当前位置:文档之家› 运动合成分解、平抛运动、圆周运动、天体运动 含答案

运动合成分解、平抛运动、圆周运动、天体运动 含答案

运动合成分解、平抛运动、圆周运动、天体运动  含答案
运动合成分解、平抛运动、圆周运动、天体运动  含答案

课时作业(二十二)[第22讲运动的合成与分解]

基础热身

1.[2011·金华模拟] 一质点在xOy平面内的运动轨迹如图K22-1所示,下列判断正确的是()

图K22-1

A.若在x方向始终匀速运动,则在y方向先减速后加速运动

B.若在x方向始终匀速运动,则在y方向先加速后减速运动

C.若在y方向始终匀速运动,则在x方向一直加速运动

D.若在y方向始终匀速运动,则在x方向一直减速运动

2.[2011·唐山一模] 一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()

A.一定做匀变速直线运动,加速度大小可能是5 m/s2

B.一定做匀变速运动,加速度大小可能等于10 m/s2

C.可能做匀减速直线运动,加速度大小是15 m/s2

D.可能做匀速圆周运动,向心加速度大小是5 m/s2

3.如图K22-2所示,直线AB和CD是彼此平行且笔直的河岸,若河水不流动,小船船头垂直河岸由A点匀速驶向对岸,小船的运动轨迹为直线P.若河水以稳定的速度沿平行河岸方向流动,且整个河流中水的流速处处相等,现仍保持小船船头垂直河岸由A点匀加速驶向对岸,则小船实际运动的轨迹可能是图中的()

图K22-2

A.直线P B.曲线Q

C.曲线S D.直线R

4.如图22-3所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3 m的吊环,他在车上和车一起以2 m/s的速度向吊环运动,小朋友抛球时手离地面1.2 m,当他在离吊环的水平距离为2 m时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出时的速度是(g取10 m/s2)()

图K22-3

A.1.8 m/s

B.3.2 m/s

C.3.6 m/s

D.6.8 m/s

技能强化

5.狗拉雪橇沿位于水平面内的圆弧形道路匀速行驶,以下给出的四个关于雪橇受到的牵引力F及摩擦力f的示意图(图中O为圆心)中正确的是()

A B C D

图K22-4

6.[2012·盐城摸底] 如图K22-5所示,滑板运动员在水平地面上向前滑行,在横杆前相对于滑板竖直向上起跳,人与滑板分离,分别从杆的上、下通过,忽略人和滑板在运动中受到的阻力.则运动员()

图K22-5

A.起跳时脚对滑板的作用力斜向后

B.在空中水平方向先加速后减速

C.在空中轨迹为抛物线

D.越过杆后落在滑板起跳位置的后方

图K22-6

7.[2011·扬州模拟] 如图K22-6所示,光滑水平桌面上有一小球以速度v向右匀速运动,当它经过靠近桌边的竖直木板的ad边正前方时,木板开始做自由落体运动.若木板开始运动时,cd边与桌面相齐,则小球在木板上的正投影轨迹可能是图K22-7中的()

A B C D

图K22-7

8.河水的流速随离河岸的距离的变化关系如图K22-8甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则()

甲乙

图K22-8

A.船渡河的最短时间是60 s

B.船在行驶过程中,船头始终与河岸垂直

C.船在河水中航行的轨迹是一条直线

D.船在河水中的最大速度是7 m/s

9.质量为2 kg的质点在xOy平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图K22-9所示,下列说法正确的是()

图K22-9

A.质点的初速度为5 m/s

B.质点所受的合外力为5 N

C.质点初速度的方向与合外力方向垂直

D.2 s末质点速度大小为6 m/s

10.如图K22-10所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M.C点与O点距离为l.现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下述说法正确的是()

图K22-10

A.重物M做匀速直线运动

B.重物M做匀变速直线运动

C.重物M的最大速度是ωl

D.重物M的速度先减小后增大

11.[2011·宁波质检] 宽9 m的成型玻璃以2 m/s的速度向右匀速运动,在切割工序处,金刚割刀的速度为10 m/s,为了使割下的玻璃板都成规定尺寸的矩形,则:

(1)金刚割刀的轨道应如何控制?

(2)切割一次的时间多长?

(3)所生产的玻璃板的规格是怎样的?

12.“歼-20”战斗机质量为m,以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).

(1)用x表示水平位移,y表示竖直位移,试画出“歼-20”的运动轨迹简图,并简述作图理由.

(2)若测得当飞机在水平方向的位移为L时,它的上升高度为h.求“歼-20”受到的升力大小.

(3)求当飞机上升到h高度时飞机的速度.

挑战自我

13.[2011·内江一模] 减速带是公路上常见的一种交通设施,通常安装在学校附近学生出入较多的公路上.当汽车到达减速带前都要减速,然后低速通过减速带,从而保障汽车和行人的安全.当汽车通过减速带时可简化为如图K22-11所示的模型.两面对称的减速带截面的底面宽度为d,高为h,一辆质量为m可视为质点的汽车在减速带上上升时,在水平方向上可视为速度为v0匀速直线运动,在竖直方向可视为初速度为零的匀加速直线运动,那么:

(1)汽车到达减速带顶端A时的速度为多大?

(2)在上升阶段,汽车对减速带的作用力为多大?

图K22-11

课时作业(二十三)[第23讲抛体运动]

基础热身

1.物体做平抛运动时,它的速度方向与初速度方向的夹角α的正切tanα随时间t变化图象是图K23-1中的()

A B C D

图K23-1

2.飞镖比赛是一项极具观赏性的体育比赛项目,2010年的IDF(国际飞镖联合会)飞镖世界杯赛在上海进行.某一选手在距地面高h,离靶面的水平距离L处,将质量为m的飞镖以速度v0水平投出,结果飞镖落在靶心正上方.如只改变h、L、m、v0四个量中的一个,可使飞镖投中靶心的是(不计空气阻力)()

图K23-2

A.适当减小v0B.适当提高h

C.适当减小m D.适当减小L

3.如图K23-3所示,在一次演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为x,若拦截成功,不计空气阻力,则v1、v2的关系应满足()

图K23-3

A .v 1=v 2

B .v 1=H

x v 2

C .v 1=

H x v 2 D .v 1=x H

v 2 4.某同学对着墙壁练习打乒乓球,假定球在墙面上以25 m/s 的速度沿水平方向反弹,落地

点到墙面的距离在10 m 至15 m 之间,忽略空气阻力,取g =10 m/s 2.则球在墙面上反弹点的高度范围是( ) A .0.8 m 至1.8 m B .0.8 m 至1.6 m C .1.0 m 至1.6 m D .1.0 m 至1.8 m 技能强化 5.[2011·温州模拟] 如图K23-4所示,从倾角为θ的斜面上的M 点水平抛出一个小球,小球的初速度为v 0,最后小球落在斜面上的N 点,重力加速度为g ,则下列说法错误的是( )

图K23-4

A .可求M 、N 之间的距离

B .可求小球落到N 点时速度的大小和方向

C .可求小球到达N 点时的动能

D .可以断定,当小球速度方向与斜面平行时,小球与斜面间的距离最大

6.如图K23-5所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点处.若不计空气阻力,下列关系式正确的是( )

图K23-5

A .v a =v b

B .v a =2v b

C .t a =t b

D .t a =2t b

7.如图K23-6所示,水平抛出的物体,抵达斜面上端P 处,其速度方向恰好沿斜面方向,然后沿斜面无摩擦滑下,图K23-7中的图象是描述物体沿x 方向和y 方向运动的速度—时间图象,其中正确的是( )

图K23-6

A B C D

图K23-7

8.[2011·亳州模拟] 如图K23-8所示,P是水平面上的圆弧凹槽.从高台边B点以速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()

图K23-8

A.cotθ1tanθ2=2 B.tanθ1tanθ2=2

C.cotθ1cotθ2=2 D.tanθ1cotθ2=2

图K23-9

9.如图K23-9所示,斜面上有a、b、c、d四个点,ab=bc=cd.从a点正上方的O点以速度v水平抛出一个小球,它落在斜面上b点,若小球从O点以速度2v水平抛出,不计空气阻力,则它落在斜面上的()

A.b与c之间某一点B.c点

C.c与d之间某一点D.d点

10.如图K23-10所示,从倾角为θ的足够长的斜面顶端P以速度v0抛出一个小球,落在斜面上某处Q点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v0,则以下说法错误的是()

图K23-10

A.小球在空中的运动时间变为原来的2倍

B.夹角α将变大

C.PQ间距一定大于原来间距的3倍

D.夹角α与初速度大小无关

11.如图K23-11所示,一质点做平抛运动先后经过A、B两点,到达A点时速度方向与水平方向的夹角为30°,到达B点时速度方向与水平方向的夹角为60°.

(1)求质点在A、B位置的竖直分速度大小之比;

(2)设质点的位移AB与水平方向的夹角为θ,求tanθ的值.

图K23-11

12.如图K23-12所示,A、B两球之间由长6 m的柔软细线相连,将两球相隔0.8 s先后从同一高度从同一点均以4.5 m/s的初速度水平抛出,g取10 m/s2,则A球抛出后多长时间,A、B两球间的连线可拉直?这段时间内A球离抛出点的水平位移多大?

图K23-12

挑战自我

13.如图K23-13所示,水平屋顶高H=5 m,墙高h=3.2 m,墙到房子的距离L=3 m,墙外马路宽s=10 m,小球从房顶水平飞出,落在墙外的马路上,求小球离开房顶时的速度v0的取值范围.(取g=10 m/s2)

图K23-13

课时作业(二十四)A[第24讲圆周运动的基本概念和规律]

基础热身

1.如图K24-1所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是()

图K24-1

A.摩托车一直受到沿半径方向向外的离心力作用

B.摩托车所受外力的合力小于所需的向心力

C.摩托车将沿其线速度的方向沿直线滑去

D.摩托车将沿其半径方向沿直线滑去

2.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图K24-2所示,那么()

图K24-2

A.因为速率不变,所以石块的加速度为零

B.石块下滑过程中受的合外力越来越大

C.石块下滑过程中受的摩擦力大小不变

D.石块下滑过程中的加速度大小不变,方向始终指向球心

3.如图K24-3所示,a、b是地球表面上不同纬度上的两个点,如果把地球看作是一个球体,a、b两点随地球自转做匀速圆周运动,这两个点具有大小相同的()

A.线速度B.角速度

C.加速度D.轨道半径

图K24-3

图K24-4

4.如图K24-4所示为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图可知()

A.A质点运动的线速度大小不变

B.A质点运动的角速度大小不变

C.B质点运动的线速度大小不变

D.B质点运动的角速度与半径成正比

技能强化

5.2011·淮北联考如图K24-5所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()

A.小球通过最高点时的最小速度v min=g(R+r)

B.小球通过最高点时的最小速度v min=gR

C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力

D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力

图K24-5

图K24-6

6.如图K24-6所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()

A.在释放前的瞬间,支架对地面的压力为(m+M)g

B.在释放前的瞬间,支架对地面的压力为Mg

C.摆球到达最低点时,支架对地面的压力为(m+M)g

D.摆球到达最低点时,支架对地面的压力为(2m+M)g

7.2011·湖南联考如图K24-7所示,在倾角为α=30°的光滑斜面上,有一根长为L=0.8 m 的细绳,一端固定在O点,另一端系一质量为m=0.2 kg的小球,沿斜面做圆周运动,若要小球能通过最高点A,则小球在最低点B的最小速度是()

A.2 m/s B.210 m/s

C.2 5 m/s D.2 2 m/s

图K24-7

图K24-8

8.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方L

2处

钉有一颗钉子,如图K24-8所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,下列说法错误的是( ) A .小球线速度没有变化

B .小球的角速度突然增大到原来的2倍

C .小球的向心加速度突然增大到原来的2倍

D .悬线对小球的拉力突然增大到原来的2倍 9.质量为m 的小球由轻绳a 和b 分别系于一轻质木架上的A 点和C 点.如图K24-9所示,当轻杆绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向.当小球运动到图示位置时,绳b 被烧断的同时木架停止转动,则( ) A .绳a 对小球拉力不变 B .绳a 对小球拉力减小 C .小球可能前后摆动

D .小球不可能在竖直平面内做圆周运动

图K24-9

图K24-10

10.如图K24-10所示,在光滑的固定圆锥漏斗的内壁,两个质量相同的小球A 和B 分别紧贴着漏斗在水平面内做匀速圆周运动,其中小球A 在小球B 的上方.下列判断正确的是( )

A .A 球的速率大于

B 球的速率 B .A 球的角速度大于B 球的角速度

C .A 球对漏斗壁的压力大于B 球对漏斗壁的压力

D .A 球的转动周期等于B 球的转动周期

11.如图K24-11所示,直径为d 的纸制圆筒以角速度ω绕垂直纸面的轴O 匀速转动(图示为截面).从枪口发射的子弹沿直径穿过圆筒.若子弹在圆筒旋转不到半周时,在圆周上留下a 、b 两个弹孔,已知aO 与bO 夹角为θ,求子弹的速度.

图K24-11

12.如图K24-12所示,把一个质量m=1 kg的小球通过两根等长的细绳a、b与竖直杆上的A、B两个固定点相连接,绳长都是1 m,AB长度是1.6 m,直杆和小球旋转的角速度等于多少时,b绳上才有张力?

图K24-12

挑战自我

13.如图K24-13所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:

(1)小球从圆弧轨道上释放时的高度H;

(2)转筒转动的角速度ω.

图K24-13

课时作业(二十四)B[第24讲圆周运动的基本概念和规律]

基础热身

1.下列关于离心现象的说法正确的是()

A.当物体所受的离心力大于向心力时产生离心现象

B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动

2.如图K24-14所示,物块在水平圆盘上与圆盘一起绕固定轴匀速运动,下列说法正确的是()

A.物块处于平衡状态

B.物块受三个力作用

C.在角速度一定时,物块到转轴的距离越远,物块越不容易脱离圆盘

D.在物块到转轴距离一定时,物块运动周期越小,越不容易脱离圆盘

图K24-14图K24-15

3.如图K24-15所示,半径为R的光滑半圆球固定在水平面上,顶部有一小物体.今给小物体一个水平初速度v0=gR,则物体将()

A.沿球面滑至M点

B.先沿球面滑至某点N再离开球面做斜下抛运动

C.按半径大于R的新圆形轨道运动

D.立即离开半圆球做平抛运动

4.2010年2月16日,在加拿大城市温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛落下帷幕,中国选手申雪、赵宏博获得冠军.如图K24-16所示,赵宏博以自己为转动轴拉着申雪做匀速圆周运动.若赵宏博的转速为30 r/min,手臂与竖直方向的夹角为60°,申雪的质量是50 kg,她触地冰鞋的线速度为4.7 m/s,则下列说法正确的是()

图K24-16

A.申雪做圆周运动的角速度为2π rad/s

B.申雪触地冰鞋做圆周运动的半径约为2 m

C.赵宏博手臂拉力约是850 N

D.赵宏博手臂拉力约是500 N

技能强化

5.角速度计可测量飞机、航天器、潜艇的转动角速度,其结构如图K24-17所示.当系统绕轴OO′转动时,元件A发生位移并输出相应的电压信号,成为飞机、卫星等的制导系统的信息源.已知A的质量为m,弹簧的劲度系数为k、自然长度为l,电源的电动势为E,内阻不计.滑动变阻器总长也为l,电阻分布均匀,系统静止时滑片P在B点.当系统以角

速度ω转动时,则( )

图K24-17

A .电路中电流随角速度的增大而增大

B .电路中电流随角速度的减小而减小

C .弹簧的伸长量为x =mω2l

k -mω2

D .输出电压U 与ω的函数式为U =Emω2l

k -mω2

6.如图K24-18所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为( )

图K24-18

A.r 1ω1r 3

B.r 3ω1r 1

C.r 3ω1r 2

D.r 1ω1r 2

图K24-19

7.如图K24-19所示,转动轴垂直于光滑平面,交点O 的上方h 处固定细绳的一端,细绳的另一端拴接一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动并在光滑水平面上做匀速圆周运动.要使球不离开水平面,转动轴的转速的最大值是( ) A.12πg

h B .πgh C.12π

g

l

D .2πl g

8.细绳的一端固定,另一端系一小球,让小球在竖直面内做圆周运动,关于小球运动到P 点的加速度方向,图K24-20中可能的是( )

A B C D

图K24-20

9.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的高一些.路面与水平面间的夹角为θ,设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( ) A .arcsin v 2Rg B .arctan v 2

Rg

C .arcsin 2v 2Rg

D .arccot v 2

Rg

10.如图K24-21所示,OO ′为竖直轴,MN 为固定在OO ′上的水平光滑杆,有两个质

量相同的金属球A 、B 套在水平杆上,AC 和BC 为抗拉能力相同的两根细线,C 端固定在转轴OO ′上.当绳拉直时,A 、B 两球转动半径之比恒为2∶1.当转轴的角速度逐渐增大时( )

图K24-21 A .AC 先断 B .BC 先断 C .两线同时断

D .不能确定哪段线先断

11.飞机由俯冲转为拉起的一段轨迹可看作一段圆弧.如图K24-22所示,飞机做俯冲拉起运动时,在最低点附近做半径为r =180 m 的圆周运动,如果飞行员质量m =70 kg ,飞机经过最低点P 时的速度v =360 km/h ,则这时飞行员对座椅的压力是多少?(取g =10 m/s 2)

图K24-22

12.如图K24-23所示,一可视为质点的小球质量为m =1 kg ,在左侧平台上水平抛出,恰能无碰撞地沿圆弧切线从A 点进入光滑竖直圆弧轨道,并沿轨道下滑,A 、B 为圆弧的两个端点,其连线水平,O 为轨道的最低点.已知圆弧半径为R =1.0 m ,对应圆心角为θ=106°,平台与A 、B 连线的高度差为h =0.8 m .(重力加速度g =10 m/s 2,sin53°=0.8,cos53°=0.6)求:

(1)小球平抛的初速度大小;

(2)小球运动到圆弧轨道最低点O 时对轨道的压力大小.

图K24-23 挑战自我 13.2011·衢州模拟如图K24-24所示,水平转台高1.25 m ,半径为0.2 m ,可绕通过圆心处的竖直转轴转动.转台的同一半径上放有质量均为0.4 kg 的小物块A 、B (可看成质点),A

与转轴间距离为0.1 m ,B 位于转台边缘处,A 、B 间用长0.1 m 的细线相连,A 、B 与水平转台间最大静摩擦力均为0.54 N ,g 取10 m/s 2. (1)当转台的角速度达到多大时细线上出现张力? (2)当转台的角速度达到多大时A 物块开始滑动?

(3)若A 物块恰好将要滑动时细线断开,此后转台保持匀速转动,求B 物块落地瞬间A 、B 两物块间的水平距离.(不计空气阻力,计算时取π=3)

图K24-24

课时作业(二十五) [第25讲 万有引力与天体运动]

基础热身 1.[2011·海淀模拟] 关于物体运动过程所遵循的规律或受力情况的判断,下列说法中不正确的是( )

A .月球绕地球运动的向心力与地球上的物体所受的重力是同一性质的力

B .月球绕地球运动时受到地球的引力和向心力的作用

C .物体在做曲线运动时一定要受到力的作用

D .物体仅在万有引力的作用下,可能做曲线运动,也可能做直线运动

2.近年来,人类发射的多枚火星探测器已经相继在火星上着陆.某火星探测器绕火星做匀速圆周运动,它的轨道距火星表面的高度等于火星的半径,它的运动周期为T ,则火星的平均密度ρ的表达式为(k 为某个常数)( ) A .ρ=kT B .ρ=k

T

C .ρ=kT 2

D .ρ=k

T

2

3.[2011·唐山模拟] 天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的5倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67

×10-11

N·m 2/kg 2,由此估算该行星的平均密度最接近( ) A .2.0×103 kg/m 3 B .6.0×103 kg/m 3 C .1.0×104 kg/m 3 D .3.0×104 kg/m 3

4.科学研究表明地球的自转在变慢.四亿年前,地球每年是400天,那时,地球每自转一周的时间为21.5小时,比现在要快3.5小时.据科学家们分析,地球自转变慢的原因主要有两个:一个是潮汐时海水与海岸碰撞、与海底摩擦而使能量变成内能;另一个是由于潮汐的作用,地球把部分自转能量传给了月球,使月球的机械能增加了(不考虑对月球自转的影响).由此可以判断,与四亿年前相比月球绕地球公转的( ) A .半径增大 B .速度增大

C .周期减小

D .角速度增大 技能强化 5.[2011·温州模拟] 如图K25-1为宇宙中一恒星系的示意图,A 为该星系的一颗行星,它绕中央恒星O 运行的轨道近似为圆,天文学家观测得到A 行星运动的轨道半径为R 0,周期为T 0.长期观测发现,A 行星实际运动的轨道与圆轨道总有一些偏离,且周期每隔t 0时间发生一次最大偏离,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知的行星B (假设其运动轨道与A 在同一平面内,且与A 的绕行方向相同),它对A 行星的万有引力引起A 轨道的偏离,由此可推测未知行星B 的运动轨道半径为( )

图K25-1 A.t 0t 0-T 0R 0 B .R 0

3

????t 0-T 0t 02 C .R 03

????t 0t 0-T 02 D .R 0

???

?t 0t 0-T 03 6.[2011·石家庄一模] 由于最近行星标准抬高了门槛,太阳系“缩编”,综合条件薄弱的冥王星被排挤出局.关于冥王星还有其他信息:它现在正处于温度较高的夏季,只有零下200摄氏度左右,号称“严寒地狱”,它的夏季时间相当于地球上的20年,除了夏季之外的其他季节,相当于地球上的228年,这颗星上的空气全被冻结,覆盖在其表面上,可认为是真空,但有一定的重力加速度,并假设其绕太阳的运动也可以按圆周运动处理.依据这些信息判断下列问题中不正确的是( )

A .冥王星的公转半径一定比地球的公转半径大

B .冥王星的公转线速度一定比地球的公转线速度小

C .在冥王星上,从相同高度处同时释放的氢气球(轻质绝热材料制成,里面气体是气态的)和等大的石块都将竖直向下运动,且同时到达其表面

D .冥王星的公转半径一定比地球的公转半径小

7.如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件不能求出( )

图K25-2

A .水星和金星绕太阳运动的周期之比

B .水星和金星到太阳的距离之比

C .水星和金星的密度之比

D .水星和金星绕太阳运动的向心加速度大小之比 8.[2011·杭州质检] 地球表面的重力加速度为g ,地球半径为R ,引力常量为G .假设地球是一个质量分布均匀的球体,体积为4

3πR 3,则地球的平均密度是( )

A.3g 4πGR

B.3g 4πGR 2

C.g GR

D.g G 2R

9.如图K25-3所示,美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,则下列关于土星质量M 和平均密度ρ的表达式正确的是( ) A .M =4π2(R +h )3Gt 2,ρ=3π(R +h )3

Gt 2R 3

B .M =4π2(R +h )2Gt 2,ρ=3π(R +h )2

Gt 2R 3

C .M =4π2t 2(R +h )3gn 2,ρ=3πt 2(R +h )3

Gn 2R 3

D .M =4π2n 2(r +h )3Gt 2,ρ=3πn 2(R +h )3

Gt 2R 3

图K25-3 图K25-4

10.一物体从一行星表面某高度处自由下落(不计阻力).自开始下落计时,得到物体离行星表面高度h 随时间t 变化的图象如图K25-4所示,则根据题设条件可以计算出( ) A .行星表面重力加速度的大小 B .行星的质量 C .行星的半径

D .物体受到星球引力的大小 11.[2011·杭州检测] 宇航员在一行星上以10 m/s 的初速度竖直上抛一质量为0.2 kg 的物体,不计阻力,经2.5 s 后落回手中,已知该星球半径为7 220 km. (1)该星球表面的重力加速度是多大?

(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?

(3)若物体距离星球无穷远处时其引力势能为零,则当物体距离星球球心r 时其引力势能E p =-G Mm r

(式中m 为物体的质量,M 为星球的质量,G 为引力常量).问要使物体沿竖直方

向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?

12.某课外科技小组长期进行天文观测,发现某行星周围有众多小卫星,这些小卫星靠近行星且分布相当均匀,经查对相关资料,该行星的质量为M.现假设所有卫星绕该行星的运动都是匀速圆周运动,已知引力常量为G.

(1)测得离行星最近的一颗卫星的运动轨道半径为R1,若忽略其他小卫星对该卫星的影响,求该卫星的运行速度v1;

(2)在进一步的观测中,发现离行星很远处还有一颗卫星,其运动轨道半径为R2,周期为T2,试估算靠近行星周围众多小卫星的总质量m卫.

挑战自我

13.[2011·武汉模拟] 人们通过对月相的观测发现,当月球恰好是上弦月时,如图K25-5甲所示,人们的视线方向与太阳光照射月球的方向正好是垂直的,测出地球与太阳的连线和地球与月球的连线之间的夹角为θ.当月球正好是满月时,如图乙所示,太阳、地球、月球大致在一条直线上且地球在太阳和月球之间,这时人们看到的月球和在白天看到的太阳一样大(从物体两端引出的光线在人眼光心处所成的夹角叫做视角,物体在视网膜上所成像的大小决定于视角).已知嫦娥飞船贴近月球表面做匀速圆周运动的周期为T,月球表面的重力加速度为g0,试估算太阳的半径.

图K25-5

课时作业(二十六) [第26讲 人造卫星 宇宙速度]

基础热身

1.北京时间2011年9月29日晚21时16分,中国在酒泉卫星发射中心载人航天发射场,用“长征二号F ”T1运载火箭,将中国全新研制的首个目标飞行器“天宫一号”发射升空.关于“天宫一号”的发射和运行,下列说法正确的是( )

图K26-1 A .“天宫一号”由“长征二号F ”T1运载火箭加速离地升空时,处于超重状态 B .“天宫一号”由“长征二号F ”T1运载火箭加速离地升空时,处于失重状态 C .“天宫一号”在预定工作轨道稳定运行时,处于平衡状态 D .“天宫一号”在预定工作轨道稳定运行时,不受重力作用 2.[2011·内江模拟] 近年来,我国已陆续发射了七颗“神舟”号系列飞船,当飞船在离地面几百千米的圆形轨道上运行时,需要进行多次轨道维持,轨道维持就是通过控制飞船上发动机的点火时间和推力,使飞船能保持在同一轨道上稳定运行.如果不进行轨道维持,飞船的轨道高度就会逐渐降低,则以下说法中不正确的是( ) A .当飞船的轨道高度逐渐降低时,飞船的周期将逐渐变短 B .当飞船的轨道高度逐渐降低时,飞船的线速度逐渐增大

C .当飞船离地面的高度降低到原来的1

2

时,其向心加速度将会变为原来的4倍

D .对飞船进行轨道维持时,应向飞船运动的反方向喷气 3.据报道:“嫦娥二号”探月卫星于2010年10月1日在西昌卫星发射中心发射升空,在太空中飞行5天后于6日上午成功变轨,使卫星从地月转移轨道进入周期约为12小时的椭圆绕月轨道,之后经过多次变轨进入距月球表面100 km 的圆形环月轨道,其探测到的数据将比环月飞行高度为200 km 的“嫦娥一号”卫星更加详实.这是我国探月工程中重要的一步,为下一步的“落月工程”提供了必要的科研数据.已知月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的1

3

,则下列说法正确的是( )

A .“嫦娥二号”环月飞行的速度比“嫦娥一号”更小

B .卫星内部随卫星一起飞行的仪器处于失重状态,因而不受重力

C .月球第一宇宙速度约为1.8 km/s

D .“嫦娥二号”的发射速度大于11.2 km/s 4.[2011·昆明检测] A 、B 两地球卫星均在同一轨道平面内绕地球做匀速圆周运动,它们运动的轨道半径之比r A ∶r B =1∶4,A 的周期为T 0,某一时刻A 、B 两卫星相距最近,则此时刻开始到A 、B 相距最远经历的时间不可能是( ) A.47T 0 B.87T 0 C.127T 0 D.207

T 0

技能强化 5.[2011·海淀一模] 我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T .若以R 表示月球的半径,则( ) A .卫星运行时的向心加速度为4πR

T 2

B .卫星运行时的线速度为2πR

T

C .物体在月球表面自由下落的加速度为4π2R

T 2

D .月球的第一宇宙速度为2πR (R +h )3

TR

6.[2011·云南一模] 中国正在实施北斗卫星导航系统建设工作,将相继发射五颗静止轨道卫星和十三颗非静止轨道卫星,到2020年左右,建成覆盖全球的北斗卫星导航系统.中国北斗卫星导航系统官方网站2010年1月22日发布消息说,五天前成功发射的中国北斗卫星导航系统第三颗组网卫星,经过四次变轨,于北京时间当天凌晨一时四十七分,成功定点于东经一百六十度的赤道上空.关于成功定点后的“北斗导航卫星”,下列说法正确的是( ) A .离地面高度一定,相对地面静止

B .运行速度大于7.9 km/s 小于11.2 km/s

C .绕地球运行的角速度比月球绕地球运行的角速度小

D .向心加速度与静止在赤道上物体的向心加速度大小相等 7.“神舟七号”飞船绕地球运转一周需要时间约90 min ,“嫦娥二号”卫星在工作轨道绕月球运转一周需要时间约118 min(“神舟七号”和“嫦娥二号”的运动都可视为匀速圆周运动).已知“嫦娥二号”卫星与月球中心的距离约为“神舟七号”飞船与地球中心距离的3

11.

根据以上数据可求得( ) A .月球与地球的质量之比 B .“嫦娥二号”卫星与“神舟七号”飞船的质量之比 C .月球与地球的第一宇宙速度之比

D .月球表面与地球表面的重力加速度之比 8.[2011·许昌联考] 在四川汶川的抗震救灾中,我国自主研制的“北斗一号”卫星导航系统在抗震救灾中发挥了巨大作用.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星均绕地心O 在同一轨道上做匀速圆周运动,轨道半径为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置(如图K26-2所示).若卫星均顺时针运行,地球表面处的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力.则以下判断中错误的是( )

图K26-2

平抛运动的特点和规律

平抛运动的特点及规律 一、知识目标: 1、知道什么是平抛及物体做平抛运动的条件。 2、知道平抛运动的特点。 3、理解平抛运动的基本规律。 二、能力目标: 通过平抛运动的研究方法的学习,使学生能够综合运用已学知识,来探究新问题的研究方法。 三、德育目标: 通过平抛的理论推证和实验证明,渗透实践是检验真理的标准。 教学重点: 1、平抛运动的特点和规律 2、学习和借借鉴本节课的研究方法 教学难点: 平抛运动的规律 教学方法: 实验观察法、推理归纳法、讲练法 教学用具: 平抛运动演示仪、自制投影片、电脑、多媒体课件 教学步骤: 一、导入新课: 用枪水平地射出一颗子弹,子弹将做什么运动,这种运动具有什么特点,本节课我们就来学习这个问题。 二、新课教学 (一)用投影片出示本节课的学习目标 1、理解平抛运动的特点和规律 2、知道研究平抛运动的方法 3、能运用平抛运动的公式求解有关问题 (二)学习目标完成过程 1:平抛物体的运动 (1)简介平抛运动: a:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动,叫平抛运动。 b:举例:用力打一下桌上的小球,使它以一定的水平初速度离开桌面,小球所做的就是平抛运动,并且我们看它做的是曲线运动。 c:分析说明平抛运动为什么是曲线运动(因为物体受到与速度方向成角度的重力作用)(2)巩固训练 a:物体做平抛运动的条件是什么 b:举几个物体做平抛运动的实例 (3)a:分析说明:做平抛运动的物体;在水平方向上由于不受力,将做匀速直线运动b:在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。 c:实验验证: 1.用CAI课件模拟平抛运动, 2.模拟的同时,配音说明: 用小锤打击弹性金属片时,A球就向水平方向飞出,做平抛运动,而同时B球被松开,做自由落体运动。 3.实验现象:(学生先叙述,然后教师总结) 现象一:越用力打击金属片,A飞出水平距离就越远。 现象二:无论A球的初速度多大,它会与B球同时落地。 ?→ ?对现象进行分析:得到平抛运动在竖直方向上是自由落体运动,水平方向的速 ..........................

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为口,则在过碗底时滑块受到摩擦力的大小为( ) v2v2V2 A.(! mg B.(i m— C .口m(g+ ) D .口m(——g) R R R 2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的 临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力大小是() A. 0 B . mg C . 3mg D . 5mg 3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v o,则: (1)当小球以2v o的速度经过轨道最高点时,对轨道的压力为多少? (2)当小球以后吩的速度经过轨道最低点时.轨道对小球的弾力为事少? 4、如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运 动, 小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 小球的质量为M=5kg 1 5、如图所示,位于竖直平面上的丄圆弧轨道光滑,半径为R, OB沿竖直 4 方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达 B点时的速度为,2gR,最后落在地面上C点处,不计空气阻力,求: (1) 小球刚运动到B点时的加速度为多大,对轨道的压力多大; (2) 小球落地点C与B点水平距离为多少。 6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L, 当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低 点B时,线恰好断裂,球落在地面上的C点,C点距悬点0的水平距离为S (不计 空气阻力).求: (1)小球从A点运动到B点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨道A端与水平面 相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的 压力恰好为零,g取10m/s 2,求: (1)小球经B点时的速度大小;(2)小球落地点到A点的距离. 时,对管壁上部的压力为3mg , b通过最高点A时,对管壁下部的压力为 0.75mg ,求: (1) a球在最高点速度. (2) b球在最高点速度. (3) a、b两球落地点间的距离

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

《平抛运动》说课稿

《平抛运动》说课稿 一、教材分析 (一)教材简介 这节课要探究的内容比较丰富,在运动的合成与分解的基础上,给出了什么叫平抛运动,提出了探究的问题:探究平抛运动的特点。探究的过程既有实验现象的观察。又有分析、推理的过程,还将实验现象与分析、推理结合起来,探究出平抛运动在水平方向和竖直方向的运动规律。 (二)教学目标 ⑴知识与技能 1.知道平抛运动的特点和规律。 2.知道平抛运动形成的条件。 3.理解平抛运动是匀变速运动,其加速度为g。 4.会用平抛运动解答有关问题。 ⑵过程与方法 1.利用已知的直线规律来研究复杂的曲线运动,渗透物理学“化曲为直”“化繁为简”的方法及“等效代换”“正交分解”的思想方法。

2.平抛物体探究实验中突出了“实验的精髓在于控制”的思想。 ⑶情感态度与价值观 通过实际情景培养学生关注物理、关注生活的意识,并且培养学生在生活中应用物理知识的意识;使学生爱物理、爱生活。 (三)教学重点、难点 重点:平抛物体运动的特点和规律。 难点:平抛运动规律的得出过程。 二、学情分析 深入的了解学生是上好课的关键,我对学生的基本情况分析如下: ⑴高一学生已经具备较好的物理实验能力、分析问题能力、归纳实验现象的能力。 ⑵学生刚学习过直线运动规律,对直线运动的分析方法记忆犹新;并在上一节中刚学过运动合成与分解的知识,对这一分析曲线运动的方法并不陌生,这为本节课在方法上铺平了道路; 三、教法与学法 为了发挥教师的主导作用和学生的主体地位,突出重点、突破难点,我主要采取以下的教学方法和学法。 教法:探究式教学法和情景创设教学法

学法:以学生合作学习和探究性学习为主,培养学生的逻辑思维能力。 四、教学过程设计 “授之以鱼、不如授之以鱼”,教是为了不教,根据本课题的特点和学生的基本情况我作如下的--。 教学环节 教学内容及教师组织活动 设计意图 ㈠ 情景创设 引入课题 创设情景:从水平飞行的飞机上空投物资;(视频) 引问:请同学描述上述物体运动的轨迹和运动性质 (演示i)用力弹一下放在桌面上的小球,使它以一定的水平初速度离开桌面,让同学观察小球离开桌面后的运动轨迹。如图所示,重复两次让同学们能够清楚地观察。 提出问题:请同学们分析一下小球为什么会做曲线运动呢? 情景创设教学法:

备考2019年高考物理一轮复习:第四章第2讲平抛运动的规律及应用练习含解析

板块三限时规范特训 时间:45分钟满分:100分 一、选择题(本题共10小题,每小题7分,共70分。其中1~6为单选,7~10为多选) 1.一个物体以初速度v0被水平抛出,落地时速度为v,那么物体运动的时间是() A.v-v0 g B. v+v0 g C.v2-v20 g D. v2+v20 g 答案 C 解析由v2=v2x+v2y=v20+(gt)2,得出t=v2-v20 g,故C正确。 2.[2017·江西联考]在空间某一点以大小相等的速度分别竖直向上、竖直向下、水平抛出质量相等的小球,不计空气阻力,经过相等的时间(设小球均未落地)() A.做竖直下抛运动的小球加速度最大 B.三个小球的速度变化相同 C.做平抛运动的小球速度变化最小 D.做竖直下抛的小球速度变化最小 答案 B 解析由于不计空气阻力,抛出的小球只受重力作用,因此它们的加速度相同,均为重力加速度g,A错误;加速度相同,相等时间内三个小球的速度变化相同,B正确,C、D错误。 3.物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tanα随时间t变化的图象是图中的()

答案 B 解析 根据几何关系:tan α=v y v 0=gt v 0 ,则tan α与t 成正比例函数关系,B 正确。 4.[2018·山西太原模拟]将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙面上,如图所示。不计空气阻力,则下列说法正确的是 ( ) A .从抛出到撞墙,第二次球在空中运动的时间较短 B .篮球两次抛出时速度的竖直分量第一次小于第二次 C .篮球两次撞墙的速度可能相等 D .抛出时的速度大小,第一次一定比第二次小 答案 A 解析 由于两次篮球垂直撞在竖直墙面上,篮球被抛出后的运动可以看 作是平抛运动的反向运动。加速度都为g 。在竖直方向上,h =12gt 2,因

平抛运动知识点总结及解题方法归类总结

三、平抛运动及其推论 一、 知识点巩固: 1.定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加速度g ,这样的运动叫做平抛运动。 2.特点:①受力特点:只受到重力作用。 ②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。 ③运动性质:是加速度为g 的匀变速曲线运动。 3.平抛运动的规律:①速度公式:0x v v = y v gt = 合速度:()2 2220t x y v v v v gt =+=+ ②位移公式:2 0,2 gt x v t y == 合位移:2 2 2 22 20 12s x y v t gt ?? =+=+ ??? tan 2y gt x v α== ③轨迹方程:2 202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。 注: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为 。 (3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相 等的时间内相邻的位移的高度之比为 … 竖直方向上在相等的时间内相邻 的位移之差是一个恒量(T 表示相等的时间间隔)。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ɑ)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线 必交于此时物体位移的水平分量的中点)。 V y x S O x x 2/V y V 0V x =V 0 P ()x y ,θα0 tan y x v gt v v θ= = ɑ θ ɑ

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( ) A .μmg B .μm R v 2 C .μm(g +R v 2) D .μm(R v 2 -g) 2、质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力大小是( ) A .0 B .mg C .3mg D .5mg 3、质量为m 的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v 0,则: (1)当小球以2v 0的速度经过轨道最高点时,对轨道的压力为多少 4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg ,小球半径不计,小球在通过最低点的速度大小为v =20m/s,试求: (1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度 5、如图所示,位于竖直平面上的4 1圆弧轨道光滑,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,到 达B 点时的速度为gR 2,最后落在地面上C 点处,不计空气阻力,求: (1)小球刚运动到B 点时的加速度为多大,对轨道的压力多大; (2)小球落地点C 与B 点水平距离为多少。 6、质量为m 的小球被一根细线系于O 点,线长为L ,悬点O 距地 面的高度为2L ,当小球被拉到与O 点在同一水平面上的A 点时由 静止释放,球做圆周运动至最低点B 时,线恰好断裂,球落在地 面上的C 点,C 点距悬点O 的水平距离为S (不计空气阻力).求:

高中物理天体运动超经典

天体运动(经典版) 一、开普勒运动定律 1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上. 2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等. 3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律 1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的 乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G 22 1r m m ,其中2211/1067.6kg m N G ??=-,称为为有引力恒量。 3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于 物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离. 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一, 式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 4、万有引力与重力的关系:合力与分力的关系。 三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22 mM v G m r h r h =++,得()GM v r h =+,∴当h↑,v↓ 2、由G () 2h r mM +=mω2(r+h ),得ω=()3h r GM +,∴当h↑,ω↓ 3、由G () 2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度 (1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。也是人 造卫星绕地球做匀速圆周运动的最大速度。 计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做 圆周运动的向心力.() 21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速

物理一轮复习 4.2 平抛运动的规律及应用学案 新人教版必修2

物理一轮复习 4.2 平抛运动的规律及应用学案 新人教版必 修2 【考纲知识梳理】 一、平抛运动的定义和性质 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、运动性质: ①水平方向:以初速度v 0做匀速直线运动. ②竖直方向:以加速度a=g 做初速度为零的匀变速直线运动,即自由落体运动. ③平抛运动是加速度为重力加速度(a=g)的匀变速曲线运动,轨迹是抛物线. 二、研究平抛运动的方法 1、通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 2、 平抛运动规律:(从抛出点开始计时) (1).速度规律: V X =V 0 V Y =gt (2).位移规律: X=v 0t Y= 2 2 1gt (3).平抛运动时间t 与水平射程X 平抛运动时间t 由高度Y 决定,与初速度无关;水平射程X 由初速度和高度共同决定 三、斜拋运动及其研究方法 1.定义:将物体以v 沿斜向上方或斜向下方抛出,物体只在重力作用下的运动。 2.斜抛运动的处理方法:斜抛运动可以看作水平方向的匀速直线运动和竖直方向的竖直

抛体运动的合运动 【要点名师透析】 一、对平抛运动规律的进一步理解 1、飞行的时间和水平射程 (1)落地时间由竖直方向分运动决定: 由 2 2 1 gt h= 得: g h t 2 = (2)水平飞行射程由高度和水平初速度共同决定: g h v t v x 2 = = 2、速度的变化规律 (1)平抛物体任意时刻瞬时速度v与平抛初速度v0夹角θa的正切值为位移s与水平位移x 夹角θ正切值的两倍。 (2)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明: 2 2 1 tan 2 x s s gt v gt = ? = = α (3)平抛运动中,任意一段时间内速度的变化量Δv=gΔt,方向恒为竖直向下(与g同向)。任意相同时间内的Δv都相同(包括大小、方向),如右图。 3、平抛运动的两个重要结论 (1)以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。)

2021届高考物理一轮复习方略关键能力·题型突破+4.2 平抛运动的规律及应用

关键能力·题型突破 考点一平抛运动的规律 单个物体的平抛运动 【典例1】(多选)一位同学玩投掷飞镖游戏时,将飞镖水平抛出后击中目标。当飞镖在飞行过程中速度的方向平行于抛出点与目标间的连线时,其大小为v。不考虑空气阻力,已知连线与水平面间的夹角为θ,则飞镖( ) A.初速度v0=vcos θ B.飞行时间t= C.飞行的水平距离x= D.飞行的竖直距离y= 【一题多解】选A、C。 方法一:将运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动,飞镖的初速度v0=vcos θ,选项A正确;根据平抛运动的规律有x=v0t,y=gt2,tan θ=,解得t=,x=,y=,选项C正确,B、D错误。 方法二:求飞行时间还可以沿抛出点与目标间的连线和垂直连线方向

建立平面直角坐标系,则沿连线方向上,飞镖做初速度为v0cos θ,加速度为gsin θ的匀加速直线运动;垂直连线方向上做初速度为v0sin θ,加速度为-gcos θ的类竖直上抛运动,故由题意可知飞镖飞到速度为v时,垂直连线方向的速度减为0,所用时间为,再次回到连线所用的时间也为(竖直上抛运动的对称性),故飞行时间为。 多个物体的平抛运动 【典例2】(2019·潮州模拟)甲、乙两位同学在不同位置沿水平各射出一枝箭,箭落地时,插入泥土中的形状如图所示,已知两支箭的质量、水平射程均相等,若不计空气阻力及箭长对问题的影响,则甲、乙两支箭 ( ) A.空中运动时间之比为1∶ B.射出的初速度大小之比为1∶ C.下降高度之比为1∶3 D.落地时动能之比为3∶1 【通型通法】

1.题型特征:两个物体水平抛出。 2.思维导引: 【解析】选B。根据竖直方向的自由落体运动可得 h=gt2 水平射程:x=v0t 可得:x=v0 由于水平射程相等,则:v甲=v乙① 末速度的方向与水平方向之间的夹角的正切值: tan θ== 可得:2gh 甲=3,6gh乙=② 联立①②可得:h甲=3h乙,即下落的高度之比为3∶1; 根据竖直方向的自由落体运动可得h=gt2,可知运动时间之比为∶1,故A、C错误;射出的初速度大小之比为1∶,故B正确;它们下落的高度之比为3∶1;但射出的初速度大小之比为1∶,

新高考物理第一轮复习课时强化训练:探究平抛运动的特点(解析版)

2021届新高考物理第一轮复习课时强化训练 探究平抛运动的特点 一、选择题 1、如图,在探究平抛运动的水平分运动的规律的实验中,下列哪些因素对探究规律没有影响( ) A.弧形轨道末端不水平 B.弧形轨道不光滑 C.实验小球为轻质小球 D.水平轨道不光滑 答案 B 解析弧形轨道末端不水平,小球抛出后不做平抛运动,对实验有影响,故A错误;只要每次释放小球的位置相同,轨道末端水平,弧形轨道是否光滑对实验没有影响,故B正确;实验小球为轻质小球,空气阻力对小球影响较大,故C错误;水平轨道不光滑,沿水平轨道运动的小球做减速直线运动,对实验有影响,故D错误。 2、用如图所示的装置研究平抛运动。小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落。关于该实验,下列说法中不

正确的是( ) A.两球同时落地 B.应改变装置的高度,多次实验 C.实验能说明A球在竖直方向上做自由落体运动 D.实验能说明A球在水平方向上做匀速直线运动 答案 D 解析根据装置图可以知道,两球由相同高度同时运动,A做平抛运动,B做自由落体运动,因此将同时落地,所以A正确;要多次实验,观察现象,则应改变装置的高度,多次实验,所以B正确;因为两球同时落地,因此说明A、B在竖直方向运动规律是相同的,故根据实验结果可以知道,平抛运动在竖直方向的分运动是自由落体运动,所以C正确,D错误。 3、为了探究平抛运动的规律,将小球A和B置于同一高度,在小球A做平抛运动的同时静止释放小球B。同学甲直接观察两小球是否同时落地,同学乙拍摄频闪照片进行测量、分析。通过多次实验( )

A.只有同学甲能证明平抛运动在水平方向是匀速运动 B.两位同学都能证明平抛运动在水平方向是匀速运动 C.只有同学甲能证明平抛运动在竖直方向是自由落体运动 D.两位同学都能证明平抛运动在竖直方向是自由落体运动 答案 D 解析在图甲的实验中,改变高度和平抛小球的初速度大小,发现两球同时落地,说明平抛运动在竖直方向上做自由落体运动,不能得出水平方向上的运动规律。在图乙的实验中,通过频闪照片,发现自由落体运动的小球与平抛运动的小球任何一个时刻都在同一水平线上,知平抛运动在竖直方向上的运动规律与自由落体运动相同,所以平抛运动竖直方向上做自由落体运动。频闪照片显示小球在水平方向相等时间内的水平位移相等,知水平方向做匀速直线运动,所以D 正确,A、B、C错误。 4、(多选)为了研究平抛运动的分运动性质,用如图所示的装置进行实验。小锤打击弹性金属片,A球水平抛出,同时B球被松开下落。关于该实验,下列说法中正确的是( )

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一选择题 1. 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 3.某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F作用下,在xOy平面从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,则恒力F的方向不可能() A.沿x轴正方向 B.沿x轴负方向 C.沿y轴正方向 D.沿y轴负方向 6在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N力水平旋转90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是() A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说确的是() A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A.可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管的水中匀速上升,若在蜡块从A点开始匀速上升的同时,玻璃管从AB位置水 A.直线P B.曲线Q C.曲线R D.三条轨迹都有可能

天体运动经典例题含答案.docx

. 1.人造地球卫星做半径为r,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 2 4 倍后,运动半径 为,线速度大小为。 【解析】由 G Mm m 2r 可知,角速度变为原来的 2 r 可知,角速度变为原 倍后,半径变为 2r ,由v r 24 222 来的 4 倍后,线速度大小为2 v。【答案】2r,2 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v0假设宇航员在该行星表面上用弹簧测力 计测量一质量为 m 的物体重力,物体静止时,弹簧测力计的示数为N0,已知引力常量为 G,则这颗行星的质量为 A. mv 2 B. mv 4 C. Nv 2 D. Nv 4 GN GN Gm Gm 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 G M m /m / v2,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则G M m N ,解 R 2R R 2 得 M= mv 4, B 项正确。【答案】B GN 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带各小行星圆周运动的线速度值大于地球公转的线速度值 【答案】 C【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于 万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有 C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间 t 小球落回原处 ;若他在某星球表面以相同的速 度竖直上抛同一小球 ,需经过时间 5t 小球落回原处 .(取地球表面重力加速度 2 g=10 m/s ,空气阻力不计 ) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶ R 地 =1 ∶4,求该星球的质量与地球质量之比M 星∶M 地.

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的24倍后,运动半径为_________,线速度大小为_________。 【解析】由22Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。【答案】2r ,22 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力 计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为 0N ,已知引力常量为G,则这颗行星的 质量为 A .2GN mv B.4GN mv C .2Gm Nv D.4Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2R m ,解得M=GN 4 mv ,B 项正确。【答案】B 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.

平抛与圆周运动综合

平抛与圆周运动综合 【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。 例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当 球某次运动到最低点时,绳突然断掉。球飞离水平距离d 后 落地,如图9所示,已知握绳的手离地面高度为d ,手与球 之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和 空气阻力。 (1) 求绳断时球的速度大小v 1,和球落地时的速度大小 v 2。 (2) 问绳能承受的最大拉力多大? (3) 改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少? 【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有 竖直方向 41d=2 1gt 2 水平方向d=v 1t , 联立解得v 1=gd 2。 由机械能守恒定律,有 21mv 22=2 1mv 12+mg (d -3d /4) 解得v 2=gd 25。 (2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。 球做圆周运动的半径为R =3d/4 对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=3 11mg 。 (3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L

解得v 3=L g 3 8。 绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据 平抛运动规律有d-L =2 1gt 12,x = v 3 t 1 联立解得x =4()3 L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max = 332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。 衍生题1.如图所示,一质量为M =5.0kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8m ,其右侧足够远处有一固定障碍物A 。另一质量为m =2.0kg 可视为质点的滑块,以v 0=8m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N 的恒力F 。当滑块运动到平板车的最右端时,两者恰好相对静止。此时车去恒力F 。当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑。已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0m ,圆弧所对的圆心角∠BOD =θ=106°,取g =10m/s 2,sin53°=0.8,cos53°=0.6,求: (1)平板车的长度。 (2)障碍物A 与圆弧左端B 的水平距离。 (3)滑块运动圆弧轨道最低点C 时对轨道压力的大小。

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的\F(\R(2),4)倍后,运动半径为_________,线速度大小为_________。 【解析】由2 2Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r,由v r ω=可知,角速度变为原来的 错误!倍后,线速度大小为错误!v 。【答案】2r ,错误!v 2、一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0 v 假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为0 N ,已知引力常量为G,则这颗行星的质量 为 A. 2 GN mv B、 4 GN mv C. 2 Gm Nv D、 4 Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有R v m M G 2 /2 /R m =, 宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N,则 N M G =2R m ,解得M=GN 4 mv ,B项正确。 【答案】B 3、如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的就是 A 、太阳对小行星的引力相同 B 、各小行星绕太阳运动的周期小于一年 C 、小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D、小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C项对。 4、宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若她在某星球表面以相同的速 度竖直上抛同一小球,需经过时间5t 小球落回原处、(取地球表面重力加速度g =10 m /s 2 ,空气阻力不计) (1)求该星球表面附近的重力加速度g ′、 (2)已知该星球的半径与地球半径之比为R 星∶R地=1∶4,求该星球的质量与地球质量之比M 星∶M 地. 答案 (1)2 m/s 2 (2)1∶80 解析 (1)在地球表面竖直上抛小球时,有t =g 02v ,在某星球表面竖直上抛小球时,有5t ='20 g v

第18讲 平抛运动的规律及应用

第18讲平抛运动的规律及应用 基础命题点平抛运动的基本规律 1.抛体运动 定义:以一定的初速度将物体抛出,如果物体只受01重力作用,这时的运动叫做抛体运动。 2.平抛运动 (1)定义:以一定的初速度沿水平方向抛出的物体只在02重力作用下的运动。 (2)性质:平抛运动是加速度为g的03匀变速曲线运动,其运动轨迹是04抛物线。 (3)平抛运动的条件:v0≠0,沿05水平方向;只受06重力作用。 (4)研究方法:平抛运动可以分解为水平方向的07匀速直线运动和竖直方向的08自由落体运动。 3.平抛运动的规律:如图所示,以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为y轴,建立平面直角坐标系,则: (1)09匀速直线运动,速度v x10v0,位移x11v0t。 (2)12自由落体运动,速度v y13gt,位移y141 2gt 2。 (3)合运动

①合速度v =v 2x +v 2 y ,方向与水平方向夹角为α,则tan α=v y v 0=15gt v 0。 ②合位移x 合=x 2+y 2,方向与水平方向夹角为θ,则tan θ=y x =16gt 2v 0。 4.平抛运动的规律应用 (1)飞行时间:由t =17 2h g 知, 时间取决于下落高度h ,与初速度v 0无关。 (2)水平射程:x =v 0t =18v 02h g ,即水平射程由初速度v 0和下落高度h 共 同决定,与其他因素无关。 (3)落地速度v =v 2x +v 2 y =19 v 20+2gh ,以α表示落地速度与x 轴正方向 的夹角,有tan α=v y v x =20 2gh v 0 ,所以落地速度也只与初速度v 0和下落高度h 有关。 (4)速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图甲所示。 5.两个重要推论 (1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的21中点,如图乙所示。 (2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与

天体运动总复习绝对经典汇总

一.考点梳理 1.考纲要求:万有引力定律的应用、人造地球卫星的运动(限于圆轨道)、动量知识和机械能知识的应用(包括碰撞、反冲、火箭)都是Ⅱ类要求;航天技术的发展和宇宙航行、宇宙速度属Ⅰ类要求。 2.命题趋势:本章内容高考年年必考,题型主要有选择题:如2004年江苏物理卷第4题、2004上海卷第3题、2005年安徽卷第16题、2005年全国卷第3题、2005年北京物理卷第20题、2005年江苏物理卷第5题;计算题:如2001年全国卷第31题、2003年第24题、2004年全国卷第23题、2004年广西物理卷第16题、2005年江苏物理卷第18题、2005年广东卷第15题等。飞船、卫星运行问题与物理知识(如万有引力定律、匀速圆周运动、牛顿运动定律等)及地理知识有十分密切的相关性,以此为背景的高考命题立意高、情景新、综合性强,对考生的理解能力、综合分析能力、信息提炼处理能力及空间想象能力提出了极高的要求,是新高考突出学科内及跨学科间综合创新能力考查的命题热点,亦是考生备考应试的难点. 特别是今年10月神州六号飞船再次实现载人航天飞行试验以来,明年高考有很大可能考查与“神六”相关的天体运动问题。 3.思路及方法: (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2). 由G 2r Mm =mr T 224π得:M=2 324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题 表面重力加速度g 0,由02 GMm mg R = 得:02GM g R = 轨道重力加速度g ,由2()GMm mg R h =+ 得:2 20()()GM R g g R h R h ==++ (4) (1)由Gr v m r Mm 2 2=得:v=r GM (2)由G2r Mm =mω2 r得:ω=3r GM (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G2 224()Mm m R h T π=+(R+h) 2 3 2 4h R GMT π=-=3.6×104km=5.6R R

第2讲 平抛运动的规律及应用

第2讲平抛运动的规律及应用 主干梳理对点激活 对应学生用书P076知识点抛体运动Ⅱ 1.平抛运动 (1)定义:将物体以一定的初速度沿□01水平方向抛出,物体只在□02重力作用下的运动。 (2)性质:平抛运动是加速度为g的□03匀变速曲线运动,运动轨迹是□04抛物线。 (3)条件 ①v0≠0,且沿□05水平方向。 ②只受□06重力作用。 2.斜抛运动 (1)定义:将物体以初速度v0沿□07斜向上方或□08斜向下方抛出,物体只在□09重力作用下的运动。 (2)性质:斜抛运动是加速度为g的□10匀变速曲线运动,运动轨迹是□11抛物线。 (3)条件 ①v0≠0,且沿□12斜向上方或斜向下方。 ②只受□13重力作用。 知识点抛体运动的基本规律Ⅱ 1.平抛运动 (1)研究方法:平抛运动可以分解为水平方向的□01匀速直线运动和竖直方向的02自由落体运动。 □ (2)基本规律(如图所示) ①速度关系

②位移关系 ③轨迹方程:y=□10 g 2v20x 2。 2.斜抛运动 (1)研究方法:斜抛运动可以分解为水平方向的□11匀速直线运动和竖直方向的竖直上抛或竖直下抛运动。 (2)基本规律(以斜向上抛为例,如图所示) ①水平方向 v0x=□12v0cosθ,x=v0t cosθ。 ②竖直方向 v0y=□13v0sinθ,y=v0t sinθ-1 2gt 2。 3.类平抛运动的分析 所谓类平抛运动,就是受力特点和运动特点类似于平抛运动,即受到一个恒定的外力且外力与初速度方向垂直,物体做匀变速曲线运动。 (1)受力特点:物体所受合力为恒力,且与初速度的方向垂直。 (2)运动特点:沿初速度v0方向做匀速直线运动,沿合力方向做初速度为零的匀加速直线运动。 一堵点疏通 1.以一定的初速度水平抛出的物体的运动是平抛运动。() 2.做平抛运动的物体初速度越大,水平位移越大。()

相关主题
文本预览
相关文档 最新文档