当前位置:文档之家› 汽轮机调节保安系统

汽轮机调节保安系统

汽轮机调节保安系统
汽轮机调节保安系统

汽轮机调节保护系统

本章概要介绍汽轮机调节保护的任务、系统的基本组成和不同类型调节保护系统的特点,着重分析汽轮机调节系统动、静态特性对机组功率、转速的调节性能和安全、稳定运行的影响,以汽轮机调节保护系统的典型部件为例,介绍调节保护系统各环节的工作原理和静态特性计算。

第一节汽轮机调节保护系统的任务和系统组成

一、汽轮机调节保护系统的任务

汽轮机是发电厂的原动机,驱动同步发电机旋转产生电能,向电网输送符合数量和供电品质(电压与频率)要求的电力。由同步发电机的运行特性已知,发电机的端电压决定于无功功率,而无功功率决定于发电机的励磁;电网的频率(或称周波)决定于有功功率,即决定于原动机的驱动功率。因此,电网的电压调节归发电机的励磁系统,频率调节归汽轮机的功率控制系统。这样,机组并网运行时,根据转速偏差改变调节汽门的开度,调节汽轮机的进汽量及焓降,改变发电机的有功功率,满足外界电负荷的变化要求。由于汽轮机调节系统是以机组转速为调节对象,故习惯上将汽轮机调节系统称为调速系统。

汽轮机调节系统是根据电网的频率偏差自动调节功率输出的,故在供电的量与质的方面存在着矛盾;因为满足负荷数量要求后,并不能保持电网频率不变。目前,电网是通过一、二次调频实现供电的频率品质要求的。对短周期、小幅度的负荷变化由电网负荷频率特性产生频率偏差信号,网中的各台机组根据调节系统的特性分担这部分负荷变化,这一调节过程称为一次调频。对幅度变化较大而速度变化较慢的负荷,则由电网的自动频率控制(AFC)装置来分配调频机组的负荷,这一调节过程称为二次调频。

然而,纯粹的调速系统是难以满足优良的供电品质要求的。因为在机组运行中,即使汽轮机的调节汽门开度保持不变,锅炉燃料品质不一致也会引起燃烧工况波动,导致汽轮机的进汽参数和功率输出改变,进而使电网频率发生变化,供电品质下降。这种由机组内部因素造成机组有功功率及电网频率波动的扰动称之为"内扰"。为抵御机组"内扰"的影响,在汽轮机调节系统中还必须引入功率控制信号,在发生"内扰"时,使机组的功率输出维持在外界要求的水平上。这种既调节转速,又调节功率的调节系统称之为功(率)频(率)调节系统。

汽轮机是高温、高压、大功率高速旋转机械,转子的惯性相对于汽轮机的驱动力矩很小。机组运行中一旦突然从电网中解列甩去全部电负荷,汽轮机巨大的驱动力矩作用在转子上,使转速快速飞升。如不及时、快速、可靠地切除汽轮机的蒸汽供给,就会使转速超过安全许可的极限转速,酿成毁机恶性事故。此外,机组运行中还存在低真空、低润滑油压、振动大、差胀大等危及机组安全的故障。因此,为保障汽轮机各种事故工况下的安全,除要求调节系统快速响应和动作外,还设置保护系统,并在调节汽门前设置主汽门。在事故危急工况下,保护系统快速动作,使主汽门和调节汽门同时快速关闭,可靠地切断汽轮机的蒸汽供给,使机组快速停机。汽轮机调节保护系统的原理性结构如图6-1所示。

图6-1汽轮机调节保护系统原理性框图

综合上述,汽轮机调节保护系统的任务是:正常运行时,通过改变汽轮机的进汽量,使汽轮机的功率输出满足外界的负荷要求,且使调节后的转速偏差在允许的范围内;在危急事故工况下,快速关闭调节汽门或主汽门,使机组维持空转或快速停机。

二、中间再热汽轮机调节保护系统的特点

再热器的蒸汽管、传热管及联箱等是个很大的蒸汽容积空间,其间贮存的蒸汽量决定于再热器蒸汽的温度和压力。由第三章已知,在非设计工况下,中、低压缸的功率与再热器的蒸汽压力呈一定的比例关系,这样对应于不同的机组功率,贮存于再热器中的蒸汽量是不等的。在机组功率变化过程中,因再热器内蒸汽压力变化导致贮汽量的改变,产生的蒸汽吸蓄或泄放效应,使中低压缸的功率变化滞后于高压缸。如图6-2(a)所示,在机组功率增大时,增大高压缸的进汽量,高压缸的功率输出近似于阶跃增大,并且因再热器的压力较低,高压缸的功率还有一定的过增量。同时,高压缸的排汽进入再热器内时,部分增大的蒸汽量滞留在再热器中,以提升再热器的蒸汽压力,使中低压缸的功率缓慢增大。只有当再热器的蒸汽压力达到新工况稳定状态时,才能使高压缸的排汽量与中压缸的进汽量相等。相反,在机组功率下降时,高压缸进汽量减少,使再热器蒸汽压力下降,再热器泄放出部分贮汽,使得中压缸的进汽量大于高压缸。

再热器的时滞效应降低了机组快速响应外界负荷变化的一次调频能力,因为中、低压缸的功率约占整机功率的70%。图6-2(a)中阴影部分表示了负荷调节过渡过程中机组功率不能满足外界要求的大小,在甩负荷危急工况下,再热器中贮存的大量蒸汽,如在中低压缸中继续膨胀作功,可使机组的飞升转速达额定转速的40%,严重危及着机组的运行安全。

中间再热机组为单元制机组,锅炉的蓄热相对减少,特别是直流锅炉。传统的锅炉跟随汽轮机的运行方式,利用锅炉金属蓄热释放满足汽轮机的流量要求,势必引起锅炉运行参数的较大波动,严重时造成参数超限,危及机、炉的安全。再热器通常布置于锅炉的高温烟道区,在机组启、停过程中必须有足够的蒸汽来冷却再热器,防止再热器传热管烧损。但在机组启动过程中,再热器的冷却蒸汽量和锅炉低负荷稳燃的产汽量远大于汽轮机的空载流量,因此机组的升速、带负荷与再热器的冷却间有很大矛盾。

图6-2再热器的时滞效应与高压缸过调

为增强中间再热机组的一次调频能力,保护事故工况下机组的安全,提高机组启、停操作的灵活性和安全可靠性,在中间再热汽轮机调节系统中,设置动态校正器。在机组功率增大或减小时,通过高压调节汽门的过开或过关,由高压缸功率的过增或过减补偿再热器产生的时滞效应,使机组功率与外界要求保持一致。在中压缸进口处,设置中压主汽门和中压调节汽门,在危急事故工况下,快速切断中压缸的进汽,避免再热器蒸汽进入中低压缸造成机组转速恶性飞升。另一方面,在机组启、停过程中,由中压调节汽门控制再热汽温,使中压缸的进汽与中压缸转子及汽缸的热状态得到良好的匹配。为减小中压调节汽门产生的节流损失,中压调节汽门通常在机组负荷大于30%时保持全开。

图6-3汽轮机、锅炉协调控制

为使中间再热机组在负荷变化时,既能利用锅炉金属的蓄热满足快速响应外界电负荷的要求,又能通过改变调节汽门的开度使主蒸汽压力的波动在允许的范围之内,从而要求机炉采用协调控制方式。机炉协调控制的流程图如图6-3所示。

为改善中间再热机组的启动特性,加快机组的启动速度,回收启动过程中的工质和热量,以及在机组甩负荷工况下保护锅炉的安全,在中间再热汽轮机的蒸汽系统中设有高、低压旁路系统和大旁路系统。高压旁路系统是将来自锅炉过热器的新蒸汽通过减温、减压器排至冷再热器蒸汽管,低压旁路系统是将再热新蒸汽经减温、减压器排至凝汽器,大旁路系统则是将新蒸汽经减温、减压器直接排至凝汽器。在机组启、停过程中,通过操作高、低压旁路调节阀和中压调节汽门,控制再热蒸汽温度和再热器的冷却。在甩负荷工况下,由旁路系统控制锅炉过热器及再热器的压力,避免锅炉安全阀动作,使机组故障排除后尽快恢复运行。中间再热汽的旁路系统及高、中压主汽门与调节汽门的布置如图6-4所示。

图6-4中间再热机组的旁路系统及主汽门、调节汽门布置

三、汽轮机调节系统的基本组成和种类

汽轮机调节系统的原理性构成如图6-5所示。转速感受机构是将转子的转速信号转变成一次控制信号;中间放大器对一次控制信号作功率放大,并按调节目标作控制运算,产生油动机的控制信号;油动机是一种液压位置伺服马达,按中间放大器的控制信号产生带动配汽机构动作的驱动力,并达到预定的开度位置;配汽机构是将油动机的行程转变为各调节汽门的开度,通过配汽机构的非线性传递特性,汽轮机的进汽量与油动机行程间校正到近似线性关系;同步器作用于中间放大器,产生控制油动机行程的控制信号,单机运行时改变汽轮机的转速,并网运行时改变机组的功率;启动装置在机组启动时用于冲转、并提升转速至同步器动作转速。

图6-5汽轮机调节保护系统原理性框图

由于汽轮机的蒸汽压力很高,开启主汽门和调节汽门需要很大的驱动力。为满足电网一次调频要求,必须要求调节汽门的驱动机构有较好的响应灵敏性和较快的响应速度。特别是在机组甩负荷等危急工况下,要求主汽门和调节汽门能在极短的时间内全行程关闭。因此,对汽轮机调节汽门和主汽门的驱动机构提出惯性小、驱动功率大的特殊要求。目前,电磁驱动机构尚不能满足这一特殊要求,故汽轮机调节保护系统总是以油动机(即液压伺服马达)为调节汽门和主汽门的执行机构。

汽轮机的调节保护系统根据其转速感受机构及中间放大器的结构不同,可分为机械液压调节、模拟电液调节和数字电液调节三种型式。

图6-6原型性机械液压调节系统

1.机械液压调节系统

机械液压调节系统是由杠杆、曲柄等机械机构作信号放大和液压流量控制阀作功率放大,其原理性系统如图6-6所示。飞锤感受转速的变化,并转变为滑环的位移;断流式错油门控制油动机活塞腔室的进、排油,当错油门滑阀偏离居中位置时,分别开启油动机活塞上、下腔室的进、排油口,使油动机活塞带动调节汽门开启或关闭;在油动机活塞移动时,又带动杠杆运动,使错油门滑阀向着居中位置移动。当油动机活塞的位移复现调速器滑环位移的变化规律时,错油门滑阀回到居中位置,调节过程结束。随着机组容量的增大,开启调节汽门驱动力要求的提高,特别是中间再热机组高压调节汽门动态校正要求的提出,机械液压调节的机械结构和液压控制回路变得十分复杂。机械传动机构旷动间隙的存在,液压控制部件易受油液污染的影响,使调节品质和运行稳定、可靠性不很理想。因机组的功率信号无法由机械或液压机构来感受,故机械液压调节系统仅能起到调速系统的作用。另一方面,配汽机构采用较为固定的机械机构,无法实现喷嘴、节流等多种运行方式的灵活切换。

2.模拟电液调节系统

模拟电液调节系统是基于模拟电路的连续控制调节系统,它将电子技术与液压控制技术有机地结合在一起,综合了电子元件检测灵敏、精度高、线性好、迟缓小、传输速度快、调整方便、能实现复杂调节规律,以及液压元件驱动功率大、惯性小的优点。检测、运算采用电子元件,执行机构为液压部件,两者中介的核心部件是电液伺服阀(俗称电液转换器)。汽轮机的转速和功率经传感器或变送器

转变为电信号,经电子线路放大、运算,产生油动机行程的控制信号,输到PID(比例、积分和微分)凋节回路,然后经模拟电路功率放大作用于电液转换器,产生控制油动机行程的液压信号,经中间放大后使油动机按调节指令动作。模拟电液调节系统原理性框图如图6-7所示,系统中设有转速调节回路、功率调节回路和功-频调节回路,在机组单机运行时控制转速;并网非调频工况时调节机组功率;并网调频运行时实现功-频调节,克服"内扰"和再热器中间容积时滞效应的影响。功率设定可远方遥控设置,便于电网自动发电控制(AGC)。蒸汽压力输入可实现机炉协调控制。模拟电液调节系统的控制功能和调节品质较机械液压调节系统有了很大的提高,改善了调节系统的甩负荷动态特性,增强了机组运行的安全性。

图6-7汽轮机模拟电液调节系统框图

3.数字电液控制系统

数字电液控制系统(Digital Electro-Hydraulic Control System,简称DEH)是以计算机替代模拟电液调节系统中控制运算的模拟电路,发挥计算机控制运算、逻辑判断与处理能力强及软件组态灵活、方便的优势,将汽轮机运行的状态监测、顺序控制、调节和保护融为一体。特别是液压系统采用高压抗燃油(三芳基磷酸脂)后,简化了液压控制回路,提高了油动机的推动力。调节汽门由各自油动机驱动,可使机组实现喷嘴、节流等多种运行方式灵活切换,增强了机组运行控制的灵活性。由于数字电液调节系统的硬件采用模块化结构,系统扩展灵活,维修调试方便,冗余控制、多层保护和自检、自诊断功能使调节品质、运行可靠性和机组的安全性均较模拟电液调节系统有了很大提高。数字电液控制系统是由电子控制器、操作系统、执行机构、保护系统和供油系统组成,它实现的主要功能是:

(1)汽轮机自动程序控制(ATC)。通过监测高、中压汽缸温度和蒸汽温度,计算出转子热应力。在汽轮机允许的应力范围内,以最大的速率、最短的时间实现机组由盘车、冲转、升速、并网到带负荷的全自动程序化操作。

(2)汽轮机功率的自动调节。汽轮机功率的自动调节设有操作员自动、远方控制和电厂计算机控制三种模式。根据电网的要求,可选择调频运行方式或基本负荷运行方式。在机组冷、热态启动中,能自动地根据启动状态控制调节汽门的开度。

(3)汽轮机的自动保护。设有三层超速保护,即超速保护控制(OPC)、危急遮断控制(ETS)和机械超速保护与手动遮断脱扣。超速保护控制是当机组转速超过103%n0时,OPC电磁阀动作,快速关闭高、中压调节汽门;ETS是当机组转速达到110%n0时,自动停机遮断(AST)电磁阀动作,快速关闭主汽门和调节汽门。此外,当出现低润滑油压、推力轴承磨损、低真空、高压排汽温度高等危急事故时,ETS通过AST电磁阀使机组快速停机;机械超速保护是当机组转速升高至112%n

时动作,关闭主汽门和调节汽门。

(4)机组和DEH系统状态监测。监视和显示机组及DEH系统的重要参数、运行曲线、历史趋势和故障,以及指示操作按钮的状态。

第二节汽轮机调节系统的静态特性

一、四方图

由前已知,汽轮机调节系统是由转速感受机构、中间放大器和配汽机构三大环节组成。这三个环节的传递特性便决定了汽轮机的转速与调节汽门的开度,在额定参数工况下也就决定了机组的功率。我们将额定参数工况下汽轮机的功率与转速之间的对应关系称为调节系统的静态特性。

为描述汽轮机调节系统各环节的放大传递特性和静态特性,在调节系统静态特性分析中用特殊的四象限图----四方图来表示,其中第Ⅱ象限表示转速感受机构特性,第III象限表示中间放大环节的传递特性,第Ⅳ象限表示配汽机构特性,第I象限则为调节系统的静态特性。

这里以图6-6所示的机械液压调节系统为例,说明调节系统静态特性曲线的绘制和分析影响静态特性的因素。

在机组额定转速n0=3000r/min附近,当转速n升高时,调速器滑环在飞锤离心力的作用下上移Δz,反之亦然。转速n与滑环位移Δz间的一一对应关系即为转速感受机构特性,其特性曲线如图6-8中第Ⅱ象限所示。

图6-8汽轮机调节系统的四方图

在稳定工况下,错油门滑阀处于居中位置,油动机活塞的行程Δm与调速器滑环位移Δz间的关系决定于杠杆的传动比,滑环的位移Δz愈大,油动机活塞所带动的调节汽门的开度就愈小,中间放大环节的传递特性曲线如图6-8中第Ⅲ象限所示。

油动机活塞的行程Δm通过配汽机构决定了调节汽门的开度,在额定参数工况下,也就决定了汽轮机的进汽量,亦即决定了汽轮机的功率P。随着油动机活塞行程Δm的增大,调节汽门的开度增加,汽轮机的功率随之提高。油动机活塞行程Δm与机组功率P间的关系即为配汽机构特性,其特性曲线如图6-8中第Ⅳ象限所示。

有了转速感受特性、中间放大传递特性和配汽机构特性三条曲线,便可唯一地确定出第I象限中调节系统的静态特性曲线。对某一功率Pi,由配汽机构特性曲线得到对应的油动机活塞的行程Δm i;由中间放大环节的传递特性曲线得到对应于Δm i的调节器滑环位移Δzi,再由转速感受特性曲线求得对应于Δz i 的转速n i。P i与n i在第I象限的交点即为调节系统静态特性曲线上的状态点。对所有的汽轮机功率P,同样地可求得对应的转速n和第I象限的状态点,所有的状态点便连成调节系统的静态特性线,从而得到描述调节系统静态特性的四方图。

二、速度变动率

由图6-8的汽轮机调节系统静态特性曲线可知,对应于汽轮机不同的功率,机组的转速是不同的,静态特性曲线的斜率表明了这种差异。我们定义:汽轮机空负荷时所对应的最大转速nmax与额定负荷时所对应的最小转速nmin之差,与

额定转速n0的比,称为调节系统的速度变动率或速度不等率,通常用Δ表示,即

(6-1)

速度变动率表示了单位转速变化所引起的汽轮机功率的增(减)量。在机组并网运行时,各机组感受电网频率的变化是相同的,但调节系统速度变动率的不同,使各机组功率的改变量不同。如果电网频率与偏离额定频率的偏离量为Δn,那么由调节系统静态特性曲线和速度变动率的定义可求得机组功率改变的相对量

(6-2) 式中:P0为机组的额定功率。上式表明,速度变动率愈大,单位转速变化所引起

的功率变化就愈小。因此,速度变动率的大小,对机组安全、稳定运行和参与电网一次调频有着重要影响。

速度变动率愈小,即静态特性曲线愈平坦,则转速变化很小就会引起汽轮机较大的功率变化,使汽轮机的进汽量和蒸汽参数变化较大,机组内各部件的受力、温度应力等都变化很大,将造成寿命损耗,甚至造成部件损坏。Δ=0的极限情况下,只要电网频率稍有改变,机组的负荷就由额定负荷变为空负荷,或由空负荷变为额定负荷,机组负荷产生严重晃动而无法运行。因此,调节系统的速度变动率一般不得小于3.0%。但是,速度变动率也不宜太大,因为过大的速度变动率,一方面使机组参与电网一次调频能力下降;另一方面使调节系统甩负荷后的稳定转速过高,稍有不慎,有可能使甩负荷后最高飞升转速超过危急保安器的动作转速,不利于机组安全和甩负荷后重新并网带负荷。所以,调节系统的速度变动率一般不要超过6.0%。

综上所述,汽轮机调节系统的速度变动率,应根据机组在电网中所处的地位和安全性方面的要求来确定。对一次调频要求较高的带尖峰负荷机组,速度变动率应取小些,如Δ=3.0%~4.0%;对带基本负荷的机组,速度变动率则应取大些,如Δ=4.0%-6.0%。一般地,速度变动率通常设为Δ=5.0%。对调节系统动态特性稍差的机组,速度变动率应取小些。在实际调节系统中,转速感受及中间放大传递特性存在着一定非线性。特别是配汽机构,调节汽门的开度与通流量存在着严重的非线性。虽然经配汽机构校正,但第Ⅳ象限的特性曲线仍有一定的非线性,因而调节系统的静态特性曲线并非是直线,即静态特性曲线上各处的速度变动率并不相同。我们将由式(6-1)定义的速度变动率称为整(总)体速率变动率,而将下式定义的速度变动率称为局部速度变动率:

(6-3)

事实上,我们也不应该要求调节系统静态特性线为直线。在机组空负荷附近,为便于机组并网操作,要求速度变动率大些,容易控制机组并网前的转速。另外,在机组带初负荷后应有一定的暖机时间,以免刚带负荷后机组加热太快产生过大的热应力和胀差。为防止电网频率变化对机组带初负荷暖机的影响,通常在机组0~10%负荷范围内,对其最大局部速度变动率不作限制。

图6-9汽轮机调节系统速度变化率分布

相反地,在机组满负荷附近,过小的速度变动率在电网频率降低时容易使机组过载,危及机组的运行安全。所以,在机组满负荷处的速度变动率也应取得大些。一般在90%~100%负荷范围内,最大局部速度变动率不大于整体速度变动率的3倍。

因此,调节系统速度变动率在满足整体设计要求条件下,其分布应当是两端大、中间小且无拐点平滑变化,如图6-9所示,但中间段的最小局部速度变动率不得小于整体速度变化率的40%。

由调节系统四方图可知,影响速度变动率分布的因素是转速感受、中间传递和配汽机构三大环节,其中配汽机构特性是影响速度变动率中间段分布的主要因素。因为不恰当的调节汽门开启重迭度有可能使调节系统静态特性线出现拐点。改变调节系统的速度变动率,工程上以改变中间传递特性曲线的斜率为主。第Ⅲ象限特性线愈陡,亦即斜率的绝对值愈大,则对应于一次控制信号的范围及速度变动率就愈小。

三、迟缓率

在汽轮机调节系统中,相对运动部件间不可避免地存在动、静摩擦,机械传动机构中存在着旷动间隙,滑阀存在一定的盖度,这些非线性因素的存在,使转速感受特性和传递特性发生畸变,最终表现在静态特性曲线上,使之偏离理想工况。对图6-6所示的调节系统,在转速升高时为使调速器滑环移动,飞锤离心力增量的一部分必须首先克服滑环移动的静摩擦力,方能使杠杆转动。而杠杆的转动量必须大于旷动间隙和错油门滑阀的盖度,方能开启油动机活塞腔室的进、排油口使活塞运动,关小调节汽门、减小机组功率。很明显,机组功率的减小量小于由式(6-2)得的理想值。相反地,在电网频率降低时,这些非线性因素的作用,使机组功率的增加量小于式(6-2)得的理想值。这种机组增负荷和减负荷特性曲线不重合的现象称为迟缓。迟缓在四方图上的表示如图6-10所示。

图6-10调节系统迟缓在四方图上的表示

我们定义:在调节系统增、减负荷特性曲线上,相同功率处转速偏差

Δn=n1-n2与额定转速n0的比为调节系统的迟缓率,通常用ε表示,即

(6-4)

迟缓率对调节系统的控制精度和机组的稳定运行产生不良影响。在汽轮机单机运行时,机组的功率决定于外界的电负荷。在某一稳定负荷下,迟缓率的存在将会使机组的转速在Δn=εn0范围内漂移,引起机组转速波动,如图6-11(a)所

示。如果迟缓率为ε=0.5%,则对应的转速波动的幅度为Δn=15r/min,相当于供电频率有0.25Hz的波动。

在多台机组并列运行时,机组的转速决定于电网的频率,当电网的频率一定时,迟缓率存在将会引起机组功率晃动,如图6-11(b)所示。由速度变动率和迟缓率的定义可知,功率晃动的幅度为,ΔP=ε/Δ/P0。迟缓率ε愈大、速度变动率Δ愈小,功率晃动的幅度就愈大。所以,为提高调节系统的控制精度和运行稳定性,要求迟缓率ε尽可能小。由于迟缓率难以避免,故希望速度变动率不宜过小。

图6-11调节系统迟缓对汽轮机运行的影响

由于机械液压调节系统的机械传动和液压放大环节较多,故迟缓率相对较大,但通常要求机械液压调节系统的迟缓率小于0.6%。电液调节系统,特别是采用高压抗燃油的数字电液调节系统,液压控制回路很为简单;减少了产生迟缓的中间环节,故迟缓率较小,一般要求电液调节系统的迟缓率小于0.2%。

四、同步器与静态特性曲线平移

(一)同步器的作用

由调节系统的静态特性已知,机组在不同功率下所对应的转速是不等的。汽轮机在额定转速n0下单机运行时,当机组的功率由P11增加到p2时,一次调频的结果使汽轮机的转速由n0降低到n2,如图6-12所示。很明显,调节系统仅有一次调频功能是不能满足优良供电品质要求的。只有当外界电负荷增大到p2后,若能使静态特性曲线向上平移到C点,那么在机组功率增大后又能保证机组的转速仍为额定转速,即供电频率维持在额定值。因此,在单机运行时要求有一个能平移静态特性线的装置。

在汽轮机并列运行时,若电网的频率基本不变,则机组所承担的负荷也就基本不变。因此,在机组并网带负荷时,也应有一能平移静态特性线的装置,在并

列运行的机组间进行负荷的重新分配。这种能平移调节系统静态特性线的装置称为同步器,其主要作用是:

(1)单机运行时,启动过程中提升机组转速到达额定值,带负荷运行时可以保证机组在任何稳态负荷下转速维持在额定值;

(2)并列运行时,在各机组间进行负荷重新分配,承担电网二次调频任务,保持电网频率基本不变。

图6-12单机运行时同步器的作用

由此可见,在同步器平移静态特性线后,在调节系统四方图的第I象限是一簇相互平行的曲线。平移调节系统的静态特性线,可以通过平移转速感受特性线,即将第Ⅱ象限中的转速感受特性线上、下平移,如图6-13(a)所示。也可平移中间放大传递特性线来实现,即将第Ⅲ象限中的传递特性线左右平移,如图6-13(b)所示。前者称为第一类同步器,后者称为第二类同步器。目前,实际使用中以第二类同步器为主。

图6-13同步器平移静态特性线

(a)第一类同步器;(b)第二类同步器

根据同步器提升转速和调节机组负荷的作用,同步器平移静态特性线的调节范围,除满足正常蒸汽参数和额定转速工况要求外,还应充分考虑蒸汽参数、真空和电网频率等实际运行因素的影响,为这些因素变化预留足够的调节范围。

(1)同步器最小调节范围。为使机组的正常蒸汽参数、额定转速时能带满负荷,并能通过操作同步器卸去全部负荷,同步器的最小调节范围至少为Δ,即图6-14中AA-BB所示范围。

(2)静态特性线的下限位置。下限工作位置的设置应考虑电网频率降低、蒸汽参数升高及真空上升等运行因素,并为机组并网前操作留有一定操作空间。当电网频率低于额定值时,若仍能使机组维持空负荷运行,则应能将静态特性线下移至图6-14中CC位置,方可进行并网带负荷操作,以及机组并列运行时用同步器卸去全部负荷维持空转运行。

图6-14同步器的调节范围

当新蒸汽参数升高或真空上升时,在同一调节汽门开度或油动机活塞行程Δm下,汽轮机的进汽量和理想比焓降增大,机组功率上升,相当于配汽机构特性线向右上方平移,对应于此工况的空转调节汽门开度就要减小。如果此工况与电网频率降低同时发生,静态特性曲线在CC位置处是不能维持空转运行的。因此,静态特性线还应下移至图6-14中DD位置。此外,还应为机组并网前的操作留有足够的空间,在图6-14中DD线下还应有一定的调节空间。综合考虑这些情况后,同步器调节的下限位置通常设在为额定转速下-5.0%处。

(3)静态特性线的上限位置。上限位置的设定主要考虑电网频率升高和新蒸汽参数降低、真空恶化工况。在电网频率升高时,为能使机组卸去全部负荷并维持空转运行,静态特性曲线必须平移至图6-14中的EE位置。在低新蒸汽参数、低真空工况下,配汽机构特性线向左下方平移,为使机组在此种工况下电网频率升高时仍能带满负荷运行,静态特伯线必须能上移至图6-14中的FF位置。通常要求同步器调节的上限位置不小于[Δ+(1~2)%]。对于一般机组,速度变动率取为5.0%,则同步器调节的上限位置取为7.0%。

第三节汽轮机调节系统的动态特性

图6-15甩负荷后转速过渡过程

一、动态特性基本概念

汽轮机调节系统是由多个环节组成的复杂闭环系统,部件运动惯性、油流流动阻力和蒸汽中间容积等的存在,使得调节系统由一个稳定工况到另一稳定工况时经历着复杂的过渡过程。图6-15是汽轮机调节系统甩负荷工况下较为典型的转速动态响应的过渡过程曲线。其中,a为无振荡的过渡过程,b为小幅振荡快速衰减的过渡过程,c为大幅振荡慢衰减过渡过程。在调节系统各环节的参数选取不当,也有可能产生持续振荡而无法正常工作。为使机组满足优良供电品质、参与电网一次调频的要求,调节系统应灵敏、快速地响应各种扰动,并平稳地进行调节。为保障机组甩负荷工况下的安全,必须要求调节系统能快速地全行程动作。因此,对汽轮机调节系统的动态特性必须提出稳定性要好、过渡过程中超调量要小、振荡次数要少及过渡过程调整时间要短的要求。汽轮机调节系统的动态特性分析是项相当复杂的工作,通常按图6-16所示的各环节建立数学模型,如传递函数等,借助于Mathl A b或Simulink等控制系统计算机辅助设计软件进行分析。这里简要地介绍调节系统动态特性的一些基本概念,并讨论影响调节系统动态特性的主要因素。

图6-16汽轮机调节系统动态特性方框图

1.稳定性

汽轮机运行中,当受到扰动激励离开原来的稳定工况后,能很快地过渡到新的稳定工况,或扰动消失后能回复到原来的稳定工况,这样的调节系统是稳定的。调节系统稳定性的判别,可由系统的传递函数按自动控制理论中系统稳定性的判据来分析、计算。对于实际的调节系统,除满足稳定性基本要求外,还应留有一定的稳定性裕度。

2.动态超调量

对于汽轮机调节系统,甩负荷过程中被调量转速的动态超调量σ可表示为

(6-5)

式中:φ

max 为最大飞升转速的相对量,即φ

max

=(n

max

-n0)/n0。为在机组甩负荷工况下,转子的转速飞升不致使超速保安器动作,甩负荷

后的最高飞升转速应低于超速保安器整定的动作转速。

3.静态偏差值

汽轮机单机运行时,负荷改变将引起机组转速变化。在机组额定功率下从电网中解列、甩去全部负荷后,转速的静态偏差值就是甩负荷后的稳定转速与额定转速的差,即φ(∞)=Δ。由调节系统的静态特性可知,机组甩负荷的数量不同,静态偏差值是不等的。

4.过渡过程调整时间τ

汽轮机监视仪表(TSI)与保护系统(ETS)调试方案

XXXXXXXXXX公司热能中心节能降耗 技改工程 汽轮机监视系统及汽轮机保护系统调试案编写: 审查: 审批: XXXXX技术服务有限公司

2011年9月 目录 1 设备系统概述 (1) 2 编制依据 (1) 3 调试目的及围 (2) 4 调试前具备的条件 (3) 5 调试法及步骤 (5) 6调试的控制要点及安全注意事项 (8) 7 调试质量验收标准 (8) 8 调试组织与分工 (8) 9调试仪器............................................................................. 错误!未定义书签。10附录.................................................................................. 错误!未定义书签。

1设备系统概述 1.1系统简介: 汽轮机监视仪表系统(TSI)由市厚德自动化仪表公司供货。TSI装置采用HZD8500D监控保护系统,8500D 旋转机械保护系统系统机箱左下四个槽位依次为系统电源2 个和8 位继电器模块2 个,其它槽位可安装功能模块,16 位继电器模块建议靠右放。系统采用双路冗余式电源,通讯控制模块采用32 位嵌入式处理器、7 英寸触摸显示屏,其运行速度快、工作可靠,采用图形用户界面,操作简单、友好便。 ETS即汽轮机危急遮断系统,它接受来自TSI系统或汽轮发电机组其它系统来的报警或停机信号,进行逻辑处理,输出报警信号或汽轮机遮断信号。为了使用便运行可靠,采用DEH 一体化进行逻辑处理。该装置能与DEH系统融为一体,满足电厂自动化需求。 1.2系统功能简介: 汽机TSI主要监视参数有:轴向位移、偏心、键相、轴振、缸胀等。机组TSI输出的跳闸信号送入ETS中,报警信号和模拟量信号送入DCS、DEH(505控制器)。 ETS系统的相关设备主要包括保护柜,信号采样元件等。ETS逻辑还具有首出记忆功能,汽机保护紧急跳闸功能。 2编制依据 a) 《防止电力生产事故的二十五项重点要求》国能安全[2014]161号。 b) 《电力建设施工技术规第4部分:热工仪表及控制装置》DL 5190.4—2012 c) 《电力建设施工质量验收及评价规程第4部分:热工仪表及控制装置》DL/T 5210.4—2009。 d) 《火力发电建设工程机组调试质量验收及评价规程》DL/T 5295—2013。 e) 《火力发电建设工程启动试运及验收规程》DL/T 5437—2009。 f) 《火力发电厂分散控制系统验收测试规程》DL/T 659—2006。 g) 《火力发电厂热工自动化系统检修运行维护规程》DL/T 774—2015。 h) 《火力发电厂汽轮机监视和保护系统验收测试规程》DL/T 1012—2006。 i) 设计单位提供的有关I/O清册、汽轮机生产厂家提供TSI、ETS设计说明书、机柜接线图等技术资料。

汽轮机危急保安系统系统简介

汽轮机危急保安系统系统简介 郭春晖 AST电磁阀的动作原理 在机组正常运行时,四只AST电磁阀是被通电关闭的,从而封闭了自动停机危急遮断(AST)母管上的EH油泄油通道,使所有蒸汽阀执行机构活塞下腔的油压能够建立起来。当电磁阀失电打开,则母管泄油,导致所有汽阀关闭而使汽轮机停机。AST电磁阀是串并联布置的,这样就有多重的保护性。每个通道中至少须一只电磁阀打开,才可导致停机。同时也提高了可靠性,四只AST电磁阀中任意一只损坏或误动作均不会引起停机。 下图是油路示意图,和我厂EH油系统图内AST电磁阀部分基本一致,为表述清楚,油路用不同颜色表示,红色油路是AST 母管,也称之为危急遮断油总管,绿色油路是有压回油母管,黄色油路是EH油供油母管,蓝色油路是OPC母管,也称之为超速跳闸母管,细心的读者可能会发现,我厂EH油系统图内的EH油供油母管是经过节流孔进入各AST电磁阀的,彩图来源于网络,黄色油管路并没有画出应有的节流孔,实际上是存在的。经节流孔来的EH高压抗燃油建立后,进入活塞室,克服弹簧的拉力而使活塞右移,堵住AST至回油的泄油阀,此时,位于左侧的AST 电磁阀电源带电关闭至回油的泄油孔,AST油压正常建立。而一旦AST电磁阀动作,使EH高压油回至油箱,活塞在弹簧的作用下向左移动,遮断油与回油接通、泄去这只AST阀的安全油。

电磁阀油路示意图 简化示意图

我厂EH油系统图 如图所示: AST1电磁阀与AST3电磁阀并联组成I通道,AST2电磁阀与AST4电磁阀并联组成II通道。任意一个通道之中的一个电磁阀

动作或两个全部动作,由于节流孔板的作用不会使AST母管的压力卸掉。两个通道中任意一个电磁阀或两个电磁阀同时动作,都会导致AST母管失压,汽轮机跳闸。 ASP油压的作用 ASP油压用于在线试验AST电磁阀。ASP油压由AST油压通过前置节流孔产生,再通过后置节流孔到无压回油。ASP油压从理论上来说是AST油压的一半。我公司ASP油压高报警值是 9.6Mpa,低报警值是4.8Mpa。当AST电磁阀1或3动作时,ASP 压力升高,ASP1压力开关动作;当AST电磁阀2或4动作时,ASP压力降低,ASP2压力开关动作。如果AST电磁阀没有动作时,ASP1或2压力开关动作,或AST电磁阀复位后压力开关不复位,就存在ASP油压报警。 两个节流孔板的作用是做试验的时候保持AST母管的压力。由于节流孔板的存在,ASP油压小于AST1与AST3电磁阀前的AST 母管压力,但大于AST2与AST4电磁阀后的无压回油管压力,当AST1或AST3电磁阀做试验的时候打开,高压开关感应到ASP压力增加,说明AST1与AST3正常动作,ASP-1报警;当AST2或AST4电磁阀做实验的时候打开,低压开关感应到ASP压力降低,说明AST2与AST4正常动作,ASP-2报警。 在机组运行时,如AST1或AST3电磁阀发生内漏,则ASP油压将升高,随着电磁阀的内漏量增大ASP油压升高,ASP1压力开关动作,发出ASP油压高报警;如AST2或AST4电磁阀发生内

汽轮机调节保安系统

1编制目的 1.1调整并校核各调节保安装臵的行程、油压及保护装臵动作值,以满足机组安全、正常运行的需要. 1.2根据东方汽轮机厂和新华控制工程有限公司所提供的技术文件,对调节保安系统进行现场试验及整定,以保证各部套之间的相互关系,测定各部套的工作特性,确保调节保安系统能够正常地投入工作. 1.3通过现场调试,及时发现调节保安系统存在的问题,并予以解决,为机组试运工作的顺利进行创造条件. 1.4记录调节保安系统的有关试验数据,积累原始资料,为以后机组投入商业运行及检修工作提供查考依据. 2编制依据 2.1《火电工程启动调试工作规定》 2.2《火力发电厂基本建设工程启动及竣工验收规程(1996年版)》2.3《电力建设施工及验收技术规范-汽轮机机组篇》 2.4东方汽轮机厂、新华控制工程有限公司、中南电力设计院所提供的相关技术文件. 3控制系统简介 襄樊火电厂#3机组,汽轮机采用东方汽轮机厂产品,其型式为亚临界、中间再热、单轴双缸双排汽、高中压合缸、低压缸双分流、凝汽式汽轮机.其中,汽机调节保安系统采用上海新华控制工程有限公司的DEH-ⅢA纯电调型,它与美国西屋公司的WDPF-Ⅱ集散控制系统配合共同完成对整个机组的过程控制.汽轮机油系统采用双工质,润滑油及低压保安系统为HU-20透平油,EH系统为磷酸脂型抗燃油. DEH-ⅢA 的主要功能如下: 转速控制 自同期控制 负荷控制 一次调频 协调控制 RB功能 主汽压控制 单/多伐控制

伐门在线试验 OPC控制 ATC功能(汽轮机自启动系统) 中压缸启动 双机容错 与DCS系统进行通讯,实现数据共享 手动控制 其他功能(汽门严密性试验、AST电磁伐试验、隔膜伐试验、EH 油压低试验) 在线自诊断、维修 4静态调整应具备的条件 4.1透平油、抗燃油系统的油箱、冷油器及所有油管道安装完毕(包括调节保安系统、润滑油系统、顶轴油系统、空氢侧密封油系统、抗燃油再生及冷却系统). 4.2EH系统油循环临时系统应符合新华公司技术要求,用冲洗块代替执行机构的伺服伐,、电磁伐及电磁伐组件上的电磁伐.拆除再热主汽门、调门上的节流孔板及控制块组件上的两个带节流孔管接头及内部两个节流孔板,并用冲洗管接头来代替.抗燃油系统经耐压试验后,应无泄漏现象(试验压力21MPa,耐压时间3分钟) 4.3透平油系统临时油循环技术措施应符合东汽厂要求. 4.4汽机油循环结束后,油质应符合要求,其中透平油油质应符合MOOG四级标准,抗燃油油质应符合NAS五级标准.并完成调节保安系统各部套的复装工作(低压透平油调节保安部套及EH部套)。4.5调节保安系统图上标明的测点,都应安装经校验合格的压力表、温度计及变送器.并准备好调试用的仪器、仪表. 4.6蓄能器完成充氮工作,并无泄露现象.四个高压皮囊式蓄能器充氮压力9.1MPa, 四个低压皮囊式蓄能器充氮压力0.21MPa, 主油箱、密封油箱、抗燃油箱油位正常,各油箱油位计高、低报警正常. 冷油器水侧通水试验正常,无泄漏. 调整各油泵出口油压在正常工作范围内,检查油系统无泄漏现象.

汽轮机调节危机保安系统(1)

第十章汽轮机调节、危急保安系统 第一节液压油系统 汽轮机液压油系统用于向汽轮机调节系统的液力控制机构提供动力油源,还向汽轮机的保安系统提供安全油源。液压油系统的工质是磷酸脂抗燃油。不同机组,调节系统和安全系统采用的压力有所不同,如哈尔滨汽轮机厂亚临界600MW汽轮机组采用的液压油压力为14.48MPa,东芝亚临界600MW机组采用的液压油压力为11.2MPa)。可见,不同制造厂,采用的系统布置和选用工质参数也有所不同。 液压油系统主要包括液压油箱、液压油供油系统(去汽轮机调速系统和安全系统)、液压油冷却系统以及液压油再生(化学处理)系统。图10-1-1是汽轮机液压油系统的流程示意图(东芝亚临界600MW机组)。 该系统的主要设备和部件有液压油箱(容量为3200L)、油泵、冷却油泵、再生油泵、蓄压器、滤网等,都组装在一起,其间通过管道相连接。1.液压油箱 液压油箱注油口处设有一个注油滤网(过滤精度为3μm),油箱上还设有磁性液位指示器和高低液位、最低液位报警接点,以及温度测量仪表(温度计、热电偶)。 2.液压油供油系统 液压油供油系统配有两台100%额定容量的电动高压柱塞泵(流量可调)。泵内设有压力调节器,可通过调整柱塞的行程来改变油泵出口处的流量,并保持其出口油压为定值(12MPa)。液压油泵出口处的高压油经液压母管向汽轮机调速系统供油。 柱塞油泵出口管道上装有: (1)形滤网精度3μm,备有堵塞指示器; (2)全/电磁旁路阀安全阀的压力整定值为13.5MPa,该阀也可作为(电磁)旁路阀使用,即在液压油供油系统投运初期,柱塞泵出口的高压油 经该旁路阀流回油箱,系统如此循环,借以提高油温; (3)蓄压器装在柱塞泵出口液压油母管上,用以确保在调速系统的油动机动作时使液压油系统仍能维持其正常的工作压力。蓄压器的容

调节保安系统 1000mw机组

第四章调节保安系统 4.1 概述 汽轮机调节保安系统是保证汽轮机安全可靠稳定运行的重要组成部分。本机组采用新型的高压抗燃油数字电液控制系统(Digtal Electro-Hydraulic Control)。 我公司采用东方汽轮机厂的汽轮机DEH,此种保安系统已经应用到多台大容量机组,有长时间的运行经验。本机组的调节保安系统按照其组成可划分为低压保安系统和高压抗燃油系统两大部分。高压抗燃油系统由液压伺服系统、高压遮断系统和抗燃油供油系统三大部分组成。 本机组的调节保安系统满足下列基本要求: 1. 汽轮机挂闸; 2. 适应高、中压缸联合启动的要求; 3. 适应中压缸启动的要求; 4. 具有超速限制功能; 5. 需要时,能够快速、可靠的遮断汽轮机进汽; 6. 适应阀门活动试验的要求; 7. 具有超速保护功能; (1)、机械式超速保护: 动作转速为额定转速的110%~111%(3300~3330r/min),此时危急遮断器的飞环击出,打击危急遮断器装置的撑钩,使撑钩脱扣,机械危急遮断装置连杆使高压遮断组件的紧急遮断阀动作,切断高压保安油的供油,同时将高压保安油的排油口打开,泄掉高压保安油。快速关闭各主汽、调节阀,遮断机组进汽。 (2)、DEH电超速和TSI电超速保护: 当检测到机组转速达到额定转速的111%(3330r/min),发出电气停机信号,使主遮断电磁阀(5YV、6YV)和机械停机电磁阀(3YV)中的电磁遮断装置动作,泄掉高压保安油,遮断机组进汽。同时DEH又将停机信号送到各阀门遮断电磁阀,快速关闭各汽门,保证机组的安全。 4.2 抗燃油系统 随着机组的容量的增大、参数的提高,汽轮机的主汽门及调门均向大型化发展,迫切要求增大开启主汽门及调门的驱动力以及提高高压控制部件的动态灵敏性。所以,采用具有高品质、良好抗燃性能的液压油以及减小各液压部件间的动、静间隙等方法来保证整个机组的安全运行。 EH供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,该执行机构响应从DEH控制器来的电指令信号,以调节汽机各蒸汽阀开度。本机组采用高压抗燃油是一种三芳基磷酸脂化学合成油,密度略大于水,它具有良好的抗燃性能和流体稳定性,明火试验不闪光温度高于538℃。此种油略具有毒性,常温下粘度略大于汽机透平油。 本机组电液控制的供油系统由安装在座架上的不锈钢油箱、有关的管道、蓄压器、控制件、两台EH 油泵、两台EH油循环泵、滤油器以及热交换器等组成。一台EH油泵投运时,另一套即可作为备用,如果需要即可自动投入。当汽轮机正常运行时,一台EH油泵足以满足系统所需的用油量,如果在控制系统调节时间较长时(如甩负荷)、部分蓄压器损坏等原因导致EH系统油压降低的情况下,第二套油泵(备用油泵)可以立即投入,以保证机组EH油系统压力正常。 系统工作时由马达驱动高压柱塞泵,油泵将油箱中的抗燃油吸入,供出的抗燃油经过EH控制块、滤油器、逆止阀和安全溢流阀,进入高压集管和蓄能器,建立14.2±0.2MPa的压力油直接供给各执行机构以及高压遮断系统以及小汽机的执行机构,各执行机构的回油通过压力回油管先经过回油滤油器然后回至油箱。安全溢流阀是防止EH系统油压过高而设置的,当油泵上的调压阀失灵等原因发生油系统超压时,溢流阀将动作以维持系统油压。

上海汽轮机厂-苏丹汽轮机调节保安系统说明书

实用标准文案 N55-8.83型 55MW凝汽式汽轮机调节保安系统说明书 制造单号:C164-2

COMPILING DEPT.: 编制部门:自控中心 COMPILED BY: 编制:刘祥平 2007.04 CHECKED BY: 校对:周文龙 2007.04 REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

目次前言 一供油系统 二液压调节保安系统 三机组启动前的调整和试验 四机组启动时的调整和试验 五主要液压部套的工作原理和结构 六附图 附件一系统的油冲洗 附件二使用及维护说明

前言 1 N55-8.83型汽轮机采用数字电液调节系统,电调装置(DEH)的说明有专用的文件叙述,因此本说明书仅叙述与该电调装置相配的主汽门油动机、高压调门油动机及液压保安部套等的结构、工作原理,供电厂设计、调试和运行编制技术文件时参考。 2 本说明书中的压力单位MPa均为表压。

一供油系统 机组的供油系统由四台油泵组成,它们是: ●由汽机主轴直接驱动的主油泵; ●由交流电动机驱动的高压交流油泵; ●由交流电动机驱动的交流润滑油泵; ●由直流电动机驱动的直流润滑油泵。 机组正常运行时,仅由汽机主轴直接带动的主油泵提供油源(额定转速3000r/min时,油泵压增1.08MPa,流量270m3/h),供润滑系统和调节保安系统各部套用油。供油分配情况汇总如下: 1.1 向两级并联的注油器提供压力油,两级注油器出口分别向主油泵进口和润滑系统提供油源。 1.2 进入危急遮断及复位装置,产生安全油以及就地手动复位时产生复位油,控制保安部套复位。 1.3 向复位电磁阀提供压力油,电磁阀动作时,产生复位油,控制保安部套复位。 1.4 向喷油试验装置提供压力油,试验时使危急遮断器充油动作。 1.5 作为主汽门油动机以及高压调门油动机的动力油,控制油缸活塞移动。 1.6 作为油源,向主汽门电液转换器提供压力油,产生控制主汽门油动机控制油压。 1.7 作为油源,向二通道伺服控制器提供压力油,产生控制高压油动机的

汽轮机调节保安系统培训教材

汽轮机调节保安系统培训教材 汽轮机调节保安系统是保证汽轮机安全可靠稳定运行的重要组成部分。 机组采用高压抗燃油数字电液控制系统(Digtal Electro-Hydraulic Control,简称DEH或D-EHC)。DEH与传统的机械液压调节相比,极大的简化了液压控制回路,不仅转速控制范围大、调整方便、响应快、迟缓小和能够实现机组自启停等多种复杂控制,而且提高了工作可靠性,简化了系统的维护和维修。 21.1概述 调节保安系统是高压抗燃油数字电液控制系统(DEH)的执行机构,它接受DEH发出的指令,完成挂闸、驱动阀门及遮断机组等任务。 二期与一期一致采用东方汽轮机厂的汽轮机调节保安系统,机组的调节保安系统按照其组成可划分为低压保安系统和高压抗燃油系统两大部分。高压抗燃油系统由液压伺服系统、高压遮断系统和抗燃油供油系统三大部分组成,机组的调节保安系统满足下列基本要求: 1)汽轮机挂闸; 2)适应高、中压缸联合启动的要求; 3)适应中压缸启动的要求;

4)具有超速限制功能; 5)需要时,能够快速、可靠的遮断汽轮机进汽; 6)适应阀门活动试验的要求; 7)具有超速保护功能; 机械式超速保护: 动作转速为额定转速的110%~111%(3300~3330r/min),此时危急遮断器的飞环击出,打击危急遮断器装置的撑钩,使撑钩脱扣,机械危急遮断装置连杆使高压遮断组件的紧急遮断阀动作,切断高压保安油的供油,同时将高压保安油的排油口打开,泄掉高压保安油。快速关闭各主汽、调节阀,遮断机组进汽。 DEH电超速和TSI电超速保护: 当检测到机组转速达到额定转速的111%(3330r/min),发出电气停机信号,使主遮断电磁阀(5YV、6YV)和机械停机电磁阀(3YV)中的电磁遮断装置动作,泄掉高压保安油,遮断机组进汽。同时DEH又将停机信号送到各阀门遮断电磁阀,快速关闭各汽门,保证机组的安全。 21.2液压伺服系统 液压伺服系统主要由油动机、阀门操纵座以及电液伺服阀、LVDT等组成。主要实现控制各阀门的开度、作用阀门快关等功能。 机组共设置有两个主汽阀油动机;四个主汽调节阀油动

60MW汽轮机调节保安系统的调整与试验

/ 型60MW 抽汽式汽轮机调节保安系统的调整与试验2调节保安系统的主要技术规范

抽汽式汽轮机调节系统米用数字电液调节系统(简称DEH),米 用DEH系统将比一般液压系统控制精度高,自动化水平大大提高,热电负荷自整性也高,它能实现升速(手动或自动),配合电气并网,负荷控制(阀位控制或功频控制),抽汽热负荷控制及其他辅助控制,并与DCS通讯,控制参数在线调整和超速保护功能等。能使汽轮机适应各种工况并长期安全运行。 3. 1 基本原理 并网前在升速过程中,转速闭环为无差控制,505E控制器将测量的机组实际转速和给定转速的偏差信号经软件分析处理及PID运算后 作为给定输入到阀位控制器并与油动机反馈信号比较后将其偏差放大成电流信号来控制电液驱动器及调节阀门开度,从而减少转速偏差,达到转速无差控制,当转速达到3000r/min时,机组可根据需要定速运行,此时DEH可接受自动准同期装置发出的或运行人员手动操作指令,调整机组实现同步,以便并网。 机组并网后,如果采用功率闭环控制,可根据需要决定DEH使机组立即带上初负荷,DEH实测机组功率和机组转速作为反馈信号,转速偏差作为一次调频信号对给定功率进行修正,功率给定与功率反馈比较后,经PID 运算和功率放大后,通过电液驱动器和油动机控制调节阀门开度来消除偏差信号,对机组功率实现无差调节,若功率不反馈,则以阀位控制方式运行,即通过增加转速设

定,开大调节汽阀,增加进汽量达到增加负荷的目的。在甩负荷时,DEH自动将负荷调节切换到转速调节方式。机组容量较小时建议可不采用功率闭环控制。 在机组带上一定电负荷后可根据需要带热负荷时可以投入抽汽控制。DEH控制器根据机组工况图对机组电负荷及抽汽压力或流量进行自整控制。 3. 2 DEH系统组成 3.2.1 机械超速保安系统(详见5。1) 3. 2. 2 主汽门自动关闭器及控制装置(启动阀) 主汽门能够实现远程控制及现场手动。功能结构图如下,启动阀控制主汽门执行机构(主汽门自动关闭器)上下动作进而控制主汽门开启。启动阀的动作可手动也可通过伺服电机控制,同时启动阀可对机组挂闸(机械超速复位),在正常运行时安全检查油将启动阀左部切换阀压下,接通启动油路开启主汽门; 在停机时将安全油泄露掉,切换阀切断启动油,并泄掉自动关闭器的油腔室中的油,使主汽门快速关闭。活动滑阀可在机组运行时在线活动以防其卡涩。具体控制可由热工继电器回路实现,也可由DCS软伺放实现,为确保机组安全,在停机后控制启动阀电机反向旋转(即退回启动阀)关闭主汽门。以防事故后挂闸主汽门突然打开造成机组转速飞升。 3. 2. 3 伺服执行机构,主要包括电液驱动器,油动机(两套) 电液伺服阀为动圈式双极型位置输出(积分型),作为油动机的先导机构拖动错油门控制油动机活塞动作。油动机错门与电液伺服阀通过杠杆机械半刚性连接。同时原错油门下的单向阀保留,在保安系统遮断状况下,事故油仍可关闭油动机。 电液伺服阀是汽轮机电液控制系统设计的关键电—位移转换元件,它能把微弱

上海600WM汽轮机调节保安系统说明书

资料编号:71.191-7 N600-24.4/566/566型 600MW超临界中间再热凝汽式汽轮机 说明书 调节保安系统说明 发布实施 中华人民共和国 上海汽轮机有限公司发布

资料编号:71.191-7 COMPILING DEPT.: 编制部门:自控中心 COMPILED BY: 编制:程雁菁 CHECKED BY: 校对: REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

资料编号:71.191-7 目次 1.0 概述 2.0 EH供油系统 2.1 系统组成及原理 2.2 系统设备 2.3 系统运行 3.0 EH油动机及危急保安系统 3.1 系统工作原理 3.1.1 油动机 3.1.2 危急遮断控制块 3.1.3 EH油压低试验块 3.1.4 隔膜阀 3.1.5 空气引导阀 3.2 系统设备 3.2.1 主汽门油动机 3.2.2 高压调节汽阀油动机 3.2.3 再热主汽门油动机 3.2.4 再热调节汽阀油动机 3.2.5 危急遮断控制块 3.2.6 EH油压低试验块 3.2.7 隔膜阀 3.2.8 空气引导阀 4.0 机械超速遮断系统 4.1 系统构成 4.2 超速遮断机构 4.3 超速遮断阀自动复位装置 4.4 超速遮断机构校验装置 4.5 综合安全装置 5.0 控制系统维护导则 5.1 一般导则 5.2 抗燃油供货商 5.3 防止抗燃油变质

资料编号:71.191-7 5.4 抗燃油容器及输送工具 5.5 新抗燃油的典型特性参数 6.0 高压EH油系统冲洗说明 6.1 系统冲洗的准备 6.2 将EH油加入系统 6.3 冲洗 6.4 系统清洁度的测定 6.5 系统恢复 7.0 DEH控制系统 7.1 DEH系统功能 7.2 基本系统图像 7.3 页面说明 7.4 其它 8.0 ETS危急保安系统 8.1 系统概述 8.2 系统组成 8.3 使用说明 8.4 使用环境要求 8.5 电源要求 8.6 ETS的相关设备 8.7 电气部件清单 9.0 TSI汽机监测系统 9.1 概述 9.2 TSI系统监视和测量的参数 9.3 结构说明 9.4 功能说明

汽轮机的调节与保护

汽轮机的调节与保护 汽轮机的调节与保护 1.汽轮机油系统的作用是什么? 汽轮机油系统的作用如下: ⑴ 向机组各轴承供油,以便润滑和冷却轴承。 ⑵ 供给调节系统和保护装置稳定充足的压力油,使它们正常工作。 ⑶ 供应各传动机构润滑用油。 根据汽轮机油系统的作用,一般将油系统分为润滑油系统和调节(保护)油系统两个部分。 2.为什么要将抗燃油作为汽轮发电机组油系统的介质?它有什么特点? 随着机组功率和蒸汽参数的不断提高,调节系统的调节汽门提升力越来越大,提高油动机的油压是解决调节汽门提升力增大的一个途径。但油压的提高、容易造成油的泄漏,普通汽轮机油的燃点低,容易造成火灾。抗燃油的自燃点较高,即使它落在炽热高温蒸汽管道表面也不会燃烧起来,抗燃油还具有火焰不能维持及传播的可能性。从而大大减小了火灾对电厂威胁。 抗燃油的最大特点是它的抗燃性,但也有它的缺点,如有一定的毒性,价格昂贵,粘温特性差(即温度对粘性的影响大)。所以一般将调节系统与润滑系统分成两个独立的系统。调节系统用高压抗燃油,润滑系统用普通汽轮机油。 3.主油箱的容量是根据什么决定的?什么是汽轮机油的循环倍率? 汽轮机主油箱的贮油量决定于油系统的大小,应满足润滑及调节系统的用油量。机组越大,调节、润滑系统用油量越多。油箱的容量也越大。 汽轮机油的循环倍率等于每小时主油泵的出油量与油箱总油量之比,一般应小于12。如循环倍率过大,汽轮机油在油箱内停留时间少,空气、水分来不及分离,致使油质迅速恶化,缩短油的使用寿命。 4.汽轮机的润滑油压是根据什么来确定 汽轮机润滑油压根据转子的重量、转速、轴瓦的构造及润滑油的粘度等,在设计时计算出来,以保证轴颈与轴瓦之间能形成良好的油膜,并有足够的油量来冷却,因此汽轮机润滑油压一般取0.12~0.15MPa。 润滑油压过高可能造成油挡漏油,轴承振动。油压过低使油膜建立不良,甚至发生断油损坏轴瓦。 5.汽轮机油箱为什么要装排油烟风机? 油箱装设排油烟风机的作用是排除油箱中的气体和水蒸气。这样一方面使水蒸气不在油箱中凝结;另一方面使油箱中压力不高于大气压力,使轴承回油顺利地流入油箱。 反之,如果油箱密闭,那么大量气体和水蒸气积在油箱中产生正压,会影响轴承的回油,同时易使油箱油中积水。 排油烟风机还有排除有害气体使油质不易劣化的作用。

汽轮机油系统管路冲洗方案071

新余市生活垃圾焚烧发电项目工程油系统管路冲洗方案 编制: 审核: 批准: 校核: 施工单位:福建省工业设备安装有限公司 总包单位:湖南省电力勘测设计院

目录 一、编制依据 二、工程概述 三、施工程序 四、油循环采取的临时措施 五、油系统冲洗前应具备的条件 六、油循环范围 七、汽轮机油循环步骤及注意事项 八、油循环合格的条件 九、劳动力需求计划

10、施工工具计划 11、施工进度计划 12、质量保证及质量通病措施 13、文明施工及安全措施 14、危险点分析及应急措施 1.编写依据 GB/T-7596-2000 电厂汽轮机油质量标准 GB10968—89 汽轮机投运前油系统冲洗技术条件 2.冲洗范围 a.润滑油流经的全部管路(包括油净化设备的连接管路); b.所有润滑油系统的阀门(包括过压阀); c.油泵; d.油箱; e.滤油器; f.冷油器; g.注油器; h.油透平设备; i.调速保安部套联接管道。 4.油循环前的准备工作:

4.1在油系统管道安装前须用机械方法去除污染物、金属氧化物、疏松物等物质。 4.1.1将安装好的管路、阀门逐根拆除,并编号摆放。 4.1.2将拆卸的管道用压缩空气吹扫。 4.1.3用铁丝扎住白棉布在管内来回拉动。 4.1.4用压缩空气吹扫后,将管口用白棉布封闭。 4.1.5安装时按照编号逐根安装。 4.2检查各法兰之间已按规定加好垫片。 4.3检查油管上所装测温、测压装置已经完善。 4.4在各轴承进油口处加设滤网,防止焊渣等杂物进入轴瓦。 4.5检查各轴承座检查孔应封闭严密。 4.6油箱加油 4.6.1油箱加油前应经过仔细打扫,内部应用面团粘干净,内部不应有焊渣、灰尘等杂物再用滤油机向油箱内注油。 4.6.2油箱注油时,应有人察看油箱各连接法兰不应有渗油现象,若有渗油,应马上进行处理。 4.7油泵试运: 4.7.1检查油泵进口阀门开关应灵活,且无漏油现象。 4.7.2关闭出口阀门,打开油泵进口阀门。 4.7.3启动油泵,待达到额定工作压力后,缓慢打开出口阀门,并检查油泵电机电流不超过规定值。 4.7.4检查各油系统无泄漏现象,若有泄漏,应立即停泵进行处

汽轮机调节保安系统解读

1.液压系统 1.1概述本机组的液压系统采用低压透平油系统,系统压力油由汽轮机主轴带动的主油泵提供,压力为1。2Mpa。调节保安系统油路图参见 D151。00。00-7。系统由以下部套组成:滤油器、蓄能器、点液转换器、油动机、启动阀。 1. 2 滤油器滤油器的作用是将供油系统来的高压油进行过滤,供给电液转换器以及启动阀等用。滤油器采双桶滤油器,可在线更换滤芯,滤芯为 80u。带有旁通阀,旁通阀开启压力为0。12±0。02Mpa。系统配有压差报警装置,当滤芯堵塞,压差大于0。08Mpa时发出报警信号,指示需更换滤芯。 1.3 蓄能器液压控制系统共安装有两只蓄能器均为气液式蓄能器,安装在前轴承座附近的蓄能器支架上,用来稳定液压系统的供油压力。此种蓄能器一侧预先充进氮气压力与另一侧油系统中的任何一只与系统隔绝,以便进行试验、重新充气或维修。蓄能器氮气一侧有一个压力表,用以检查充氮压力,氮气压力应定期检查,如必要的话应重新充气。由于环境的温度会影响气压,因此检查压力应在环境温度稳定后进行。蓄能器氮气正常工作压力为0。75Mpa,可以从蓄能器压力表上读到,此时蓄能器下部油压力应为零。每周应对蓄能器进行一次检查,如气压降到0。30Mpa 时,则应重新充气。通常机组运行时,当蓄能器中的气压与系统的油压相等时,不会发生气体泄露。当长期停机时,系统中无油压,此时氮气压力也许会减小,在检查压力时如果遵循下面概要说明去做的话,机组的运行就不会受影响。重新充气步骤:1)全关蓄能器的隔绝阀;2)打开相应的回油阀,并让蓄能器下的油压消失;3)读出蓄能器气压表读数,并记录下来作为今后的参考。正常的允许气压是0。75Mpa,压力表读数小于0。30Mpa,表示该蓄能器应重新充气。蓄能器只能用于干燥的氮气重新充气。4)将蓄能器氮气阀门上的保险盖拆掉;5)将氮气瓶软管与蓄能器气阀相连接。将蓄能器的顶部六角螺帽松出一圈,以进行充气。打开氮气瓶上的阀门,使蓄能器充到压力表上指示为0。75Mpa。6)当充到所需要的压力值时,关闭氮气瓶上的阀门,旋紧蓄能器气阀的顶部六角螺帽,拆去软管;7)关闭蓄能器回油阀,慢慢打开蓄能器隔绝阀到全开位置。对另一个蓄能器可重复上述步骤,逐个进行充气。 1.4电液转换器本机组的电液调节系统采用力矩马达蝶阀式电液转换器,每一个油动机配置一个电液转换器,它是一个将电调装置输出的电

135MW凝汽式汽轮机调节保安系统说明书

135MW凝汽式汽轮机调节保安系统说明书 制造单号:H151-1

1 液压系统 1.1 概述 1.2 滤油器 1.3 蓄能器 1.4 电液转换器 2 保安系统 3 汽轮机监测仪表系统 4 保安部套说明 4.1 启动阀 4.2 启动器 4.3 危急遮断器 4.4 危急遮断油门 4.5 危急遮断试验油门 4.6 超速指示器 4.7 危急遮断装置 4.8 喷油试验装置 4.9 综合安全装置 4.10 空气引导阀

1 液压系统 1.1 概述 本机组的液压系统采用低压透平油系统,系统压力由汽轮机主轴带动的主油泵提供,压力为1.2MPa。 本系统主要由以下部套组成。 ·滤油器 ·蓄能器 ·电液转换器 ·油动机 1.2 滤油器 滤油器的作用是将供油系统来的高压油进行过滤后,供给电液转换器,综合安全装置等用。滤油器采用双桶滤油器,可在线更换滤芯。滤芯为80μ。配有旁通阀,开启压力为0.12±0.02MPa。 系统配有压差报警装置,当滤芯堵塞,压差大于0.08MPa时,发出报警信号,指示须更换滤芯。操作时先打开压力平衡阀(件2),待油充满备用腔后,转动换向阀(件3)手柄,切换至备用滤芯,这时,备用滤芯开始工作,原工作腔室关闭。再将压力平衡阀关闭,即可更换受污滤芯。 1.3 蓄能器 液压控制系统共安装有两只蓄能器,两只蓄能器均为气—液式蓄能器,安装在汽轮机两侧的高压油管路上,用来维持液压控制系统的油压,以防止发生振动。此种蓄能器一侧预先充进氮气压力与另一侧

油系统中的油压相平衡。两只蓄能器均装有进油截止阀及回油截止阀,可以通过截止阀将蓄能器与系统隔绝,以进行试验、重新充气或维修。 蓄能器氮气一侧有一个压力表,用以检查充氮压力,氮气压力应定期检查,如必要的话应重新充气。由于环境的温度会影响气压,因此检查压力应在环境温度稳定以后进行。 蓄能器氮气正常工作压力为0.75MPa,可以从蓄能器表上读到,此 时蓄能器下部油压力应为零。每周应对蓄能器进行一次检查,如气压降到0.30MPa时,则应重新充气。通常机组运行时,当蓄能器中的气压与系统 中的油压相对时,不会发生气体泄漏。当长期停机时,系统中无油压,此 时氮气压力也许会减小。在检查压力时如果遵循下面概要说明去做的话,机组的运行就不会受影响。 进油阀门可将蓄能器与系统隔绝。回油阀门(件3)将相应的蓄能 器油侧与回油相通。如有必要,可在机组运行时每次隔绝1个蓄能器进行 再充气。在机组运行时不允许一次将两个蓄能器都隔绝。 重新充气步骤: ·全关蓄能器的隔绝阀(件2); ·打开相应的回油阀(件3),并让蓄能器下的油压消失; ·读出蓄能器气压表读数,并记录下来作为今后参考。正常的充 气压力是0.75MPa。压力表读数小于0.30MPa,表示该蓄能器应该重新充气。蓄能器只能用干燥的氮气重新充气。 ·将蓄能器氮气阀门上的保险盖拆掉; ·将氮气瓶软管与蓄能器气阀相连。将蓄能器气阀的顶部六角螺

【精品】专业论文文献 -汽轮机调节保护系统

【精品】专业论文文献 -汽轮机调节保护系统最新【精品】范文参考文献专业论文 汽轮机调节保护系统 汽轮机调节保护系统 摘要:本文介绍了汽轮机调节保护系统的任务和中间再热汽轮机调节保护系统的特点,对广大电厂运行人员有指导意义。 关键词:汽轮机;调节保护;再热 概要介绍汽轮机调节保护的任务、系统的基本组成和不同类型调节保护系统的特点,着重分析汽轮机调节系统动、静态特性对机组功率、转速的调节性能和安全、稳定运行的影响,以汽轮机调节保护系统的典型部件为例,介绍调节保护系统各环节的工作原理和静态特性计算。 1 汽轮机调节保护系统的任务 汽轮机是发电厂的原动机,驱动同步发电机旋转产生电能,向电网输送符合数量和供电品质(电压与频率)要求的电力。由同步发电机的运行特性已知,发电机的端电压决定于无功功率,而无功功率决定于发电机的励磁;电网的频率(或称周波)决定于有功功率,即决定于原动机的驱动功率。因此,电网的电压调节归发电机的励磁系统,频率调节归汽轮机的功率控制系统。这样,机组并网运行时,根据转速偏差改变调节汽门的开度,调节汽轮机的进汽量及焓降,改变发电机的有功功率,满足外界电负荷的变化要求。由于汽轮机调节系统是以机组转速为调节对象,故习惯上将汽轮机调节系统称为调速系统。 汽轮机调节系统是根据电网的频率偏差自动调节功率输出的,故在供电的量与质的方面存在着矛盾;因为满足负荷数量要求后,并不能保持电网频率不变。目前,电网是通过一、二次调频实现供电的频率品质要求的。对短周期、小幅度的负

荷变化由电网负荷频率特性产生频率偏差信号,网中的各台机组根据调节系统的特性分担这部分负荷变化,这一调节过程称为一次调频。对幅度变化较大而速度变化较慢的负荷,则由电网的自动频率控制(AFC)装置来分配调频机组的负荷,这一调节过程称为二次调频。 汽轮机是高温、高压、大功率高速旋转机械,转子的惯性相对于 最新【精品】范文参考文献专业论文 汽轮机的驱动力矩很小。机组运行中一旦突然从电网中解列甩去全部电负荷,汽轮机巨大的驱动力矩作用在转子上,使转速快速飞升。如不及时、快速、可靠地切除汽轮机的蒸汽供给,就会使转速超过安全许可的极限转速,酿成毁机恶性事故。此外,机组运行中还存在低真空、低润滑油压、振动大、差胀大等危及机组安全的故障。因此,为保障汽轮机各种事故工况下的安全,除要求调节系统快速响应和动作外,还设置保护系统,并在调节汽门前设置主汽门。在事故危急工况下,保护系统快速动作,使主汽门和调节汽门同时快速关闭,可靠地切断汽轮机的蒸汽供给,使机组快速停机。汽轮机调节保护系统的原理性结构如图1-1所示。 综合上述,汽轮机调节保护系统的任务是:正常运行时,通过改变汽轮机的进汽量,使汽轮机的功率输出满足外界的负荷要求,且使调节后的转速偏差在允许的范围内;在危急事故工况下,快速关闭调节汽门或主汽门,使机组维持空转或快速停机。 2 中间再热汽轮机调节保护系统的特点 再热器的蒸汽管、传热管及联箱等是个很大的蒸汽容积空间,其间贮存的蒸汽量决定于再热器蒸汽的温度和压力。由第三章已知,在非设计工况下,中、低压缸的功率与再热器的蒸汽压力呈一定的比例关系,这样对应于不同的机组功率,贮存于再热器中的蒸汽量是不等的。在机组功率变化过程中,因再热器内蒸汽压力变化导致贮汽量的改变,产生的蒸汽吸蓄或泄放效应,使中低压缸的功率变化滞后于高

汽机调速保安及油系统讲解

300MW机组的调速保安及油系统 第一节概述 汽轮机调节与保护系统是控制其启动、停机、带负荷运行,防止出现严重事故的自动控制装置。它应能适应各种运行工况的要求,及时地调节汽轮机的功率,满足外界负荷的变化需要,同时维持电网的频率在50Hz左右;在机组出现异常时,能自动改变运行工况,直至停机,以防止事故扩大。 汽轮机调节保安系统主要是监视某些汽轮机的参数,当这些参数超过其运行限制时,该系统就会迅速关闭全部汽轮机蒸汽进汽阀门。被监视的主要参数有: 1)、汽轮机超速; 2)、推力轴承磨损; 3)、轴承油压过低; 4)、凝汽器真空过低; 5)、抗燃油压过低; 300MW机组的供油系统将润滑和调节用油分开,成为两个相互独立的系统。润滑油系统由主油泵供油,使用介质为普通的透平油。而调节油系统由独立的高压油泵供油,使用的介质为高压抗燃油。这是因为机组蒸汽参数高,单机容量大,对油动机开启蒸汽阀门的提升力要求大。将润滑油系统和调节油系统分开并把调节油系统改成EH油系统,就可提高市调节系统的油压,从而可使油机的几何尺寸缩小,耗

油量减少,油动机活塞动作过程中的摩擦变小,改善系统的工作性能。另外,调节系统采用高压抗燃油是因为该油自燃点高,若漏油接触高温物体亦不会火灾。但由于高压抗燃油油价昂贵,且有轻微的毒性,油质要求高,而润滑油系统需用油量大,油压低,故仍采用普通透平油。 一、汽轮发电机组的调节特性 1、转子力矩自平衡特性 汽轮发电机组在运行中,作用在转子上的力矩有:作用在汽轮机转子上的驱动力矩M d、摩擦阻力矩M f、电磁阻力矩M em,当功率平衡时,即M d=M f+M em,当用户用电量增加时,电力系统的阻抗减小,发电机输出电流增大,电磁阻力矩M em相应增大,如果不进行调节,驱动力矩M d不变,则M d<M f+M em,转子角速度降低,使电磁阻力矩M em和摩擦阻力矩M f减少,而驱动力矩M d增大,在较低的转速下力矩达到新的平衡。反之,当用户用电量减小时,转子的角速度增加,在较高的转速下力矩达到新的平衡。 同理,若驱动力矩M d增大,则M d>M f+M em,则转子转速升高,M f+M em增大,M d减小,在较高的转速下力矩达到新的平衡;反之,若驱动力矩M d减小,转子转速降低,在较低的转速下力矩达到新的平衡。 这种自平衡转速变化很大,使供电频率变化很大,不能满足用户要求,但提供一个外负荷变化的信息,即:转速降

小机调节保安系统说明书

资料编号:71.D298-7 ND84/79/07-1型 13.5MW驱动给水泵用变转速凝汽式汽轮机 调节保安系统说明书 制造单号:D298-1 中华人民共和国 上海汽轮机有限公司发布

资料编号:71.D298-7 COMPILING DEPT.: 编制部门: COMPILED BY: 编制: CHECKED BY: 校对: REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

资料编号:71.D298-7 目次 一BFPT控制及保安系统概述 1 MEH的控制方式 2 保安系统综述 3 危急遮断器的试验 4 低真空及低润滑油压保护讯号 5 ETS控制柜功能 6 保安系统的供油 二主要部套的说明 1 危急遮断及复位装置(258.31.53) 2 危急遮断器(258.31.01) 3 电磁阀盒(298.31.56G01) 4 蓄能器组件(D268.73.08G02) 5 低压主汽门油动机(258.33.42/II) 6 油动机(258.33.01) 附:控制整定值

资料编号:71.D298-7 一 BFPT控制及保安系统概述 拖动超临界中间再热600MW(660MW)汽轮发电机组锅炉给水泵的原动机是一台变转速变参数带高排汽内切换的汽轮机(BFPT)。一台主机配有两台容量为50%的由BFPT 驱动的给水泵。两台汽轮机正常工作时,由主汽轮机中压缸的排汽(四段抽汽)供汽,其转速调节范围为2800~5750r/min;随着主汽轮机负荷改变,供汽参数也跟着变化,当主机负荷降至一定值,供汽参数不足以维持该汽轮机正常运行时,由辅汽母管供汽,使该汽轮机在主机任一负荷下均能投入运行。 进入汽轮机的进汽管路上分别设置有低压主汽门(LPSV)及低压调节汽阀(LPGV),控制进入汽机的进汽量。其中LPSV是两位式阀门,只有全开、全关两个位置,分别由控制系统通过一个主汽门油动机控制。LPGV是调节阀,由控制系统控制的调门油动机驱动。 控制系统的油源取自主机的EH供油系统,保安系统由汽轮机本身的透平油供油系统供油。本说明书主要涉及保安系统和各类油动机的有关内容;并简单阐述MEH控制系统的功能和操作方式(以FOXBORO—I/A为例)。为使说明的内容更清晰明了,请同时参见本说明书的图1(调节保安系统图)。

汽轮机润滑油系统及调节保安系统调试方案

汽轮机润滑油系统及调节保安系统调试方案

内蒙古蒙西水泥股份有限公司生产经营中 心二期余热发电项目 汽轮机润滑油系统及调节保安系统 调试方案 编制: 审核: 批准:

目录 1.简要概述 2.汽轮机润滑油系统及调节保安系统调试目的3.编制依据及标准 4.主要设备技术范围 5.系统调试应具备的条件 6.系统调试内容及程序 7.安全注意事项

1.简要概述 1.1.工程简要概述 内蒙古蒙西水泥股份有限公司二期熟料生产线,配套2台川润锅炉厂余热锅炉,锅炉总蒸发量为52.21t/h,汽轮机配青岛捷能汽轮机厂生产的N9-1.05/345℃型汽轮机,发电机为东风发电机厂生产的QF1-9-2A型发电机,装机容量9MW。 汽轮机润滑油系统包括5立方油箱一个,高压油泵一台,交流辅助油泵一台,直流辅助油泵一台,冷油器两个,过滤器三个。 2.汽轮机润滑油系统及调节保安系统调试目的 为保障内蒙古蒙西水泥二期余热发电余热机组调节保安系统调试工作的顺利进行,特编写本调试技术方案。本方案用于指导汽轮机发电机组调节.保安系统安装结束,完成设备单体调试后的分析系统运行工作,以确认机组调节系统.电调系统.泵. 系统管道及辅助设备安装正确无误,设备运行性能良好,控制系统工作正常,系统能满足机组整套启动需要。 3、编制依据及标准; 3.1.《火力发电厂基本建设工程启动及俊工验收规程{1996年版}》; 3.2.〈电力建设施工及验收技术规范汽轮机机机编{1992年版}〉:3.3.〈火电工程启动调试工作规定〉: 3.4.〈火电工程调整试运质量检验及评定标准{1996年版}〉: 3.5.〈电力建设工程调试定额{1996年版}〉:

相关主题
文本预览
相关文档 最新文档