当前位置:文档之家› 第30届全国中学生物理竞赛复赛考试试题及解答与评分标准

第30届全国中学生物理竞赛复赛考试试题及解答与评分标准

第30届全国中学生物理竞赛复赛考试试题及解答与评分标准
第30届全国中学生物理竞赛复赛考试试题及解答与评分标准

第30届全国中学生物理竞赛复赛考试试题解答与评分标准[2013-09-21]

【一】(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小

为g . 【参考解答】

以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量?v 及经线切向分量θv

设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得

2220111sin 222

m mgR m m ?θθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持

力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故

0cos m R m R ?θ=v v .

(2)

由 (1) 式,最大速率应与θ的最大值相对应

max max ()θ=v v . (3)

而由 (2) 式,q 不可能达到π

2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即

max ()0θθ=v . (4) 【

(4)式也可用下述方法得到:由 (1)、(2) 式得

2

2

2

02sin tan 0gR θθθ-=≥v v .

若sin 0θ≠,由上式得

22

sin 2cos gR

θθ≤v .

实际上,sin =0θ也满足上式。由上式可知 max 22

max 0sin 2cos gR

θθ=v .

由(3)式有

2

2

2

max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)

将max ()0θθ=v 代入式(1),并与式(2)联立,得

()2220max max max sin 2sin 1sin 0gR θθθ--=v .

(5)

以max sin θ为未知量,方程(5)的一个根是sin q

=0,即q =0,这表示初态,其速率为最小值,不是所求

的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22

max 0max 2sin sin 20gR gR θθ+-=v .

(6)

其解为

20max

sin 14gR θ?=???

v .

(7)

注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,

(2

2012

?=

+v v , (8)

考虑到(4)式有

max ==

v (9)

【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.

【二】(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.

1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;

2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. 【参考解答】

1. 由于碰撞时间t ?很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有

D C 2l r =

v v .

(1)

以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒

D C A 0222m l m r m l m l ++=v v v v .

(2)

由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ?很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故

2222D C A 011112222

m m m m ++=v v v v .

(3)

由 (1)、(2)、(3) 式解得

22

00022222248,,888C D A lr l r l r l r l r

===-+++v v v v v v (4)

【代替 (3) 式,可利用弹性碰撞特点

0D A =-v v v .

(3’)

同样可解出(4). 】

设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有

22

1A 0022428l r F t m m m l r

+'?=-=-+v v v ,

(5)

方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为 22

1022428l r F t m l r

+?=+v (6)

方向与0v 方向相同.

以B 、C 、D 为系统,设其质心离转轴的距离为x ,则

22(2)2

mr m l l r x m αα++=

=

++.

(7)

质心在碰后瞬间的速度为

C 0224(2)(2)(8)

l l r x r l r α+=

=++v v v . (8)

轴与杆的作用时间也为t ?,设轴对杆的作用力为2F ,由质心运动定理有 ()21022

4(2)

28l l r F t F t m m l r

α+?+?=+=

+v v . (9)

由此得

2022

(2)

28r l r F t m l r -?=

+v . (10)

方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为

2022

(2)

28r l r F t m l r -'?=-

+v , (11)

方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略. 【代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ?+?=+v v . 】 【也可由对质心的角动量定理代替 (7)-(9) 式. 】

2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度022

48C lr

l r =

+v v 绕过B 的轴做匀速圆周运动的向心力,即

()222

C 0

22216(8)l r k r m m r l r -==+ v v

(12)

则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件

0=

v (13)

可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式. 【评分标准】本题20分.

第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.

【三】(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m

L

λ=

表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为

k E k L α

βγ

λ

ω=

式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.

2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.

3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .

提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X

t X t

=

例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t

θθθθ= 【参考解答】

1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为

k

E k L αβγ

λω= (1)

式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为

1122

[][][],

[][],[][],

[][][][]k M L T L L E M L T λω---==== (2)

在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为

()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为

()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即

()()()()k E k L αβγ

λω= (5)

[][][][]k E L α

βγλω= (6)

将 (2)中第四 式代入 (6) 式得

2

2

[][][]

[][][]M L T M L T αγαβ---= (7)

(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是

1,2,3αβγ=== (8)

所以

23k E k L λω= (9)

2. 由题意,杆的动能为

,c ,r

k k k E E E =+

(10)

其中,

2

2,c

c 11()222k L E m L λω??== ???

v (11) 注意到,杆在质心系中的运动可视为两根长度为2

L

的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为

3

2,r

2(,,)222k k L L E E k λωλω??

== ???

(12)

将(9)、 (11)、 (12)式代入(10)式得

23

23212222L L k L L k λωλωλω????

=+ ? ?????

(13)

由此解得

1

6

k =

(14)

于是

E k =

1

6

lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒

sin 2k L E mg θ??= ???

(16) 由(15)、(16)式得

w =

以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为

22c L r L r

r ωω-+??'=+= ???

v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向

O 点方向为正向),由质心运动定理得

()()cos t T L r g L r a λθλ+-=- (19)

()()sin n N L r g L r a λθλ--=- (20)

式中,t a 为质心的切向加速度的大小

()3cos d d d d d 2d 2d dt 4c

t L r g L r L r a t t L

θωωθθ+'++=

===

v (21) 而n a 为质心的法向加速度的大小

()2

3sin 22n L r g L r a L

θ

ω++==

. (22) 由(19)、(20)、(21)、(22)式解得

()()

2

3cos 4L r r L T mg L θ--=

(23)

()()

2

53sin 2L r L r N mg L θ-+=

(24)

【评分标准】本题25分.

第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;

第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;

第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分. 【四】(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G

和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V . 【参考解答】

设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有

2122Qq Qq

mgh k

m mgR k

h R R

+=++-v . (1)

式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为

21(2)

(2)2()Qq h R m mg h R k

h R R

-=---v . (2)

从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)

(2)0()Q q h R mg h R k

h R R

---=-.

(3)

由此得

max ()mg h R R

Q kq

-=

.

(4)

容器的最高电势为 max

max Q V k

R

= (5) 由(4) 和 (5)式得

max ()

mg h R V q

-=

(6)

【评分标准】本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分. 【五】(25分)平行板电容器两极板分别位于2

d

z =±

的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为

B ,方向沿x 轴负方向,如图所示. 1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)x

y z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x

y z E E E '''和磁场(,,)x

y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变. 2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问

所述的电场(,,)x

y z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x

y z E E E ''',而是0

(,,)x

y z E E E εε

''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. ) 【参考解答】

1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作

用力为

0,,x y z z y F F qu B F qu B

==-= (1)

在参考系S '中可能既有电场(,,)x

y z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为

(),

(),()

x x y z z y y y

x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)

两参考系中电荷、合力和速度的变换关系为

,

(,,)(,,),

(,,)(,,)(0,,0)

x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)

由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足

()0,,()x

y z z y y

x z z x z z x y

y x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)

它们对于任意的(,,)x y z u u u 都成立,故

(,,)(0,0,),(,,)(,0,0)x

y z x

y z E E E B B B B B '''='''=-v (5)

可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.

2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为

(,,)(0,0,)x

y z E E E B εε

'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电

荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为

(),

(),()

x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)

利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得

00,

,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B B

E u B u B u B εε

+-=-+=-+-=

+-v v (8)

对于任意的(,,)x y z u u u 都成立,故

(,,)(0,0,(

1)),

(,,)(,0,0)

x y z x y z E E E B B B B B εε

=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.

注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为

z V E d =-. (10)

由(9)式中第一式和(10)式得

01V Bd εε??

=- ??

?v .

(11)

【评分标准】本题25分.

第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;

第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分. 【六】(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ?时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为5

1.010-?/度和5

2.010-?/度. 当温度升高到120C ?时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. ) 【参考解答】

设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和

2α,钢片和青铜片温度由120C T =?升高到2120C T =?时的伸长量分别为1l ?和2l ?. 对于钢片

1()2

d

r l l φ-

=+? (1) 1121()l l T T α?=- (2) 式中,0.20 mm d =. 对于青铜片

2()2

d

r l l φ+

=+? (3) 2221()l l T T α?=- (4) 联立以上各式得

2122121212()()

2.010 mm 2()()

T T r d T T αααα++-=

=?-- (5)

【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.

【七】(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为

λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档

板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;

2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.

【参考解答】

1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从

0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率 ()()()111111

0111222

n n n h bh bh =+=++=+???? (1)

x

的均匀介质的光程相同,即 211111

2

nh h bh δ==+ (2)

忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3) 于是

()21211

2

y h bh δδδ=+=+. (4)

由几何关系有 1tan h y θ=. (5) 故 ()22

tan 2

b y h y δθ=+

. (6) 从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.

对于0y =处,由上式得 d 0()=h . (7)

y 处与0y =处的光线的光程差为 ()()22

0tan 2

b y y δδθ-=

. (8) 由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即

2

2tan ,1,2,3,2

b y k k θλ== . (9)

由此得 y A θθ==

. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为

,

,

,

,A . (11)

2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则

49,,,m m m y y y === . (12)

,光线在焦点处依然相互加强而形成亮纹. 【评分标准】本题20分.

第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分;

第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).

【八】(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰, 1. 求散射后光子的能量;

2. 求逆康普顿散射能够发生的条件;

3. 如果入射光子能量为2.00 eV ,电子能量为 1.00′109 eV ,求散射后光子的能量. 已知

m e =0.511′106 eV /c 2. 计算中有必要时可利用近似:如果1x <<

?1-1

2x . 【参考解答】

1.设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、

动量分别为,,,e e E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g .

(1) 由动量守恒有 p e +p g =¢p e

+¢p g . (2) 光子的能量和动量满足

E g =p g c ,¢E g =¢p g c .

(3)

电子的能量和动量满足 2

2224

e e e E p c m c -=,22224

e

e e E p c m c ''-= (4) 由(1)、(2)、

(3)、(4)式解得

e E E E γγ'=

(5)

2. 由(5)式可见,为使¢E g >E g , 需有

0E E γγ'-=

即E γ 或 e p p γ> (6)

注意已设p e >0、p g <0. 3. 由于2

e e E

m c >>, 因此有

24

2e e e m c

E E -.

(7)

将(7)式代入(5)式得

e

e

e E c m E E E E 2224

2'+

γγγ. (8)

代入数据,得

¢E g ?29.7′106eV .

(9)

【评分标准】本题20分.

第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 式2分; 第2问5分,(6) 式5分;

第3问5分,(7) 式2分, (8) 式1分, (9) 式2分.

第21届全国中学生物理竞赛复赛题参考解答

第21届全国中学生物理竞赛复赛题试卷 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数d P S t k N ?=,其中t 为渗透持续时间,S 为薄膜的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示) 三、(15分)μ子在相对自身静止的惯性参考系中的平均寿命s 100.260-?≈τ.宇宙射线与大气在高空某处发生核反应产生一批μ子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中τ为相对该惯性系粒子的平均寿命.若能到达地面的μ子数为原来的5%,试估算μ子产生处相对于地面的高度h .不考虑重力和地磁场对μ子运动的影响. 四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的要求,对光束进行必需的变换(或称整形).如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和应用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明. 如图,S 1、S 2、S 3 是等距离(h )地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan ()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能全部投射到这个组合 C E F

第届全国中学生物理竞赛复赛试题及答案

第届全国中学生物理竞赛复赛试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第23届全国中学生物理竞赛复赛试卷 一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。现用支架固定一照相机,用以拍摄小球在空间的位置。每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。从所拍到的照片发现,每张照片上小球都处于同一位置。求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。 二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。 三、(23分)有一带活塞的气缸,如图1所示。缸内盛有一定质量的气体。缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是 绝热的,它们的热容量都不计。轴穿过气缸处不漏气。 如果叶片和轴不转动,而令活塞缓慢移动,则在这 种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1 其中a ,k 均为常量, a >1(其值已知)。可以由上式导出,在此过程中外界对气体做的功为 式中2V 和1V ,分别表示末态和初态的体积。 如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ?和经过的时间t ?遵从以 图2 下的关系式 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。 上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。图中1D 和2D 是理想的、点接触型二极管(不考虑二极管的电容),1C 和2C 是理想电容器,它们的电容都为C ,初始时都不带电,G 点接地。现在A 、G 间接上一交变电源,其电压A u ,随时间t 变化的图线如图2所示.试

第28届全国中学生物理竞赛复赛试题及答案(word版)

第28届全国中学生物理竞赛复赛试题 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3?kg-1?s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。 二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA, B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。 (2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。

三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。 设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。图中O是圆筒的对称轴。两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。当卫星转速逐渐减小到零时,立即使绳与卫星脱离,接触小球与卫星的联系,于是卫星停止转动。已知此时绳与圆筒的相切点刚好在Q、Q'处。试求: (1)当卫星角速度减至ω时绳拉直部分的长度l; (2)绳的总长度L; (3)卫星从ω0到停转所经历的时间t. m /2

2020年第27届全国中学生物理竞赛复赛试卷及答案 精品

第 27 届全国中学生物理竞赛复赛试卷 本卷共九题,满分 160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程. 一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们 的悬挂点在不同的高度上,摆长依次减小.设重 力加速度 g = 9 . 80 m/ s2 , 1 .试设计一个包含十个单摆的蛇形摆(即求 出每个摆的摆长),要求满足: ( a )每个摆的 摆长不小于 0 . 450m ,不大于1.00m ; ( b ) 初始时将所有摆球由平衡点沿 x 轴正方向移动 相同的一个小位移 xo ( xo <<0.45m ) ,然后同 时释放,经过 40s 后,所有的摆能够同时回到初 始状态. 2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率首次全部为零所经过的时间为________________________________________. 二、( 20 分)距离我们为 L 处有一恒星,其质量为 M ,观测发现其位置呈周期性摆动,周期为 T ,摆动范围的最大张角为△θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程. 若 L=10 光年, T =10 年,△θ = 3 毫角秒, M = Ms (Ms为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量 Ms 和国际单位 AU (平均日地距离) 作为单位,只保留一位有效数字.已知 1 毫角秒=1 1000角秒,1角秒= 1 3600 度,1AU=1.5×108km, 光速 c = 3.0 ×105km/s.

第13届全国中学生物理竞赛复赛试题及解答

第十三届全国中学生物理竞赛复赛试题 1.如图所示,有一由匀质细导线弯成的半径为α的圆线和一内接等边三角形的电阻丝组成的电路(电路中各段的电阻值见图)。在圆线圈平面内有垂直纸面向里的均匀磁场,磁感应强度B随时间t均匀减小,其变化率的大小 为一已知常量k。已知2r 1=3r 2 。求:图中AB两点的电势差U A -U B 。 2.长度为4毫米的物体AB由图所示的光学系统成像,光学系统又一个直角棱镜、一个汇聚透镜和一个发散透镜组成,各有关参数和几何尺寸均标示于图上,求:像的位置;像的大小,并作图说明是实像还是虚像,是正立还是倒立的。 3.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳连接成菱形ABCD,静止放在水平光滑的桌面上。若突然给质点A一个历时极短CA 方向的冲击,当冲击结束的时刻,质点A的速度为V,其他质点也获得一定 的速度,∠BAD=2α(α<π/4)。求此质点系统受冲击后所具有的总动量和总能量。

4.在一个半径为R的导体球外,有一个半径为r的细圆环,圆环的圆心与导体球心的连线长为a(a>R),且与环面垂直,如图所示。已知环上均匀带电,总电量为q,试问: 1.当导体球接地时,球上感应电荷总电量是多少? 2.当导体球不接地而所带总电量为零时,它的电势如何? 3.当导体球的电势为V O 时,球球上总电荷又是多少? 4.情况3与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 5.情况2与情况1相比,圆环受导体球的作用力改变量的大小和方向如何? 〔注〕已知:装置不变时,不同的静电平衡 带电状态可以叠加,叠加后仍为静电平衡状 态。 5、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计), 直径为d=2.0米,球内充有压强P 1.005×105帕的气体,该布料所能承受 的最大不被撕破力为f m =8.5×103牛/米(即对于一块展平的一米宽的布料,沿布面而垂直于布料宽度方向所施加的力超过8.5×103牛时,布料将被撕 破)。开始时,气球被置于地面上,该处的大气压强为P ao =1.000×103帕, 温度T =293开,假设空气的压强和温度均随高度而线性地变化,压强的变 化为α p =-9.0帕/米,温度的变化为α T =-3.0×10-3开/米,问该气球上升到 多高时将撕破?假设气球上升很缓慢,可以为球内温度随时与周围空气的温度保持一致,在考虑气球破裂时,可忽略气球周围各处和底部之间空气压强的差别。 6.有七个外形完全一样的电阻,已知其中6个的阻值相同,另一个的阻值不同,请按照下面提供的器材和操作限制,将那个限值不同的电阻找出,并指出它的阻值是偏大还是偏小,同时要求画出所用电路图,并对每步判断的根据予以论证。 提供的器材有:1电池;2一个仅能用来判断电流方向的电流表(量程足够),它的零刻度在刻度盘的中央,而且已知当指针向右偏时电流是由哪个接线柱流入电流表的;3导线若干 操作限值:全部过程中电流表的使用不得超过三次。

第24届全国物理竞赛复赛试题及答案

第24届全国中学生物理竞赛复赛试卷 (本题共七大题,满分160分) 一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。平板与弹簧构成的振动系统的振动周期s T 00.2=。一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。平板静止在其平衡位置。水球B 与平板PQ 的质量相等。现给小球一水平向右的速度0μ,使它从水平台面抛出。已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞, 0μ的值应在什么范围内?取2/8.9s m g = 二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示) 三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。容器、隔板、活塞及活门都是绝热的。隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。整个容器置于压强为P 0、温度为T 0的大气

第30届全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.

三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值. 3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X t X t = 例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t θθθθ= 四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为 q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总 是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .

第25届全国中学生物理竞赛复赛试题及答案

2008年第25届全国中学生物理竞赛复赛试卷 本卷共八题,满分160分 一、(15分) 1、(5分)蟹状星云脉冲星的辐射脉冲周期是0.033s 。假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,已知万有引力常量 113126.6710G m kg s ---=???,由于脉冲星表面的物质未分离,故可估算出此脉冲星密度的下限是3kg m -?。 2、(522C -?,电荷量q 1洁的形式F q =C 。 3、(5强度B 当B 。 二、(21圆轨道,高 5 31 f H =1所示)使卫星以后的近地点点火,使卫星加速和变轨,抬高远地点,相继进入24小时轨道、转移轨道(分别如图中曲线3、4、5所示)。已知卫星质量32.35010m k g =?,地球半径 36.37810R km =?,地面重力加速度29.81/g m s =,月球半径31.73810r km =?。 1、试计算16小时轨道的半长轴a 和半短轴b 的长度,以及椭圆偏心率e 。 2、在16小时轨道的远地点点火时,假设卫星所受推力的方向与卫星速度方向相同,而且点火时间很短,可以认为椭圆轨道长轴方向不变。设推力大小F=490N ,要把近地点抬高到600km ,问点火时间应持续多长? 3、试根据题给数据计算卫星在16小时轨道的实际运行周期。 4、卫星最后进入绕月圆形轨道,距月面高度H m 约为200km ,周期T m =127分钟,试据此估算月球质量与地球质量之比值。

三、(22分)足球射到球门横梁上时,因速度方向不同、射在横梁上的位置有别,其落地点也是不同的。已知球门的横梁为圆柱形,设足球以水平方向的速度沿垂直于横梁的方向射到横梁上,球与横梁间的滑动摩擦系数0.70μ=,球与横梁碰撞时的恢复系数e=0.70。试问足球应射在横梁上什么位置才能使球心落在球门线内(含球门上)?足球射在横梁上的位置用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角θ(小于90)来表示。不计空气及重力的影响。 四、(20分)图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M 为指针压力表,以V M 表示其中可以容纳气体的容积;B 为测温饱,处在待测温度的环境中,以V B 表示其体积;E 为贮气容器,以V E 表示其体积;F 为阀门。M 、E 、B 由体积可忽略的毛细血管连接。在M 、E 、B 均处在室温T 0=300K 时充以压强50 5.210p Pa =?的氢气。假设氢的饱和蒸气仍遵从理想气体状态方125K 示的压强p 2时压力表M 在设25V T K =25K 时,3、的800五、(20个电子,时刻刚好到达电容器的左极板。电容器的两个极板上各开一个小孔,使电子束可以不受阻碍地穿过电容器。两极板图所示的周期性变化的电压AB V (AB A B V V V =-,图中只画出了一个周期的图线),电压的最大值和最小值分别为V 0和-V 0,周期为T 。若以τ表示每个周期中电压处于最大值的时间间隔,则电压处于最小值的时间间隔为T -τ。已知τ的值恰好使在V AB 变化的第一个周期内通过电容器到达电容器右边的所有的电子,能在某一时刻t b 形成均匀分布的一段电子束。设电容器两极板间的距离很小,电子穿过电容器所需要的时间可以忽略,且206mv eV =,不计电子之间的相互作用及重力作用。 1、满足题给条件的τ和t b 的值分别为τ=T ,t b =T 。 2、试在下图中画出t=2T 那一时刻,在0-2T 时间内通过电容器的电子在电容器右侧空间形成的电流I ,随离开右极板距离x 的变化图线,并在图上标出图线特征点的纵、横坐标(坐标的数字保留到小数点后第二位)。取x 正向为电流正方向。图中x=0处为电容器的右极板B 的小孔所在的位置,

第30届全国中学生物理竞赛复赛精彩试题及问题详解

第30届全国中学生物理竞赛复赛试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. 三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值 .

2016全国初中物理竞赛复赛试题(含答案)

2016全国初中物理竞赛复赛试题(含答案) 初中物理是义务教育的基础学科,一般从初二开始开设这门课程,教学时间为两年。一般也是中考的必考科目。随着新高考/新中考改革,学生的综合能力越来越重要,录取方式也越来越多,三位一体录取方式十分看重学生的课外奖项获取。万朋教育小编为初中生们整理了2016年全国初中物理竞赛试卷和答案,希望对您有所帮助。 第29届全国中学生物理竞赛复赛试卷 本卷共8题,满分160分。 一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下底面和湖水表面恰好相接触。已知湖水密度为ρ;物块边长为b ,密度为'ρ,且ρρ<'。在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。 解: 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向 建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= ( x b ≤) (1) 式中 g 为重力加速度.物块的重力为 3 g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有

3 g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'?? =- - ?'? ? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关 系为 X x b ρρ ' =- (5) 把(5)式代入(4)式得 g a X b ρρ=-' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ ' = (7) 物块运动方程在 X 系中可写为 ()()cos X t A t ω?=+ (8) 利用参考圆可将其振动速度表示为 ()()sin V t A t ωω?=-+ (9) 式中ω为振动的圆频率 'g b ρωρ= (10) 在(8)和(9)式中 A 和?分别是振幅和初相位,由初始条件决定. 在物块刚被释 放时,即0t =时刻有x =0,由(5)式得

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

第34届全国中学生物理竞赛复赛理论考试试题解答 2017年9月16日 一、(40分)一个半径为r 、质量为m 的均质实心小圆柱被置于一个半径为R 、质量为M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。重力加速度大小为 g 。试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率: (1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动; (2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内底部附近作无滑滚动。 解: (1)如图,θ为在某时刻小圆柱质心在其横截面上到圆筒中心轴的垂线与竖直方向的夹角。小圆柱受三个力作用:重力,圆筒对小圆柱的支持力和静摩擦力。设圆筒对小圆柱的静摩擦 力大小为F ,方向沿两圆柱切点的 切线方向(向右为正)。考虑小圆柱质心的运动,由质心运动定理得 sin F mg ma θ-= ① R θ θ1 R

式中,a 是小圆柱质心运动的加速度。由于小圆柱与圆筒间作无滑滚动,小圆柱绕其中心轴转过的角度1 θ(规定小圆柱在最低点时1 0θ=)与θ之间的关系为 1 ()R r θθθ=+ ② 由②式得,a 与θ的关系为 22 12 2 ()d d a r R r dt dt θθ==- ③ 考虑小圆柱绕其自身轴的转动,由转动定理得 212 d rF I dt θ-= ④ 式中,I 是小圆柱绕其自身轴的转动惯量 2 12 I mr = ⑤ 由①②③④⑤式及小角近似 sin θθ≈ ⑥ 得 22 203() θθ+=-d g dt R r ⑦ 由⑦式知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为 1π6()g f R r =- ⑧ (2)用F 表示小圆柱与圆筒之间的静摩擦力的大小,1 θ和2 θ分别为小圆柱与圆筒转过的角度(规定

第十九届全国中学生物理竞赛复赛试题(含答案)

第十九届全国中学生物理竞赛复赛试题 一、(20分)某甲设计了1个如图复19-1所示的“自动喷泉”装置,其中A 、B 、C 为3个容器,D 、E 、F 为3根细管,管栓K 是关闭的.A 、B 、C 及细管D 、E 中均 盛有水,容器水面的高度差分别为1h 和1h 如图所示.A 、B 、C 的截 面半 径为12cm ,D 的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K ,会有水从细管口喷出.”乙认为不可能.理由是:“低处的水自动走向高外,能量从哪儿来?”甲当即拧开K ,果然见到有水喷出,乙哑口无言,但不明白自己的错误所在.甲又进一步演示.在拧开管栓K 前,先将喷管D 的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度处. (1).论证拧开K 后水柱上升的原因. (2).当D 管上端足够长时,求拧开K 后D 中静止水面与A 中水面的高度差. (3).论证水柱上升所需能量的来源. 二、 (18 分) 在图复19-2中,半径为R 的圆柱形区域内有匀强磁场,磁场方向垂直纸面指向纸外, 磁感应强度B 随时间均匀变化,变化率/B t K ??=(K 为一正值常量),圆柱形区外空间没有磁场,沿图中AC 弦的方向画一直线,并向外延长,弦AC 与半径OA 的夹角/4απ=.直线上有一任意点,设该点与A 点的距离为x ,求从A 沿直线到该点的电动势的大小. 三、(18分)如图复19-3所示,在水平光滑绝缘的桌面上,有三个带正电的质点1、2、3,位于边长为l 的等边三角形的三个顶点处。C 为三角形的中心,三个质点的质量皆为m ,带电量皆为q 。质点 1、3之 间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C 处时,其速度大小为多少? 四、(18分)有人设计了下述装置用以测量线圈的自感系数.在图复19-4-1中,E 为电压可调的直流电源。K 为开关,L 为待测线圈的自感系数,L r 为线圈的直流电阻,D 为理想二极管,r 为用电阻丝做成的电阻器的电阻,A 为电流表。将图复19-4-1中a 、b 之间的电阻线装进图复19-4-2所示的试管1内,图复19-4-2中其它装置见图下说明.其中注射器筒5和试管1组成的密闭容器内装有

第29届全国高中物理竞赛复赛试题及答案

一、 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= (x b ≤) (1) 式中g 为重力加速度.物块的重力为 3g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有 3g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'??=-- ?'?? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关系为 X x b ρρ'=- (5) 把(5)式代入(4)式得 g a X b ρρ=-' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ '= (7) 物块运动方程在X 系中可写为

()()cos X t A t ω?=+ (8) 利用参考圆可将其振动速度表示为 ()()sin V t A t ωω?=-+ (9) 式中ω为振动的圆频率 ω= (10) 在(8)和(9)式中A 和?分别是振幅和初相位,由初始条件决定. 在物块刚被释放时,即0t =时刻有x =0,由(5)式得 (0)X b ρρ '=- (11) (0)0V = (12) 由(8)至(12)式可求得 A b ρρ '= (13) ?=π (14) 将(10)、(13)和(14)式分别代人(8)和(9)式得 ()()cos X t b t ρωρ '=+π (15) ()()V t t ω=+π (16) 由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在x 系中看,物块下底面坐标为b 时,物块刚好被完全浸没;由(5)式知在X 系中这一临界坐标值为 b 1X X b ρρ'??==- ?? ? (17)即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下b X 处. 注意到在 振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠A ,下面分两种情况讨论: I .b A X ≤. 由(13)和(17)两式得 ρρ'≥2 (18) 在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期 22T ωπ= = (19)物块从初始位置出发往返一次所需的时间

第届全国中学生物理竞赛复赛试卷及答案

2010年全国中学生物理竞赛复赛试卷(第二十七届)本卷共九题,满分 160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程. 一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直 线,它们的悬挂点在不同的高度 上,摆长依次减小.设重力加速度 g = 9 . 80 m/ s2 , 1 .试设计一个包含十个单摆的蛇形摆(即求出每个摆的摆长),要求满足: ( a )每个摆的摆长不小于 0 . 450m ,不大于1.00m ; ( b )初始时将所有摆球由平衡点沿 x 轴正方向移动相同的一个小位移 xo ( xo <<0.45m ) ,然后同时释放,经过 40s 后,所有的摆能够同时回到初始状态. 2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率首次全部为零所经过的时间为 ________________________________________. 二、( 20 分)距离我们为 L 处有一恒星,其质量为 M ,观测发现其位置呈周期性摆动,周期为 T ,摆动范围的最大张角为△

θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程. 若 L=10 光年, T =10 年,△θ = 3 毫角秒, M = Ms (Ms 为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量 Ms 和国际单位 AU (平均日地距离)作为单位, 只保留一位有效数字.已知 1 毫角秒= 1 1000 角秒,1角秒= 1 3600 度,1AU=×108km,光速 c = ×105km/s. 三、( 22 分)如图,一质量均匀分布的刚性螺旋环质量为m,半径为 R ,螺距H =πR ,可绕竖直的对称轴OO′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,首先扶住小球 使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状 态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴OO′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为 h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小. 四、( 12 分)如图所示,一质量为m、电荷量为 q ( q > 0 )的粒子作角速度为ω、半径为 R 的匀速圆周运动.一长直细导线位于圆周所在的平面内,离圆心的距离为d ( d > R ) ,在导线上通有随时间变化的电流I, t= 0 时刻,粒子速度的方向与导线平行,离导线的距离为d+ R .若粒子做圆周运动的向心力等于电流 i ,的磁场对粒子的作用力,试求出电流 i 随时间的变化规律.不考虑

最新上海市第30届初中物理竞赛(大同中学杯)复赛试卷

上海市第30届初中物理竞赛(大同中学杯) 复赛试卷 1、山区高速公路上连续下坡路段常有避险车道。避险车道 是指在长徒下坡路段行车道外侧增设的供速度失控车辆驶 离正线安全.减速的专用车道。如图所示为某段山区高速路 旁的避险车道,其目的是( ) A. 让慢速车辆从这个车道驶出,避兔被后方车辆追尾 B. 让快速车辆从这个车道驶出, 避免与前方车辆相撞 C. 让刹车失灵的车辆.从这个岔道驶上斜坡,从而避兔被后方车辆追尾 D. 让刹车失灵的率辆从这个岔道驶上斜坡,从而使车辆减速停率 2、下列四个现象与右图所示现象涉及的原理不同的是( ) A.飞机加速起飞 B. 氢气球浮在空中 C. 足球比赛中的弧线球 D. 无安全门的地铁站台,管理人员要求乘客站在黄线后候车 3、关于扩散现象,下列说法中正确的是( ) A. 扩散现象仅能发生在液体和气体中 B. 扩散现象是不同物质间的一种化学反应 C. 扩散现象是由物质分子无规则透动产生的 D. 扩散现象是由物质分子的定向移动所形成的 4、如图所示,西束平行白光 A、B照射到透明玻璃球后,在玻璃球与空气界面处发生一次或两次全反射后射在水平的白色桌面上,形成MN 和 PQ两条彩色光带。

以下说法正确的是( ) A. 光束A、B在玻璃球内均发生一次全反射;M、N、P、Q 点的颜色分别为紫、红、紫、红 B. 光束A、B在玻璃球内均发生二次全反射;M、N、P、Q 点的颜色分别为紫、红、紫、红 C. 光束A在玻璃球内发生两次全反射,光束B为一次;M、N、P、Q 点的颜色分别为红、紫、紫、红 D. 光束A在玻璃球内均发生一次全反射,光束 B为两次;M、N、P、Q 点的颜色分别为紫、红、紫、红 5、壁虎能在光滑竖直的玻璃面上或天花板上自由爬向而不留痕迹。科学家利用电子显微镜对壁虎的脚趾进行观测,发现壁虎的脚趾上有密集的刚毛,每根刚毛的末端又分成了100-1000根绒毛,尺寸大概在纳米级别,如图甲所示。科学家仿照壁虎脚趾上的刚毛结构做出了“壁虎胶带”,从而使“蜘蛛人”成为可能。如图乙所示的“蜘蛛人”利用“壁虎胶带”悬吊在天花板上。据此推测壁虎能自如爬行的原因是()

第30届全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . ( 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. "

三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 " k E k L αβγ λω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值. 3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X t X t = 例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t θθθθ= ! 四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为 q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总 是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .

第21届全国中学生物理竞赛复赛试题及答案

本卷共七题,满分140分. 一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透 过的气体分子数d PSt k N ?=,其中t 为渗透持续时间,S 为薄膜 的面积,d 为薄膜的厚度,P ?为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好. 图为测定薄膜材料对空气的透气系数的一种实验装置示意 图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.实验中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固定于图中C C '处,从而把渗透室分为上下两部分,上面部分的容积30cm 00.25=V ,下面部分连同U 形管左管水面以上部分的总容积为V 1,薄膜能够透气的面积 S =1.00cm 2 .打开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,打开开关K 3,对渗透室上部分迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=?H .实验过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.(本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ?来代替公式中的P ?.普适气体常量R = 8.31Jmol -1K -1,1.00atm = 1.013×105Pa ). 第21届全国中学生物理竞赛复赛题试卷 C F

相关主题
文本预览
相关文档 最新文档