会和建议

第一部分实验项目内容及要求

第二部分实验报告 实验报告一 日期2015.10.10 班组第六组学号*号姓名**** ㈠完成下列填空 1.安置仪器后,转动三个脚螺旋使圆水准器气泡居中,转动 目镜对光螺旋看清十字丝,通过镜筒上方的缺口和准星瞄准水准尺,转动水平微动螺旋精确照准水准尺,转动物镜对光螺旋进行对光消除视差,转动微倾螺旋使符合水准器气泡居中,最后读数。 2.消除视差的步骤是转动目镜对光螺旋使十字丝清晰,再转动 物镜对光螺旋使水准尺的分划像清晰。 ㈡实验记录和计算 1.记录水准尺上读数填入表2-1-1中。

表2-1-1 2.计算(基于黑红面读数的平均值) ⑴A点比C点低0.199 m。 ⑵B点比D点高0.388 m。 ⑶C点比E点高0.154 m。 ⑷假设C点的高程H C=158.936 m,求A点、B点、C点、D点、E点的高程,即:A A= 158.737 m,H B= 159.070 m,H C= 158.936m,H D= 158.682 m,H E= 158.782 m,水准仪的视线高程 H I= 160.458 m。 ㈢出图2-1-1中水准仪各部件的名称

图2-1-1 1)目镜对光螺旋;2)望远镜; 3)水准管;4)水平微动螺旋; 5)圆水准器;6)校正螺旋; 7)水平制动螺旋;8)准星; 9)脚螺旋;10)微倾螺旋; 11)水平微动螺旋;12)物镜对光螺旋; 13)缺口;14)三脚架。 实验报告二水准测量 日期2015.10.10 班组第六组学号*号姓名*** ㈠水准测量的外业记录及其高程计算 实验数据记入表2-2-1,进行高程的计算,并进行验算,以确保各项计算准确无误。 表2-2-1 水准测量的外业记录及其高程计算

信号发生器和交流电压表实验报告

3.5 仿真信号产生实验 一、实验目的: 1.熟悉LabVIEW中仿真信号的多种产生函数及参数设置。 2.掌握常用测试仿真信号的产生。 3.学会产生复杂的函数波形和任意波形。 二、实验内容: 1.采用Express VI仿真信号发生器,产生规定的附有噪声的正弦信号,并显示波形。 2. 采用波形发生器VI,产生规定的附有噪声的多波形信号,并显示波形。 3. 产生任意波形信号,并显示和存盘。 4. 采用公式节点,产生规定的复杂函数信号。 三、实验器材: 安装有LabVIEW软件的计算机1台 四、实验原理: 1.虚拟仪器中获得信号数据的3个途径: (1)对被测的模拟信号,使用数据采集卡或其他硬件电路,进行采样和A/D变换,送入计算机。 (2)从文件读入以前存储的波形数据,或由其他仪器采集的波形数据。 (3)在LabVIEW中的波形产生函数得到的仿真信号波形数据。 2.测试信号在LabVIEW中的表示 在LabVIEW中测试信号已经是离散化的时域波形数据,表示信号的数据类型有数组、波形数据和动态数据3种。 波形数据是一种特殊的簇结构,它由时间起始值t0、两个采样点的时间间隔值dt以及采样数据一维数组Y组合成的一个簇。它的物理意义是对一个模拟信号x(t)从时间t0开始进行采样和A/D转换,采样率为fs,对应采样时间间隔dt=1/fs ,数组Y为各个时刻的采样值。对周期信号,1个周期的采样点数等于采样频率除以信号频率。 3.仿真信号产生函数 在LabVIEW中产生一个仿真信号,相当于通过软件实现了一个信号发生器的功能。LabVIEW提供了丰富的仿真信号,包括正弦、方波、三角波、多频信号、调制信号、随机噪声信号、任意波形等。针对不同的数据形式(动态数据类型、波形数据和数组),LabVIEW中有3个不同层次的信号发生器(Express VI仿真信号发生器、波形发生器VI和普通信号发生器VI)。 4.公式节点产生仿真信号 用公式节点可以产生能够用公式进行描述的信号,用公式节点可产生经过复杂运算生成的信号。公式波形.Vi产生的信号是波形数据,它的途径是:模板函数→信号处理→波形生成→公式波形.vi。 五、实验步骤: 1.设计一个简易的正弦波发生器,频率、幅值和直流偏值在面板上可调,还可叠加噪声信号,并显示波形。 分析:采用Express VI仿真信号发生器可以完成。 (1)前面板设计:应包括的控件有波形频率、幅度和直流偏值输入设置,噪声的标准偏差设置,显示波形的图形控件,还可用一个选择开关控制程序启动和停止。见图

桂林理工大学工程测量学常考试题

第一章 1.工程测量学定义: 定义1. 研究各种工程在规划设计、施工建设和运营管理阶段进行测量工作的学科.( 大众化易于理解) 定义2.研究工程、工业和城市建设以及资源开发各个阶段所进行的地形和有关信息的采和处理、施工放样、设备安装、变形监测分析和预测等的理论、方法和技术,以及对测量和有关的信息进行管理和使用的学科。(更具体、准确、范围更大) 定义3.工程测量学是研究地球空间(地面、地下、水下、空中)中具体几何实体的测量描绘抽象几何实体的测设实现的理论方法和技术的一门应用性学科.( 更加概括、抽象、严密和科学) (1)工程测量学主要包括以工程建筑为对象的工程测量和以机器设备为对象的工业测量两大部分。 (2)工程测量学按工程建设阶段划分其主要内容有哪些? 答:工程测量按工程建设的规划设计、施工建设和运营管理三个阶段分为“工程勘测”、“施工测量”和“安全监测”,这三个阶段对测绘工作有不同的要求。 2.简述工程测量学的主要内容 1)地形图测绘(测图) 2)工程控制网布设(布网) 3)施工放样技术和方法(放样) 4)工程的变形监测分析和预报(监测) 5)工程测量的仪器(仪器) 6)工程测量学中的误差及测量平差理论(数据处理) 7)大型精密设备的安装和调试测量,工业生产过程的质量检测和控制 8)工程信息系统的建立与应用 3. 工程测量的通用仪器:水准仪、经纬仪、陀螺经纬仪、全站仪和GPS接收机 用途:测方向、角度、距离、高差、坐标差等几何量。 4.专用仪器:机械式、光电式及光机电(子)多传感器集成式仪器或测量系统。 主要特点是:高精度、自动化、遥测和持续观测 基准线测量或准直测量仪器:有正锤、倒锤及垂线观测仪、引张线仪、各种激光准直仪、铅直仪(向下、向上)、自准直仪以及尼龙丝或金属丝准直测量系统等。 5工程建设规划设计阶段的测量工作有哪些? 主要是提供各种比例尺的地形图,另外还要为工程,水文地质勘探以及水文测验等进行测量。对于重要的工程区的稳定性监测。 6工程建设施工建设阶段的测量工作有哪些? 建立施工控制网,工程建筑物定线放样,施工质量控制,工程竣工测量、变形观测以及设备的安装测量等。 7工程建设运营管理阶段的测量工作有哪些? 工程建筑物的变形观测-。建立工程进管理、维护信息系统。 第二章

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

《建筑工程测量》期末考试试卷及答案

×××学校2012---2013第一学期期末考试试卷班级:课程名称:建筑施工测量 一、填空题(每空1分,共20分)1、测量工作的实质是确定的位置。 2、在测量直角坐标系中,y轴表示方向。 3、确定地面点位的3个基本要素是水平距离、、。 4、水准测量时,地面点之间的高差等于后视读数前视读数。 5、水准路线的布设形式通常有、、。 6、经纬仪的使用主要包括、、瞄准和读数四项操作步骤。 7、导线测量的外业工作有、、、。 8、建筑物沉降观测的主要观测、建筑物观测和建筑物裂缝观测等。 9、建筑物主体施工测量的任务是将建筑物的和标高正确的向上引测。 10、点的平面位置测设方法有、、和距离交会法。 二、单项选择题(每题2分,共20分) 1、测量的基准面与准线分别是()。 A、水准面,铅垂线 B、大地水准面,水平线 C、水平面,铅垂线 D、大地水准面,铅垂线 2、独立平面直角坐标系中的原点一般设在()。 A、测区东北角B、测区东南角C、测区西南角D、测区西北角 3、测量工作的主要目的是确定()。 A、点的坐标和角度B、点的距离和角度C、点的坐标和高程D、点的距离和高程 4、水准测量时,由于尺竖立不直,该读数值比正确读数( )。 A、大B、小C、可能大,也可能小D、相同 5、当经纬仪的望远镜上下转动时,竖直度盘()。 A、与望远镜一起转动B、与望远镜相对运动C、不动D、不能确定 6、经纬仪可以测量()。 A、磁方位角 B、水平角和磁方位角 C、磁偏角 D、水平角和竖直角 7、某段距离测量中,测得往测距离为48.000m,返测为48.016,则相对误差为()。A、1/2000 B、1/3000 C、1/5000 D、1/10000 8、某直线的方位角与该直线的反方位角相差()。 A、90°B、180°C、270°D、360° 第1页 9、在距离丈量中,衡量其丈量精度的标准是()。 A、相对误差B、中误差C、往返误差D、真误差 10、等高线的密疏与地形之间有以下关系()。

建筑工程测量期末试题及答案课件.doc

××职业技术学院1、测量的三项基本工作是()、距离测量和高程测 量。 2、水准路线的布设形式有()、闭合水准路线和支水 准路线。 2015—2016 学年第一学期期末试卷 A 3、水准仪的使用包括粗平、照准、()、读数。 4、圆曲线的三主点:曲线的起点、()、曲线 的终点。 2014 级建筑工程管理、造价、监理专业《建筑工程测量》5、碎步测量就是测定碎部点的平面位置和()。 6、水准测量时,后视读数a=0.544m,前视读数 b=1.288m,则 试卷总分:100 分考试时间:90 分钟高差h ab= ()。 题号一二三四五六总分 得分得分 三、判断题(每题 2 分,共20 分) 评卷人 姓名: 复核人 1、在调节水准仪圆水准器过程中,气泡移向那个方向即是该方向偏高,应 该降低该方向或升高对向。() 得分一、单选题(每题 3 分,共18 分)2、水准测量在进行外业测量时,由于仪器本身构造原因、长期搬运 及使用、 操作方法等因素造成实测高差与理论值往往不相等,其差值为高差闭 合差。 评卷人 () 3、水准管轴平行于视准轴是视准轴是水准仪应满足的主要条件。() 1、测量的基准面和基准线分别为()。4、水平角就是地面上两直线之间的夹角。()学 号: 试 5、在安置经纬仪时,由于对中不准确,使仪器中心与测站点不在同一铅 垂 A、水准面铅垂线 B、大地水准面、水平线卷 C、水平面、铅垂线D、大地水准面、铅垂线 2、经纬仪可以测量()。线上,称为对中误差。() 6、控制测量分为平面控制测量和高程控制测量。() A、磁方位角 B、水平角和磁方位角 C、磁偏角 D、水平角和竖直角7、导线坐标增量闭合差的调整方法是将闭合差反号后按导线边数平均分配 3、当测角精度要求较高时,应变换水平度盘不同位置,观测几个测回取平 () 专业:封 均值,变换水平度盘位置的计算公式是()。 8 0.1mm、 某种比例 尺地形图 上 所对应的 实地投影 长度,称 为该地形 图的比 线 A.90°/n B.180°/n C.270°/n D.360°/n 4、观测某水平角,左边读数为200° 23′12″,右边读数为258°36′36″, 例尺精度。() 9、地面坡度越陡,等高线平距 越小;地面坡度越平缓,等 高线平距越大。()则水平角值为()。10、碎部测量中,碎部点应选在地物、地貌的特征点上。() .

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

测量电压实验报告

测量电压实验报告 篇一:基于Labview的电压测量仿真实验报告 仿真实验一基于Labview的电压测量仿真实验 一、实验目的 1、了解电压测量原理; 2、通过该仿真实验熟悉虚拟仪器技术——LABVIEW的简单编程方法; 3、通过本次实验了解交流电压测量的各种基本概念。 二、实验仪器 微机一台、LABVIEW8.5软件三、实验原理 实验仿真程序如下(正弦波、三角波、锯齿波、方波(占空比30%、50%、60%): 四、实验内容及步骤 (1)自己编写LABVIEW仿真信号源实验程序,要求可以产生方波(占空比 可调)、正弦波、三角波、锯齿波等多种波形,而且要求各种波形的参数可调、可控。 (2)编写程序对各种波形的有效值、全波平均值、峰

值等进行测量,在全波平均值测量时要注意程序编写过程。同时记录各种关键的实验程序和实验波形并说明。 实验所得波形如下:(正弦波、三角波、锯齿波、方波(占空比30%、50%、60%): 正弦波: 三角波: 锯齿波: 方波(占空比30%): 方波(占空比50%): 方波(占空比60%): (3)对各种波形的电压进行测量,并列表记录。如下表: 五、实验小结 由各波形不同参数列表可知,电压量值可以用峰值、有效值和平均值表征。被测电压是非正弦波的,必须根据电压表读数和电压表所采用的检波方法进行必要地波形换算,才能得到有关参数。 篇二:万用表测交流电压实验报告1

万用表测交流电压实验报告 篇三:STM32 ADC电压测试实验报告 STM32 ADC电压测试实验报告 一、实验目的 1.了解STM32的基本工作原理 2. 通过实践来加深对ARM芯片级程序开发的理解 3.利用STM32的ADC1通道0来采样外部电压值值,并在TFTLCD模块上显示出来 二、实验原理 STM32拥有1~3个ADC,这些ADC可以独立使用,也可以使用双重模式(提高采样率)。STM32的ADC是12位逐次逼近型的模拟数字转换器。它有18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中 接下来,我们介绍一下执行规则通道的单次转换,需要用到的ADC寄存器。第一个要介绍的是ADC控制寄存器(ADC_CR1和ADC_CR2)。ADC_CR1的各位描述如下: ADC_CR1的SCAN位,该位用于设置扫描模式,由软件

工程测量学考试精彩试题(卷)与问题详解

工程测量学考试试题 一、填空题(每空 1分,共 20分) 1、测量的基本工作有()、()和()。 2、平面控制测量包括()、()和()。 3、水平面、()和()是测量的基准面和基准线。 4、导线测量的外业工作有踏勘进点、()、()、()和()。 5、闭合导线计算步骤有角度闭合差的计算和调整、()、()()和()。 6、测量学的任务是测图、()和()。 7、水准路线分为闭合水准路线、()和()。 二、名词解释(每个 2分,共 10分) 1、水准面: 2、地形图: 3、水平角: 4、方位角: 5、相对误差: 三、判断题(每题 1分,共 10分) 1、测量工作必须遵守“从整体到局部、先控制后碎部”的原则。() 2、平面控制测量分为水准测量和导线测量。() 3、水准面与水准面的特性相同。() 4、观测竖直角时经纬仪不需要对中。() 5、水准仪能测出高差和平距。() 6、等高线可以通过各种地物。() 7、地形图是采用地物符号和地貌符号表示的。() 8、视距测量不能测定仪器至立尺点间的平距和高差。() 9、直线定线和直线定向方法是不相同。() 10、采用经纬仪重转法(正倒镜取中法)来延长直线可以消除仪器的竖轴倾斜误差和横轴倾斜误差的影响。() 四、简答题(每题 5分,共 10分) 1、简述经纬测图法的方法步骤。 2、简述测量平面直角坐标系与数学平面直角坐标系的不同点: 五、计算题(共 50分) 1、已知 XA=300.000m,YA=300.000m;AB 边方位向91°06' 16”,AP 边长为 D=85.365m,β=42°32' 26”, 求P 点的坐标。(10分) 2、见下图所示,已知 BM 点高程 80。368m ,需要测设 P 的高程为 79。80m ,求出前视应读数b 应,并说明测设方法。 3、试完成下表水平角测量计算(10分) 4用钢尺往、返丈量 A、B 两点的水平距离,其结果为179.965米和180.025米,计算 AB两点的水平距离DAB 和丈量结果的精度(相对误差)K 。(10分) 5.下图为一条等外闭合水准路线,已知数据和观测结果注于图上,试进行高差闭合差的调整和高程计算。(10分)

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

建筑工程混凝土实验实验报告

姓名: 院校学号: 学习中心: _______________ 层次:专升本 专业:土木工程 实验一:混凝土实验 一、实验目的:1、熟悉混凝土的技术性质和成型养护方法;2、掌握砼拌合物工作性的测定和评定方法;3、通过检验砼的立方体抗压强度,掌握有关强度的评定方法。 二、配合比信息: 1 .基本设计指标 (1)设计强度等级C30 (2)设计砼坍落度30-50mm 2.原材料 (1)水泥:种类复合硅酸盐水泥强度等级C32.5 (2)砂子:种类河砂细度模数 2.6 (3)石子:种类碎石粒级5-31.5mm

(4)水:洁净的淡水或蒸馏水

3.配合比:(kg/m3) 三、实验内容: 第1部分:混凝土拌合物工作性的测定和评价 1、实验仪器、设备:电子秤、量筒、坍落度筒、拌铲、小铲、捣棒(直径16mm、长600mm, 端部呈半球形的捣棒)、拌合板、金属底板等。 2、实验数据及结果

第2部分:混凝土力学性能检验 1、实验仪器、设备:标准试模:150mm X 150mm X 150 mm 、振动台、压力试验机(测量精度为土1%,时间破坏荷载应大于压力机全量程的20%;且小于压力机全量程的80%。、压力试验机控制面板、标准养护室(温度20C±2C,相对湿度不低于95%。 2、实验数据及结果 四、实验结果分析与判定: (1、混凝土拌合物工作性是否满足设计要求,是如何判定的? 答:满足设计要求。实验要求混凝土拌合物的塌落度30—50mm,而此次实验结果中塌落度 为40mm, 符合要求;捣棒在已塌落的拌合物锥体侧面轻轻敲打,锥体逐渐下沉表示粘聚 性良好;塌落度筒提起后仅有少量稀浆从底部析出表示保水性良好。

建筑工程测量期末试题及答案

得分评卷人××职业技术学院 2015—2016学年第一学期期末试卷A 2014级建筑工程管理、造价、监理专业《建筑工程测量》试卷总分:100分考试时间:90分钟 一、单选题(每题 3 分,共18 分) 1、测量的基准面和基准线分别为()。 A、水准面铅垂线 B、大地水准面、水平线 C、水平面、铅垂线D、大地水准面、铅垂线 2、经纬仪可以测量()。 A、磁方位角 B、水平角和磁方位角 C、磁偏角 D、水平角和竖直角 3、当测角精度要求较高时,应变换水平度盘不同位置,观测几个测回取平均 值,变换水平度盘位置的计算公式是()。 A.90°/n B.180°/n C.270°/n D.360°/n 4、观测某水平角,左边读数为200°23′12″,右边读数为258°36′36″, 则水平角值为()。 A .58°13′24″ B. 58°24′13″ C. 58°24′24″ D. 58°13′13″ 5、在距离测量中,衡量其丈量精度的标准是()。 A、相对误差 B、中误差 C、往返误差 D、真误差 6、如望远镜的十字丝不清晰,应调节()螺旋。 A、目镜调焦螺旋 B、物镜调焦螺旋 C、微倾螺旋 D、脚螺旋测理始终 二、填空题(每题 2 分,共12 分) 1、测量的三项基本工作是()、距离测量和高程测量。 2、水准路线的布设形式有()、闭合水准路线和支水准路线。 3、水准仪的使用包括粗平、照准、()、读数。 4、圆曲线的三主点:曲线的起点、()、曲线的终点。 5、碎步测量就是测定碎部点的平面位置和()。 6、水准测量时,后视读数a=0.544m,前视读数b=1.288m,则 高差h ab=()。 三、判断题(每题 2 分,共20 分) 姓名:学号: 专业:班级:试 卷 密 封 线 得分 评卷人 得分 评卷人

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

建筑工程测量实验报告

建筑工程测量实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

江西理工大学 建筑工程测量 实验报告 专业建筑学 年级13级 班级 **** 学号 **** 姓名 **** 2015年月日 目录 第一部分实验项目内容及要求 第二部分实验报告 第三部分实验心得体会和建议

实验报告一 日期班组第六组学号 *号姓名**** ㈠完成下列填空 1.安置仪器后,转动三个脚螺旋使圆水准器气泡居中,转动 目镜对光螺旋看清十字丝,通过镜筒上方的缺口和准星瞄准水准尺,转动水平微动螺旋精确照准水准尺,转动物镜对光螺旋进行对光消除视差,转动微倾螺旋使符合水准器气泡居中,最后读数。 2.消除视差的步骤是转动目镜对光螺旋使十字丝清晰,再转动 物镜对光螺旋使水准尺的分划像清晰。 ㈡实验记录和计算 1.记录水准尺上读数填入表2-1-1中。 表2-1-1

2.计算(基于黑红面读数的平均值) ⑴ A点比C点低 m。 ⑵ B点比D点高 m。 ⑶ C点比E点高 m。 ⑷假设C点的高程H C= m,求A点、B点、C点、D点、E点的高程,即: A A= m,H B= m,H C= ,H D= m,H E= m,水准仪的视线高程 H I= m。 ㈢出图2-1-1中水准仪各部件的名称 图2-1-1 1)目镜对光螺旋; 2)望远镜; 3)水准管; 4)水平微动螺旋; 5)圆水准器; 6)校正螺旋; 7)水平制动螺旋; 8)准星; 9)脚螺旋; 10)微倾螺旋; 11)水平微动螺旋; 12)物镜对光螺旋; 13)缺口; 14)三脚架。 实验报告二水准测量 日期班组第六组学号 *号姓名 *** ㈠水准测量的外业记录及其高程计算 实验数据记入表2-2-1,进行高程的计算,并进行验算,以确保各项计算准确无误。

RLC正弦交流电路参数测量实验报告(001)

RLC正弦交流电路参数测量实验报告

【RLC正弦交流电路参数测量】实验报告 【实验目的】 1.熟悉正弦交流电的三要素,熟悉交流电路中的矢量关系; 2.学习用示波器观察李萨尔图形的方法; 3.掌握R,L,C元件不同组合时的交流电路参数的基本测量方法。 【实验摘要(关键信息)】 1.在面包板上搭接R、L、C的并联电路; 2、将R、L并联,测量电压和电流的波形和相位差,计算电路的功率因素。 3、将R、C并联,测量电压和电流的波形和相位差,计算电路的功率因素。 4、将R、L、C并联,测量电压和电流的波形和相位差,由相位差分析负载性质。计算功率因素。 【实验原理】 1.正弦交流电的三要素 初相角:决定正弦量起始位置; 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小。 2.电路参数 在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可以由他们相互组合(以串联为例)。电路里元件的阻抗特性为 当采用交流电压表、电流表和有功功率表对电路 测量时(三表法),可用下列计算公式来表述Z与 P、U、I相互之间的关系: 负载阻抗的模︱Z︱;负载回路的等效电阻 ; 负载回路的等效电抗; 功率因数cosφ;电压与电流的相位差φ 当φ>0时,电压超前电流;当φ<0时,电压滞后电流。 3.矢量关系:基尔霍夫定律在电路电路里依然成立,有和,可列出回路方程与节点方程。 【电路图】

电路图1 电路图2

电路图3 【实验环境(仪器用品等)】 面包板,示波器,1KΩ电阻,47Ω电阻,导线,函数发生器,10mH电感,0.1μF 电容 【实验操作】 1.分别按照电路图1、2、3在面包板上连接电路; 2.调节函数发生器,使其通道1输出频率为1KHz,峰峰值为5V的正弦波; 3.示波器校准,通道1接入函数发生器输出的信号,通道2接入通过47Ω小 电阻的信号,两通道地线要接在一起; 4.调节示波器,使其为李萨尔图形,观察两波形相位差,记录数据并分析。【实验数据与分析】 1.R、L并联

社会实践实习报告:建筑工程测量实训报告

( 实习报告 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 社会实践实习报告:建筑工程测 量实训报告 Social practice practice report: construction engineering survey training report

社会实践实习报告:建筑工程测量实训报 告 社会实践实习报告:建筑工程测量实训报告 进入大学的第一次测量实训终于在大家的期盼中来了,因为大家都想抓紧实训的时间好好休息一下,可是,现实是如此的残酷! 开始老师让我们先从理论下手,介绍了水准仪和经纬仪的构成以及它的使用方法,我们都很认真的记载着老师所讲的重点,在学习中,我知道了测量人员是工程建设的开路先锋,是确保工程质量的“千里眼”,我为能成为测量人而感到自豪!老师还说了,让我们好好保护仪器!我们知道了:人在仪器在,人亡仪器也不能亡!可是让人疑惑的是老师总让我们做好“军训”的打算,有那么辛苦吗? 很快我就见到了传说中的水准仪,它长得真的很不咋的,可是在老师的介绍下,我知道了它是一个很有内涵的仪器!千万不能小

看它!但是还好的就是它的螺栓比较少,所以我还能接受!可是调节经纬仪的过程就比较复杂了,螺旋比较多,测量时仪器不停的转动,脑袋就晕了,对准后就不知螺旋在哪了,只能瞎摸。但有句话叫“熟能生巧”,这句话一点不假,在实训中,这个成语就得到验证,尽管开始是有点生疏,但经过一圈测量,想不熟也挺难的,而且速度也不断的提高。 下面就来谈谈具体的!我是第一批在校内测量经纬仪的!它的螺栓比水准仪多多了!弄得我头晕眼花的!没办法!我必须要坚持下去!第一个下午,我们全组组员就遇到大麻烦了!因为经纬仪的调整要三个地方全部调好,可是我们老是没办法让它们全都统一,老是这儿调好了,那儿的气泡又跑了!我们组是第八组,组员有6个,而别的组是5个人,所以我们要比别的组要更抓紧时间,可是当第九组已经测六个点时,我们组还压根没挪窝,可是越急越不知道该怎么办!后来在别的组来了一个同学,我们连忙请教他! 1.先要让三脚架的中心大约和地面的点进行对齐。 2.调节气泡让它处于圆水准器的中间部分。

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4) 其中pq R H 1 = 称为霍尔系数,在应用中一般写成

建筑测量实训心得

建筑测量实训心得 This model paper was revised by the Standardization Office on December 10, 2020

实训心得 一周的测量实训结束了,风风雨雨中我们小组圆满的完成了本次实训这次实习的内容是对工程测量知识的实践化,实习的要求是让每个同学都对工程测量的实际操作能够达到基本掌握的程度。这次实习与以前的课堂实习相比,时间更加集中、内容更加广泛、程序更加系统,完全从控制测量生产实际出发,加深对书本知识的进一步理解、掌握与综合应用,是培养我们理论联系实际、独立工作能力、综合分析问题和解决问题的能力、组织管理能力等方面素质。也是一次具体的、生动的、全面的技术实践活动 通过这次为期一周的测量实训,我学会了更熟练的使用水准仪、经纬仪。很好的巩固理论教学知识,提高了实际操作技能,实训是我们教学中一个与理论相结合的桥梁,使得我们与所学专业相联系,增强我们对本专业的感性认识,收集处理信息的能力,获取新知识的能力,发现问题,分析问题和解决问题的能力,为以后到工作岗位上打下坚实的基础。 这次的实训目的主要是1.巩固课堂教学知识,加深对控制测量学的基本理论的理解,能够用有关理论指导作业实践,做到理论与实践相统一,提高分析问题、解决问题的能力,从而对控制测量学的基本内容得到一次实际应用,使所学知识进一步巩固、深化。2.通过实习,熟悉并掌握三、四等控制测量的作业程序及施测方法。3.掌握用测量平差理论处理控制测量成果的基本技能。4.通过完成控制测量实际任务的锻炼,提高独立从事测绘工作的计划、组织与管理能力,培养良好的咱也品质和职业道德。5.熟

相关主题
文本预览
相关文档 最新文档