当前位置:文档之家› 对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解和认识_光学小论文
对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解

和认识

电子工程与信息科学系

黄金

PB11210054

从我们出生的那一刻起,光就伴随着我们。我们的生活离不开阳光,有了光,才有了我们色彩斑斓的生活。人们对光学最初的研究,也是从“人类为何能看到周围的物体开始”。经历了半个多学期的光学学习我对光又有了全新的认识。

大学以前,我们接触到的主要是几何光学,它让我们对光有了最初的认识。它让我们知道光是沿直线传播的,同时又引出了光的反射、折射等基本性质。费马定理更是让我们对光有了更为全面的认识。我们似乎觉得这好像就是光的全部。其实不然,大学又为我们开启了一扇全新的大门,让我们更进一步的认识光,了解光。

光的干涉衍射让我们知道了光是一种波。而对于光电效应和黑体辐射等问题的研究又让我们看到了光的电磁性!既能像波浪一样向前传播,又表现出粒子的特征,我们称光具有“波粒二象性”。

从光的波粒二象性的发现到发展经历了相当长的时间,也是一段无比辉煌的阶段。光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。17 世纪以前,人们对光的认识只停留在简单的几何光学的层面上,例如光的反射、折射等光的直线传播现象,这也是光学的初期发展。十七世纪初期,人们逐渐发现了与光的直线传播不完全符合的事实,意大利人格里马第率先观察到了光的衍射现象,接着1672-1675 年间胡克也观察到了光的衍射现象,并且和波意耳互相独立地研究了薄膜所产生的彩色干涉条纹,衍射现象,简而言之,就是光波遇到小障碍物或小孔时,绕过障碍物进入几何

阴影区继续传播,并在障碍物后的观察屏上呈现出光强的不均匀分布的现象。所有这些现象的发现都为光的波动理论的萌芽奠定了坚实的基础。17 世纪下半叶,英国物理学家牛顿以极大的兴趣和热情开始了对光学的研究。通过白光实验并根据光的直线传播的性质,他提出了光是微粒流的理论,然而他的这一理论因无法解释光在绕过障碍物之后所发生的衍射现象,遭到了以惠更斯为代表的波动学说的强烈反对。光的研究在18 世纪实际上并没有什么发展,由于牛顿在学术界的权威和盛名,大多数科学家仍在支持光的微粒学说,不过笛卡儿学派中瑞士的欧拉和法国的伯努利却捍卫并发展了光的波动理论。

人们探索的脚步永不停息。到了十九世纪,初步发展起来的波动光学的体系已经形成。杨氏(托马斯?杨)和菲涅耳的著作对光学的发展起到了决定性的作用,著名的“杨氏双缝干涉试验”还第一次成功地测定了光的波长,光学界沉闷的空气再次活跃起来。后来菲涅耳用杨氏干涉原理补充了惠更斯原理,形成人们所熟知的惠更斯--菲涅耳原理,1800年光的偏振现象的发现,更证明了光是横波的事实。1845年,法拉第发现光的振动面在强磁场中的旋转,从而揭示了光现象和电磁现象的内在联系,同时使人们认识到在研究光学现象的时候必须把光学现象同其他物理现象联系起来考虑。后来麦克斯韦在1865 年的理论研究中指出:光是一种电磁波。这一结论后来被赫兹用试验所证实。19 世纪末到20 世纪初,光的研究深入到光的发生,光和物质的相互作用的微观体系中,然而光的电磁理论却不能解释光和物质的相互作用的某些现象,例如黑体辐射中能量按波长的分布的问题;赫兹发现的光电效应等。

1900年普朗克提出了辐射的量子论,1905年爱因斯坦发展了普朗克的能量子假说,并提出了光量子(光子)理论。1925 年波恩提出了波粒二象性的概率解释从此建立了波动性和微粒间的联系。1921 年,康普顿在试验中证明了X 射线的粒子性。1927年,杰默尔和后来的乔治?汤姆森在试验中证明了电子束具有波的性质。同时人们也证明了氦原子射线、氢原子和氢分子射线具有波的性质。

在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主力!正是他们的努力揭开了遮盖在“光的本质”外面那层扑朔迷离的面纱。

那我们应该如何理解光的波粒二象性呢?

首先,波粒二象性中的波是一种概率波,对大量的光子才有意义。波粒二象性中的粒子,是指其不连续性,是一种能量。个别光子的作用表现为粒子性,而大量光子的作用则表现为波动性。光在与物体作用是表现出粒子性,而在传播过程中往往表现为波动性。爱因斯坦在1905年用光的量子学说解释光电效应,提出光子的能量E=hv,1917年又提出光子动量p=h/λ,从这两式也可以看出光的粒子性和波动性并不矛盾,表示光的粒子性的能量和动量表达式含有表示光的波动性的量v、λ,这两式实际表示的就是光的波动性和粒子性的统一关系。

历史总是向前进步的,关于光的认识和发展也在不断变化,从人们认

识光到理解光的波粒二象性经历了漫长而又艰辛的过程,这是否意味着光学的研究到这里为止了?不,生命不息,探索不止,我们要继承前人勇于探索、敢于挑战权威的意志,构建自己的光学思想,建立自己对光学独特的认识,用睿智的眼光进一步揭开光学的本质,认识光学的独特之美!

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

浙大应用光学知识点及课时安排_通过课时分出哪些是重点_doc97

浙江大学应用光学知识点 -------------------------------------------------------------------------------- 第一章几何光学基本定律与成像概念(3学时) 1. 发光点、波面、光线、光束 2. 光的直线传播定律、光的独立传播定律、反射定律和折射定律及其矢量形式 3. 全反射及临界角 4. 光程与极端光程定律(费马原理) 5. 光轴、顶点、共轴光学系统和非共轴光学系统 6. 实物(像)点、虚物(像)点、实物(像)空间、虚物(像)空间 7. 完善成像条件 第二章球面与球面系统(3学时) 1. 子午平面 2. 物(像)方截距、物(像)方倾斜角 3. 符号规则 4. 近轴光线与近轴区,高斯光学,共轭点,单个折射球面成像特征:对细小平面以细光束成完善像,像面弯曲 5. 阿贝不变量,单个折射球面的近轴物像位置关系 6. 折射球面的光焦度、焦点和焦距 7. 垂轴放大率、沿轴放大率、角放大率:物理意义及关系 8. 拉氏不变量 第三章平面与平面系统(5学时) 1. 平面镜的像,平面镜的偏转,双平面镜二次反射像特征及入、出射光线的夹角

2. 平行平板的近轴光成像特征 3. 常用反射棱镜及其展开、结构常数 4. 屋脊棱镜与棱镜组合系统,坐标判断 5. 角锥棱镜 6. 折射棱镜及其最小偏角,光楔 7. 光的色散 8. 光学材料及其技术参数 第四章理想光学系统(9学时) 1. 理想光学系统原始定义 2. 理想光学系统的焦点、焦平面、主点、主平面 3. 理想光学系统的节点 4. 理想光学系统的物像位置关系,牛顿公式和高斯公式 5. 理想光学系统物方焦距与像方焦距的关系 6. 理想光学系统的拉氏不变量 7. 理想光学系统的光焦度及其与焦距的关系 8. 理想光学系统的垂轴放大率、沿轴放大率和角放大率及其关系 9. 几个特殊位置的三种放大率 10. 理想光学系统的作图法 11. 理想光学系统的组合:作图法和计算法 12. 远距型和反远距型理想光学系统模型 13. 多光组组合,正切计算法,截距计算法 14. 各光组对总光焦度的贡献

(完整版)波粒二象性

关于波粒二象性的理解与展望 摘要:本文从光电效应出发,阐述了波粒二象性的提出及近些年来对波粒二象性的一些实验等方面进行叙述,以求对波粒二象性的认识。 关键词:波粒二象性 Which—Way实验波粒二象性的同时观察 正文: 光学是一门古老的基础学科,人们对光本性的认识经历了漫长而曲折的过程。一方而人们通过光的衍射、干涉等现象认识到光具有波动性,另一方而人们在对光电效应及黑体辐射等实验现象的解释中发现又必需把光当成一种粒子。从经典物理的角度来看,光的这两种不同的特性属于两个完全不同的概念。然而,爱因斯坦却把光的波动性和粒子性统一了起来,提出了光的波粒二象性。 1.波粒二象性的提出 1887年,光电效应被德国物理学家赫兹发现,这种特殊的光效应令波动说与粒子说都陷入了一种尴尬的境地。首先,虽然光的波动说在当时已经成为主流,但波动说完全无法解释光电效应现象。另一方面,一直以来都能解释波动说无法解释的光学现象的粒子说也只能对光电效应做出部分解释,虽然根据粒子说理论,可以认为光电效应中的电子是被光的粒子撞击出去的,但为什么蓝光可以引发光电效应而红光不能,这点连粒子说也无法解释。可以说,光电效应令两派学说同时面临瓶颈。 1905年为了解释光电效应,爱因斯坦受到普朗克能量子假说的启发,提出了光量子的假说。他在著名论文《关于光的产生和转化的一个试探性的观点》一文中总结分析了在光学发展中“微粒说”和“波动说”长期争论的历史,指出了经典理论存在的困难,他认为只有把光的能量也看成是不连续分布,而是一份一份地集中在一起,就能对光电效应做出合理的解释说明。这样爱因斯坦发展了普朗克的能量子的概念,创造性地提出了光量子(即光子)的概念,并把它用之于光的发射和转化上,光子的能量为E=hν,其中ν为光的频率,这样能很合理地解释光电效应等现象。 在1917年,爱因斯坦又指出光子不仅有能量,而且还具有动量,其中动量 p=h 或者p=hk 式中波矢k=2π λ ,这样就把标志波动性质的频率ν和波长λ通过一个普适常量——

波粒二象性发展

波粒二象性发展 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

<<从辩证唯物主义观点谈光的波粒二象性>> 高中物理课本中“光的波粒二象性”一节中作为对“光的本性”一章的概括性总结,寥寥五百多字将光的本性勾勒得淋漓尽致,不得不让人叹服做作者的物理造诣与文字功力。但要说服学生接受光既是一种波又是一种粒子无异于在说同一个人既是男人又是女人一样让人难以接受,笔者在从事物理教学过程中曾尝试在概括光的干涉、衍射及光电效应等主要内容的同时,用马克思辨证唯物主义的观点作进一步阐释,收效甚佳。下面将自己对于光的“波粒二象性”的辨证唯物主义分析的拙见罗列如下,供同行赐教。 一、微粒说和波动说的长期斗争 以牛顿为代表的微粒说认为光是微粒流,从光源发生,在均匀介质中遵守力学规律作匀速运动,对于光的反射则用弹性球的反跳来解释,对光的折射则用介质的吸引来阐释,另外牛顿还对光的色散、衍射等现象也作出解释,尽管有些十分牵强,尤其是对光的衍射、色散、干涉的解释。 惠更斯是波动说的代表。他从波阵面的观点出发,认为将光振动看作在一种特殊介质——“以太”中传播的弹性脉动,而“以太”这种介质则充满了宇宙的全部空间,这便是着名的“惠更斯原理”。在惠更斯原理中,他未提出波长的概念,因而对光的直线传播的解释十分勉强,而且无法解释偏振现象,对光的色散现象更是束手无策。 牛顿对经典力学的建立作出了空前绝后的贡献,这就很容易使人们用经典力学中机械论的观点去理解光的本性,而惠更斯的波动学说尽管对光的干涉、衍射的解释还比较完美,但其理论构架本身还很粗糙,在许多方面还不够完善,但由于牛

波粒二象性

物本1201班第一小组 潘荣杰,聂姝,吕舒鹏,朱建宇,韩娟,王金凤,弥倩琴,王震,张毛毛,吴松伟 关于微观粒子波粒二象性的讨论 20世纪以前的物理学家认为,自然界存在两种不同的物质。一种是可以定域于空间一个小区域中的实物粒子,其运动状态可以由动力学变量坐标和动量的不同取值描述,其运动规律遵从牛顿力学定理。宏观物体是大量微观粒子的聚集态。对宏观物体运动状态的描述则上可以以对单粒子的描述为基础,应用统计的方法解决。另一种物质是弥散于整个空间的辐射场,其运动规律遵从Maxwell 方程组。带电粒子在电磁场中的运动,则可通过Lorentz公式和Maxwell方程组联合来解决。不论是Newton方程还是Lorentz-Maxwell方程组都是Laplace决定论的,即给出系统的初始状态,通过解运动方程,都可以唯一的决定系统未来任何时刻的运动状态。 到19世纪末期,经典物理学已发展到相当成熟的地步,在大多数物理学家看来,物质世界的图像已很清楚,基本物理系理论已很完备了。有些物理学家甚至预言,物理学中剩下的工作是把实验做得更精密些,把计算做的更精确些。但随着物理学研究深入微观领域,人们发现微观粒子不同于宏观粒子,它具有波粒二象性。 微观粒子波粒二象性的物理学认识 波粒二象性是微观粒子所普遍具有的属性,这是由大量精心设计的物理实验所证实的。波动的特性由振幅、频率、传播速度等物理量来描述,并由波的干涉、衍射以及波与传播介质的关系等物理现象来表征。粒子运动的特征由速度、质量、密度、粒子的几何尺寸等物理量来描述,并且由粒子与其他物质的碰撞、粒子的运动轨迹、粒子受力后运动状态的改变等物理现象来表征。波动性与粒子运动特性在宏观世界里有着巨大的差异,这种巨大的差异导致了人们在试图理解微观粒子波粒二象性的本质原因时遇到了巨大的障碍,同时也阻碍了人们在思维中形成关于微观粒子存在状态的明晰的与宏观世界的物理经验相一致的有确切决定论描述的物理图景的形成。 关于微观粒子波粒二象性的解释方面,物理学家提出了多种学说。现在人们普遍接受了玻恩关于微观粒子波粒二象性的几率解释,玻恩认为物质波函数在空间某点处的振幅值的平方与粒子出现在该点处附近区域的几率的大小成正比。玻尔提出关于微观世界的“互补原理”,认为由于微观粒子的波粒二象性,只有同时使用波动图像和粒子图像这两组互相排斥、互相对立的经典物理学概念才能对微观粒子作出完整的描述。在一定条件下利用波动图像,在另外的条件下利用粒子图像,两种图像同样重要。 对于粒子的描述是互补的,海森伯提出量子力学中的测不准关系,它的物理意义是微观粒子不可能同时具有确定的位置和动量,测不准关系是对微观粒子波粒二象性的一种数学描述。然而,在对微观粒子波粒二象性的解释方面物理学家

应用光学各章知识点归纳

应用光学各章知识点归 纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 几何光学基本定律与成像概念 波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。 波前:某一瞬间波动所到达的位置。 光线的四个传播定律: 1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。 2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。 3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。 4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即n n I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。 光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。 各向同性介质:光学介质的光学性质不随方向而改变。 各向异性介质:单晶体(双折射现象) 马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 费马原理:光总是沿光程为极小,极大,或常量的路径传播。 全反射临界角:1 2arcsin n n C = 全反射条件: 1)光线从光密介质向光疏介质入射。 2)入射角大于临界角。 共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。 物点/像点:物/像光束的交点。 实物/实像点:实际光线的汇聚点。 虚物/虚像点:由光线延长线构成的成像点。 共轭:物经过光学系统后与像的对应关系。(A ,A ’的对称性) 完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。每一个物点都对应唯一的像点。 理想成像条件:物点和像点之间所有光线为等光程。

对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解 和认识 电子工程与信息科学系 黄金 PB11210054

从我们出生的那一刻起,光就伴随着我们。我们的生活离不开阳光,有了光,才有了我们色彩斑斓的生活。人们对光学最初的研究,也是从“人类为何能看到周围的物体开始”。经历了半个多学期的光学学习我对光又有了全新的认识。 大学以前,我们接触到的主要是几何光学,它让我们对光有了最初的认识。它让我们知道光是沿直线传播的,同时又引出了光的反射、折射等基本性质。费马定理更是让我们对光有了更为全面的认识。我们似乎觉得这好像就是光的全部。其实不然,大学又为我们开启了一扇全新的大门,让我们更进一步的认识光,了解光。 光的干涉衍射让我们知道了光是一种波。而对于光电效应和黑体辐射等问题的研究又让我们看到了光的电磁性!既能像波浪一样向前传播,又表现出粒子的特征,我们称光具有“波粒二象性”。 从光的波粒二象性的发现到发展经历了相当长的时间,也是一段无比辉煌的阶段。光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。17 世纪以前,人们对光的认识只停留在简单的几何光学的层面上,例如光的反射、折射等光的直线传播现象,这也是光学的初期发展。十七世纪初期,人们逐渐发现了与光的直线传播不完全符合的事实,意大利人格里马第率先观察到了光的衍射现象,接着1672-1675 年间胡克也观察到了光的衍射现象,并且和波意耳互相独立地研究了薄膜所产生的彩色干涉条纹,衍射现象,简而言之,就是光波遇到小障碍物或小孔时,绕过障碍物进入几何

阴影区继续传播,并在障碍物后的观察屏上呈现出光强的不均匀分布的现象。所有这些现象的发现都为光的波动理论的萌芽奠定了坚实的基础。17 世纪下半叶,英国物理学家牛顿以极大的兴趣和热情开始了对光学的研究。通过白光实验并根据光的直线传播的性质,他提出了光是微粒流的理论,然而他的这一理论因无法解释光在绕过障碍物之后所发生的衍射现象,遭到了以惠更斯为代表的波动学说的强烈反对。光的研究在18 世纪实际上并没有什么发展,由于牛顿在学术界的权威和盛名,大多数科学家仍在支持光的微粒学说,不过笛卡儿学派中瑞士的欧拉和法国的伯努利却捍卫并发展了光的波动理论。 人们探索的脚步永不停息。到了十九世纪,初步发展起来的波动光学的体系已经形成。杨氏(托马斯?杨)和菲涅耳的著作对光学的发展起到了决定性的作用,著名的“杨氏双缝干涉试验”还第一次成功地测定了光的波长,光学界沉闷的空气再次活跃起来。后来菲涅耳用杨氏干涉原理补充了惠更斯原理,形成人们所熟知的惠更斯--菲涅耳原理,1800年光的偏振现象的发现,更证明了光是横波的事实。1845年,法拉第发现光的振动面在强磁场中的旋转,从而揭示了光现象和电磁现象的内在联系,同时使人们认识到在研究光学现象的时候必须把光学现象同其他物理现象联系起来考虑。后来麦克斯韦在1865 年的理论研究中指出:光是一种电磁波。这一结论后来被赫兹用试验所证实。19 世纪末到20 世纪初,光的研究深入到光的发生,光和物质的相互作用的微观体系中,然而光的电磁理论却不能解释光和物质的相互作用的某些现象,例如黑体辐射中能量按波长的分布的问题;赫兹发现的光电效应等。

波粒二象性介绍

波粒二象性 波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種量子行為稱為波粒二象性(英语:wave-particle duality),是微观粒子的基本属性之一。[1]:105-106 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。這是量子力學的基要概念,是專門針對古典概念無法完整描述量子物體的物理行為而提出的假說。標準的量子力學詮釋將這佯謬解釋為宇宙的基礎性質,而其它種詮釋可能會有標新立異的論述。本條目主要採用的是學術界廣泛認可的哥本哈根詮釋來解釋量子行為。採用這種詮釋,波粒二象性是更廣義的互補性概念的一方面,即量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。[2]:242, 375-376 目录 1 理論概述 2 “波”和“粒子”的数学关系 3 历史 4 發展里程碑 4.1 惠更斯、牛顿 4.2 杨、费涅尔、麦克斯韦、赫茲 4.3 普朗克黑體輻射定律 4.4 爱因斯坦與光子 4.5 德布羅意與物質波 4.6 海森堡不確定性原理 5 大尺寸物體的波動行為 6 應用 7 參閱 8 註釋 9 參考文獻

理論概述 在古典力学裏,研究对象总是被明确区分为「纯」粒子和「纯」波动。前者组成了我们常说的「物质」,後者的典型例子則是光波。波粒二象性解决了这个「纯」粒子和「纯」波动的困扰。它提供了一个理论框架,使得任何物质有時能够表现出粒子性质,有時又能够表现出波動性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,它们能够像波一样互相干涉。同时,波函数也被解释为描述粒子出现在特定位置的机率幅。这样,粒子性和波动性就统一在同一个解释中。[註 1] 之所以在日常生活中观察不到物体的波动性,是因为他們皆质量太大,导致德布罗意波长比可观察的極限尺寸要小很多,因此可能发生波动性质的尺寸在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺寸局限於量子力学所描述的範圍之內,因而与我们所习惯的图景相差甚远。 “波”和“粒子”的数学关系 物质的粒子性由能量和动量刻画,波的特徵则由频率和波长表达,这两组物理量由普 朗克常数联系在一起: 历史 托马斯·杨做雙縫實驗得到的干涉圖樣。 在十九世纪後期,日臻成熟的原子论逐渐盛行,根据原子理论的看法,物质都是由微小的粒子——原子构成,例如,約瑟夫·汤姆孙的阴极射线实验证實,電流是由被称为电子的粒子所组成。在那時,物理學者認为大多数的物质是由粒子所组成。与此同时,波动论已经被相当深入地研究,包括干涉和衍射等现象。由於光波在楊氏雙縫實驗、夫琅禾费衍射實驗中所展现出的特性,明显地说明它是一种波动。 不过在二十世纪来临之时,这些观点面临了一些挑战。1905年,阿爾伯特·愛因斯坦對於光 电效应用光子的概念來解释,物理學者开始意识到光波具有波動和粒子的双重性质。1924年,路易·德布羅意提出“物质波”假说,他主張,「一切物质」都具有波粒二象性,即具有波動和粒子的双重性质。根据德布罗意假说,电子是應該会具有干涉和衍射等波动现象。1927年,

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

应用光学各章知识点归纳复习整理

第一章 几何光学基本定律与成像概念 波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。 波前:某一瞬间波动所到达的位置。 光线的四个传播定律: 1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。 2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。 3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。 4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即n n I I ''sin sin 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。 光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。 各向同性介质:光学介质的光学性质不随方向而改变。 各向异性介质:单晶体(双折射现象) 马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波

面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 费马原理:光总是沿光程为极小,极大,或常量的路径传播。 全反射临界角:1 2arcsin n n C 全反射条件: 1)光线从光密介质向光疏介质入射。 2)入射角大于临界角。 共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。 物点/像点:物/像光束的交点。 实物/实像点:实际光线的汇聚点。 虚物/虚像点:由光线延长线构成的成像点。 共轭:物经过光学系统后与像的对应关系。(A ,A ’的对称性) 完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。每一个物点都对应唯一的像点。 理想成像条件:物点和像点之间所有光线为等光程。

波粒二象性发展

<<从辩证唯物主义观点谈光的波粒二象性>> 高中物理课本中“光的波粒二象性”一节中作为对“光的本性”一章的概括性总结,寥寥五百多字将光的本性勾勒得淋漓尽致,不得不让人叹服做作者的物理造诣与文字功力。但要说服学生接受光既是一种波又是一种粒子无异于在说同一个人既是男人又是女人一样让人难以接受,笔者在从事物理教学过程中曾尝试在概括光的干涉、衍射及光电效应等主要内容的同时,用马克思辨证唯物主义的观点作进一步阐释,收效甚佳。下面将自己对于光的“波粒二象性”的辨证唯物主义分析的拙见罗列如下,供同行赐教。 一、微粒说和波动说的长期斗争 以牛顿为代表的微粒说认为光是微粒流,从光源发生,在均匀介质中遵守力学规律作匀速运动,对于光的反射则用弹性球的反跳来解释,对光的折射则用介质的吸引来阐释,另外牛顿还对光的色散、衍射等现象也作出解释,尽管有些十分牵强,尤其是对光的衍射、色散、干涉的解释。 惠更斯是波动说的代表。他从波阵面的观点出发,认为将光振动看作在一种特殊介质——“以太”中传播的弹性脉动,而“以太”这种介质则充满了宇宙的全部空间,这便是著名的“惠更斯原理”。在惠更斯原理中,他未提出波长的概念,因而对光的直线传播的解释十分勉强,而且无法解释偏振现象,对光的色散现象更是束手无策。 牛顿对经典力学的建立作出了空前绝后的贡献,这就很容易使人们用经典力学中机械论的观点去理解光的本性,而惠更斯的波动学说尽管对光的干涉、衍射的解释还比较完美,但其理论构架本身还很粗糙,在许多方面还不够完善,但由于牛顿在物理学界的泰斗地位因而在19世纪长达100多年的时间里,微粒说一直占有主导地位。 值得一提的是,牛顿并未从根本上否定微粒学说,他曾多次提到光可能是一种震动并与声音相类比,他说当光投射到一个物体上时,可能会引起物体中以太粒子的震动,就好象投入水中的石块在水面激起波纹一样,并设想可能正是由于这种波引起干涉现象。但总的来看,他仍对波动说持否定态度。 二、光的波粒二象性所包含的辩证唯物主义思想: 1、光的波动说与粒子说都是唯物主义的世界观: 无论是波动说还是粒子说,他们对光现象的认识都是建立在物质第一性的原则基础上的,牛顿也罢,惠更斯也罢,在对光的本性的认识上都未提出凌驾于客观存在以外的任何事物,都承认光的客观存在性,因而都是百分之百的唯物主义。在这一点上两者终于走到一起,可谓殊途同归。 2、“光的波粒二象性”建立的过程实际上是“辩证法”和“形而上学”在方法论领域的斗争结果:

我对波粒二象性的理解

我对波粒二象性的理解 基本介绍:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。 在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了人们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。 1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。 发展历史:人们认为大多数的物质是由粒子所组成。而与此同时,波被认为是物质的另一种存在方式。波动理论已经被相当深入地研究,包括干涉和衍射等现象。由于光在托马斯·杨的双缝干涉实验中,以及夫琅和费衍射中所展现的特性,明显地说明它是一种波动。 不过在二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。 这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来

描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。 早期理论:最早的综合光理论是由惠更斯所发展的,他提出减了一个光的波动理论,解释了光波如何形成波前,直线传播。该理论也能很好地解释折射现象。但是,该理论在另一些方面遇见了困难。因而它很快就被牛顿的粒子理论所超越。牛顿认为光是由微小粒子所组成,这样他能够很自然地解释反射现象。并且,他也能稍显麻烦地解释透镜的折射现象,以及通过三棱镜将阳光分解为彩虹。 由于牛顿无与伦比的学术地位,他的理论在一个多世纪内无人敢于挑战,而惠更斯的理论则渐渐为人淡忘。直到十九世纪初衍射现象被发现,光的波动理论才重新得到承认。而光的波动性与粒子性的争论从未平息。 效应方程:由于E=hv,这光照射到原子上,其中电子吸收一份能量,从而克服逸出功,逃出原子。电子所具有的动能Ek=hv-Wo,Wo为电子逃出原子所需的逸出功。这就是爱因斯坦的光电效应方程。 德布罗意假设:λ=h/p=h/mv (m:质量v:速度h:普朗克常数)这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。 德布罗意的方程三年后通过两个独立的电子散射实验被证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射

中北大学应用光学知识点汇总

第一章 几何光学基本定律 第一节 几何光学的基本概念 1、 研究光的意义: 90%信息由视觉获得,光波是视觉的载体 2、 光是什么?弹性粒子(牛顿)-弹性波(惠更斯)-电磁波(麦克斯韦)-波粒 二象性 1905年:爱因斯坦提出光子假设 3、 光的本质是电磁波 光的传播实际上是波动的传播 4、 物理光学:研究光的本性,并由此来研究各种光学现象(干涉、衍射等) 几何光学:研究光的传播规律和传播现象,把光当做光线。 5、 可见光:波长在400-760nm 范围 红外波段:波长比可见光长 紫外波段:波长比可见光短 6、 单色光:同一种波长 复色光:由不同波长的光波混合而成 7、 频率和光速,波长的关系 在透明介质中,波长和光速同时改变,频率不变 8、 实际被成像物体都是由无数发光点组成。包括线光源和面光源。 9、 在某一时刻,同一光源辐射场的位相相同的点构成的曲面。波面的法线即为几何 光学中所指的光线。 10、 同心光束:由一点发出或交于一点的光束;对应的波面为球面 第二节 几何光学的基本定律 1、光的直线传播定律:光在各项同性的均匀介质中沿着直线传播。两个条件:均匀 介质,无阻拦。 2、光的独立传播定律:以不同路径传播的两条光线同时在空间某点相遇时,彼此互 不影响,独立传播。相遇处的光强度只是简单的相加,总是增强的。(对不同发光点 的发出的光) 3、反射定律:入射光线、反射光线和投射点法线三者在同一平面内。入射角= —反 射角(光线转向法线,顺时针方向旋转形成的角度为正,反之为负。) 4、折射定律:入射光线、折射光线和投射点法线三者在同一平面内。入射角与折射 角的正弦之比(一定压力和温度条件下为定值)与入射角无关,而与两个介质的性质 有关。sinθ1 * n1 =sinθ2 * n2 5、相对折射率:一种介质对另一种介质的折射率 绝对折射率:介质对真空或空气的折射率 6、全反射:光从光密介质射入到光疏介质n1>n2,并且当入射角大于全反射角I 0时,在二种介 质的分界面上光全部返回到原介质中的现象。 7、 若在空气中 当入射角 时可以全反射传送 越大,可以进入光纤的光能就越多,也就是光纤能够 送的光能越多。 这意味着光信号越容易耦合入光纤。 第三节 费马(Fermat )原理 1、光在非均匀介质中的传播遵循的四费马原理,从“光程”的角度来阐述光的传播 规律的。光程:光在介质中传播的距离与该介质折射率的乘积。 2,1122121sin sin n n n v v I I ===v c n =120sin n n I = 0i a n 'n n 0'i 0 ' 2i -πS B A 220i arcsin(n n')=-0i i < 0i

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

光的波粒二象性

第二节光的波粒二象性 教学目标: 一、知识目标 1.了解事物的连续性与分立性是相对的; 2.了解光既具有波动性,又具有粒子性; 3.了解光是一种概率波。 二、能力目标 1.能自己举出实例理解连续性与分立性是相对的; 2.能通过日常和实验事例理解概率的意义; 3.能领会课本的实验意义。 三、德育目标 通过这节课的学习,领会实验是检验真理的唯一标准;体会我们唯有敢于打破旧的传统的经验才能有所创新、有所发现。 教学重点:1.光具有波粒二象性;2.光是一种概率波。 教学难点:1.概率概念;2.光波是概率波。 教学方法:在学生阅读课文及《康普顿效应》材料的基础上对分立性和连续性、概率、光波是概率波等问题展开课堂讨论,由学生回答课本提出的问题,最后由教师归纳,统一认识。 教学过程: 一、引言:干涉和衍射现象说明了光具有波动性。而光电效应现象又无可辩驳地证明了光具有粒子性,这使人们感到困惑,光的面目究竟是什么样的?我们好象很难在脑子里描绘出光既是粒子又是波的图景。所以这一节课我们将继续学习关于光是什么的课题光的波粒二象性。 二、布置学生阅读课本,同时思考课本中的“思考与讨论”及练习二的(1)、(2)、(3)。 三、课堂讨论: (一)、光的波粒二象性

1.光的波动性和粒子性的实验基础。 2.分立与连续是相对的 老师问:谁能仿照课本的例子举例说明分立性与连续性是相对的? 例子: a.在地上撒一把米,这些米看起来是分立的,如果直接倒 几筐米组成米堆时,测一堆米的体积可以认为它是连续的。 b.下雨天,一开始是雨点,是分立的,下大了以后,就变 成连续的了。 c.课本中的实验,当曝光量很少时,在胶片上是一个一个 的点,这时光看起来是分立的;曝光量多的时候就变成亮带了, 这时又是连续的。 引导学生回答出:当通过狭缝的光很少时,这时它们就像撒在地上的一把米,表现出粒子性;当曝光量很大时表现出连续性。 说明:当曝光量很大时出现的干涉亮条纹的地方和利用机械波的干涉公式计算的结果刚好又是相符的,正是某种波通过双缝后发生 干涉时振幅加强的区域。故说明光是一种波,具有波动性。 教师归纳:少量光子的行为表现为粒子性,大量光子的行为表现为波动性。 3.概率概念 教师:我们现在来讨论概率的意义,概率表征某一事物出现的可能性。 让我们来看看课本的思考题,你们能否举例说明有些事件个别出现时看不出什么规律,而大量出现时则显示出一定的规律性? 例子: 在热学中研究分子热运动的速率。温度升高时,不一定每一个分子运动的速率都增大,每个分子速率的变化没规律,但多数分子的速率在某一个值附近。随着温度的升高这一值会向速率大的方向移动。也就是说,个别分子的运动是完全无规律的,但对大量分子所做的统计分析却表现出一种规律概率规律。 教师引导回到课本上来:当曝光量很大时,实验就得到了丁图,那

相关主题
文本预览
相关文档 最新文档