当前位置:文档之家› 心电信号处理系统的设计与实现

心电信号处理系统的设计与实现

心电信号处理系统的设计与实现
心电信号处理系统的设计与实现

心电信号处理系统的设计与实现

心电信号处理系统的设计与实现

摘要

系统的研究心电信号处理对疾病的早期预测及家庭医疗保健具有十分重要的意义,一直是生物医学工程领域的研究热点。心血管疾病是人类生命的最主要威胁之一,而心电(Electrocardiogram),ECG信号是诊断心血管疾病的主要依据,心电信号是心脏电生理活动在体表的表现,提供了心脏功能等生理状况的有重要价值的临床医学信息,是临床心脏病诊断的基础。因此,设计心电信号处理系统具有重要意义。

本论文分析了国内外心电信号处理仪发展现状和趋势,介绍了设计过程中所涉及到的相关概念及资料。整个前置级电路由前置放大电路,陷波电路和滤波电路构成。系统采用三运放组成的前置放大电路进行心电信号的初步放大,使用模拟低通和模拟高通组成的模拟带通滤波器对干扰信号加以滤除,同时使用陷波器对50Hz的工频干扰进一步滤除,得到比较纯净的心电信号,再对其实施A/D转换,通过单片机处理系统最终将检测结果用LCD显示出来。

关键词: 心电信号处理,放大,滤波,虚拟仪器

1

ECG SIGNALPROCESSINGSYSTEM The research of portable ECG manager, which has always been the hot spot biomedical engineering, has significant meaning for the early-stage prediction of cardiovascular disease and family medical health care. Currently, with the development of electronic, communicative and software technique, the ECG manager has great promotion on size, power consumption, and data storage and data transmission. The property and quality of medical productions have great influence on the life security of the patients; therefore, researches of related topics become quite important in meaning.

This paper analyses the current situation and trend of the development of ECG manager domestically and internationally,introduced the relatively concept and materials involved in the process. In addition use of the composition of the three op amp preamp circuit to enlarge the initial ECG, we also use analog low-pass and analog high-pass analog filter just like components band-pass to filter out signal interference, while the use of active notch filter frequency of 50Hz can further filt out interference, getting a more pure ECG signal. And then through the implementation of A/D conversion, single-chip processing system, the final test results will be displayed by LCD. The ECG analyzer has good characteristics such as low-power, portable and real-time and so on.

KEY WORDS:ECG manager, amplification, filtering, virtual instrument

心电信号处理系统的设计与实现

目录

1.1 背景介绍 (1)

1.2 相关概念 (2)

1.2.1心电信号的基本特征 (2)

1.2.2心电信号处理仪的生物学基础 (3)

1.2.3心电导联 (4)

2.1 概念及特点 (5)

2.2 虚拟仪器的构成 (5)

2.3 PROTEUS简介 (7)

3.1总体设计思路 (8)

3.2 导联方式 (8)

3.3 前置放大电路 (8)

3.3.1模块分析 (8)

3.3.2电路实现 (9)

3.3.3仪用放大器实现 (11)

3.4 滤波电路 (14)

3.4.1模块分析 (14)

3.4.2分块电路实现 (14)

3.4.3 放大滤波电路整体效果图 (17)

3.5 A/D转换模块 (18)

3.5.1ADC0809引脚功能 (18)

3.5.2A/D转换的主要技术指标 (19)

3.5.3MCS-51系列单片机与ADC0809接口 (20)

3.5.4A/D转换程序 (21)

4 心电信号分析方法 (22)

3

4.1时域分析 (22)

4.2频域分析 (22)

4.3自相关函数分析 (22)

心电信号处理系统的设计与实现

1绪论

1.1 背景介绍

心脏类疾病(如心肌梗死、心肌缺血、心房扑动和室性心动过速等)的发病具有突发性、高危险性的特点,不少患者在发病时没有任何症状,因此有必要设计一种能随身携带、长时间检测并实时分析病人心电信号的、具有报警功能的心电信号处理仪,以满足家庭保健的需要。

随着电子技术的迅速发展,大量微功耗、高精度器件的出现为便携式低功耗心电信号处理仪的设计带来了方便,特别是低功耗、大容量Flash单片机和计算能力强的ARM、DSP处理器的出现,使得心电信号处理仪能够同时具有低功耗和实时分析的特性成为可能[1]。

随着电子技术及软件技术的发展,心电信号处理仪在体积、功耗、自动分析方也有了长足发展。20世纪70年代中期,记录器更趋于小型化,记录时间更长(24-48h),回放系统开始采用自动分析程序,能够准确计算心率、异位心搏和段改变。20世纪80年代中后期,随着微型计算机和微处理器的应用,开始出具有实时分析功能的多通道多功能磁介记录器,且回放系统使用了计算机,使分析运算的准确性和速度均显著提升。打印系统已普遍采用激光打印机,从而使分析报告和图形日趋完善。20世纪90年代后,运用大规模集成电路、大容量固态数码记录等全新技使信号采集与数据分析质量方面得到极大改进,尤其是电子介质存储器的发展,已多采用闪光卡、电子硬盘,具有体积小、佩戴舒适、存储量大、心波形保真度高等特点。

近些年来,在心电信息处理方式方面由模拟式心电图机向智能化心电图机转变,目前在临床得到广泛应用的智能化心电图机是一种随身携带的记录仪,可连续检测人体24-72小时的心电变化。经过50年的发展,动态心电图仪已经成为临床上一种不可缺少的医用电子仪器,它的主要价值在于发现并记录在通常短暂心电图检查是不易发现的、日常活动时发生的心图异常,为临床诊断提供依据。其具有以下特点:

1、可随身携带,不受检测距离、体位变化及活动的影响。

2、信息量远远大于常规心电图,尤其对短暂性心律失常的捕捉及一过性肌缺血的检出有独到之处。

3、选择导联不能影响日常活动和防止由这种活动所产生的伪差和干扰。

4、分析系统不仅可分析显示监测期内心搏总数、最高心率、最低心率、平均心率和每小时平均心率,并能自动分析和测量每小时室上性、室性期前收缩,室上性和室性心动过速的次数、程度和形态以及持续时间,房室传导阻滞、心脏停搏的情况及P-R间期、QRS波群、ST-T变化的轨迹图、趋势图及全览图等,其结果可用不同方式输出,为临床提供有价值的资料。

目前,国内外临床应用的主要是3导联和12导联心电图仪。近年来,第5-6代3导联心电仪和第2-3代12导联心电仪,不仅硬件先进,软件设计合理,而且自动分析功能越来越强大、全面。除具有心率变异性、Q-T间期、Q-T离散度

1

心室晚电位分析外,还具有T波分析、动态血压同步检测、心电监护和起搏分析等功能。如Mortar公司的12导联心电图仪,ST段分析精确达到μV级,独有的ST与HRV相关分析与动态血压同步测定等,同时以人体工程学原理,用防弹衣材料制成树枝状“藤蔓式”12导联线,软件中房扑及房颤分析功能获得FDA认可;美国DMS公司的第二代高性能12联心电图仪,除具有各种心律失常软件外,独有P波分析功能,12导联ST段维彩色超视图,率先在Q-T间期离散度分析上提出具有实用性很高的色谱理论、高性能起搏分析功能,将心率变异性的时域、频率分析用于阻塞性睡呼吸暂停综合征的筛选和诊断;美国Preideal Instrument公司生产的3通心电图仪,能准确地对起搏信号加以识别,并能分析各种心率失常、ST-T改。率变异性、Q-Td等。

远程心电监护利用了现代电子计算机及通信技术,在心律失常的检测方法上弥补了常规心电图与动态心电图的不足,使得患者能够和医生及时沟通,及时得到医生的健康指导。

近年来国内医疗仪器公司也纷纷转向12导联动态心电图仪分为以下几种类型:

1、国产化(自主研制开发)12导联AECG仪:西安蓝港公司研制出具有自主知识产权的第一代3导联心电图以后,有心电图仪,记录器具有显示屏,可以观察心率失常及ST-T改变等情况。

2、与著名国外厂家共同研制:美高仪公司和美国DMS导联心电图仪,具有透明视窗装置,以液晶屏显示动态心电警和录取功能,即把动态心电图与监护心电图有机的结合成显示12个导联的心电图。可分别显示3个导联的动态心电图。

3、经销国外名牌产品:这些产品都结合我国的国情,改和汉化处理,开发出中英文双界面,为基层医院提供了方便。

4、进口器件改进仪器:长春时代数码有限公司,首家推出SDD系列心电图仪,使用windows2003,分析用1.5V中央处理器、最新电子U盘记录盒、USB2.0三大最新技术,仅用一节五号电池就能记录48乃至72h心电图。

1.2 相关概念

1.2.1 心电信号的基本特征

1、微弱性:从人体体表检出的心电信号很微弱,一般只有0.05-5mV。在测量中,对于如此微弱的信号,很难进行直接观察或记录,必须通过放大器适当的放大后再输给显示与记录装置。

2、不稳定性:人体心电信号处于动态变化之中。由于人体是一个与外界有密切关系的开放系统,加之内部存在着器官间的相互影响,所以,无论来自外部或内部的刺激,都会使人体因适应这一变化,而从一种状态变化到另一种状态,从而使人体信号发生相应的变化。因此,在对心电信号进行测量、分析和处理时,应该注意到它是随时间变化的信号,应按其频谱特性,选择适当的放大系数和显示记录装置。

3、低频特性:人体心电信号的频谱范围为0.05-100Hz,其频率是比较低的。

4、随机性:人体心电信号是反映人体机能的信号,它是整个人体系统信息的一部分。由于人体的不均匀性以及可接收多通道输入,信息易随外界干扰而变化,从而使心电信号表现出随机性。不过,如果对心脏自发放电的时间空间构型

心电信号处理系统的设计与实现

进行统计分析,就可以发现放电的内在规律。因此,这种随机现象服从统计规律。在心电信号的测量中,既要注意到它的随机性,又不可忽视其内在的规律性[2]。

综上所述,放大滤波部分的设计有如下五点要求:

(1)高增益

由于人体生理信号幅度非常小,为毫伏级。只有高增益才能使信号放大到便于分析的程度。通常选择增益在60db(1000倍)~120db(100万倍)之间。

(2)高输入阻抗

通过传感器提取的生理信号是不稳定的高内阻源的微弱信号,为了减小信号源内阻的影响,必须提高放大器的输入阻抗。信号源阻抗不仅因人而异,因生理状态而异,与传感器的安放位置,传感器本身的物理状态都有密切关系。源阻抗的不稳定性将使放大器电压增益不稳定,从而造成难以修正的测量误差。再者,理论上源阻抗是信号频率的函数,电极阻抗也是频率函数,变化规律都是随频率的增加而下降。如果放大器输入阻抗不够高,就会造成信号低频分量的幅度减小,产生失真。用于生理信号电位测量的放大器的输入阻抗高达1M欧姆量级。

(3)高共模抑制比

由于生理参数测量放大器一般具有高增益和高输入阻抗,因而各类干扰极易随信号进入放大器,尤其工频(50Hz)干扰,因为这种信号正好落在呼吸信号的频谱范围内。强的干扰与有用信号叠加在一起,使显示与记录的信号的基线变宽,影响信号的观察与测量。为此放大器必须有较好的抗干扰能力。

(4)低噪声

由于生物电信号十分微弱,因此要求生物电测量放大器具有低的内部噪声。一般采用低噪声电阻和低噪声放大器。仪器噪声可用等效噪声和信噪比来衡量。

(5)低漂移

由于生理信号为低频信号,放大器一般采用直接耦合方式,则前一级放大电路的温度漂移影响一级放大电路的工作点,导致后一级进入饱和而无法正常工作,所以要求用低漂移放大器。

1.2.2 心电信号处理仪的生物学基础

心电信号是由心肌细胞产生的,由窦房结发出的兴奋,按照一定的途径和时程,一次向心房和心室扩布,引起整个心脏的循环兴奋,其各部分兴奋过程中出现的电位变化的方向、途径、次序和时间等均有一定的规律。由于人体为一个容积导体,这种电变化亦必然扩布到身体表面。鉴于心脏在同一时间内产生大量心电信号,因此可以通过安放在身体表面的胸电极或四肢电极,将心脏产生的电位变化以时间为函数记录下来,这种记录曲线称为心电图(ECG),其反应了心脏兴奋的产生、传导和恢复过程中的生物电变化[2]。

ECG波形由一个P波、一个QRS波群和一个T波组成,P波起因于心房收缩之前的心房除极时的电位变化,QRS波群起因于心室收缩之前的心室除极时的电位变化,T波为心室复极时的电位变化,其幅度不应低于同一导联R波的1/10,T波异常表示心肌缺血或损伤。图2-1为典型心电图图解[3]。

3

图2-1 典型的心电图图解

1.2.3 心电导联

所谓心电导联就是心脏除极、复极过程中产生的心电向量,通过容积导电传至身体各部,并产生电位差,将两电极置于人体的任何两点与心电图机连接,就可描记出心电图,这种放置电极并与心电图机连接的线路,称为心电导联(lead)。

临床常用的导联方式有肢体导联和胸前导联,肢体导联又有标准导联和加压单极肢体导联之分。

临床中广泛应用的是标准十二导联系统,分别记为Ⅰ、Ⅱ、Ⅲ三个标准导联,aVR、aVL、aVF三个加压导联以及V1-V6六个胸极导联。其中Ⅰ、Ⅱ、Ⅲ主要是反应左手、右手以及左腿任两电极间的电压差,无探查电极和无关电极之分,是双极导联。双极导联就是拾取两个测试点的电位差。aVR-V6是单极导联,就是拾取某一点相对参考的电位。由一个无关电极和探查电极所组成,其P波明显,利于诊断心律失常(V1)和左前壁心肌缺血(V5、V6)。标准导联的特点广泛地反映了心脏的大概情况,如:后壁心肌梗塞、心律失常等,往往Ⅱ、Ⅲ导联可以记录到清晰的波形[2]。

心电信号处理系统的设计与实现

2虚拟仪器介绍

2.1 概念及特点

随着微电子技术、计算机硬件技术、软件技术、网络技术的高度发展及其在电子测量技术与仪器领域的应用,新的测量理论、新的测试方法、新的测试领域以及新的仪器结构不断出现,在许多方面已经冲破传统仪器的概念,电子测量仪器的功能和作用发生了质的变化。低成本高性能的计算机技术引入仪器领域,数字化平台逐渐成为测量仪器的基础,计算机处于核心地位,仪器开始朝着智能化、数字化和网络化方向发展[4]。

80年代末,美国国家仪器公司(National Instruments,简称NI)研制成功第一台虚拟仪器,最早提出了虚拟仪器(Virtual Instrument,简称VI)的概念[2]。虚拟仪器是以通用计算机为核心的硬件平台,其功能由用户设计和定义,具有虚拟面板,其测试功能由软件来实现的一种计算机仪器系统。它的实质是利用计算机显示器的显示功能来模拟传统计算机仪器的控制面板,以多种表达方式输出检测结果。使用者使用鼠标或键盘操作虚拟面板,将计算机资源和通用仪器硬件(插入式数据采集卡、数据通信接口、GPIB接口卡、VXI控制接口卡及其它接口卡)与用于数据采样、过程控制、数据分析处理及用户图形界面的计算机软件有效地结合起来,就组成了虚拟仪器。

虚拟仪器以特定的软件取代相应功能的电子线路,用计算机完成传统仪器的部分乃至全部功能,是传统仪器功能与外形的模块化和软件化。虚拟仪器技术的出现彻底打破了传统仪器由厂家定义、用户无法改变的模式。用户借助通用的仪器硬件平台,调用不同的测试软件,就可以构成不同功能的仪器。它的出现使测量仪器与计算机之间的界线消失,开始了测量仪器的新时代。

传统的测量仪器主要由三个功能块组成:信号的采集与控制单元、信号的分析与处理单元、结果的表达与输出单元。由于这些功能块基本上是以硬件和固化的软件形式存在,仪器只能由生产厂家来定义制造,因此传统仪器设计复杂、灵活性差,没有摆脱独立使用,手动操作的模式,整个测试过程几乎仅限于简单的模仿人工测试的步骤,在一些较为复杂和测试参数较多的场合下,使用起来很不方便。

2.2 虚拟仪器的构成

虚拟仪器在通用计算机环境中,依托功能强大的处理单元和高速的数据总线,利用VC,VB,LabVIEW等虚拟仪器软件平台,在屏幕上构建与真实仪器类似的可视化软面板,通过软面板上的虚拟控件控制底层硬件,用功能强大的软件完成信号的采集(实时或事后)、分析、显示和存储,并给出检测结果。

虚拟仪器的基本构成包括计算机、虚拟仪器软件、硬件接口模块等。由通用仪器硬件平台和应用软件两大部分组成[4]。

一、虚拟仪器的硬件平台

5

构成虚拟仪器的硬件平台有两部分:

1、计算机:一般为一台PC机或者工作站,它是硬件平台的核心。

2、I/O接口设备:主要完成被测信号的采集、放大、模/数转换等。可根据不同的总线采用不同的I/O接口硬件设备。I/O接口设备主要有五种方式:

a、PC总线一插卡型,指的是基于计算机标准总线(如ISA(Industry Standard Architecture) Bus或PCI (Peripheral Component Interconnect)Bus 等)的内置功能插卡,即PC-DAQ (Data Acquisition)数据采集卡。插卡式仪器价格最便宜,且个人计算机数量非常庞大,因此其用途广泛,特别适于教学部门和各种实验室使用。本课题开发的虚拟仪器实验室系统就属于该类型,借助于插入计算机内的数据采集卡与专用的软件(如LabVIEW)相结合,完成测试任务,并通过A/D变换将模拟信号采集并输入计算机进行分析、处理、显示,并可通过D/A转换实现反馈控制。还可根据需要加入信号调理和实时DSP等硬件模块。它充分利用计算机的总线、机箱、电源及软件的便利,但A/D转换技术的好坏直接影响其测量精度。

b、GPIB(General Purpose Interface Bus)通用总线接口,GPIB技术是IEEE488标准早期的发展阶段。GPIB测量系统的结构和命令简单,适合于要求高精确度的场合,但不适宜进行数据的高速传输。

c、VXI(VXIbus Extension for Instruement)VXI是高速计算机总线VME总线在VI领域的扩展,它具有稳定的电源,强有力的冷却能力和严格的电磁屏蔽是开放性仪器总线标准。然而,组建VXI总线要求有机箱、零槽管理器及嵌入式控制器,造价比较高。

d、PXI(PCI Extension for Instrument)是PCI在仪器领域的扩展,是一种新的开放性、模块化仪器总线规范。具有工业级的制造标准,更适应苛刻的工作环境。

e、远程总线数据接口(RS-232,USB,IEEE1394,Ethernet等)与前面几种总线相比,它的接口简单,使用方便。随着数字化的发展,很多设备将信号转换成数字信号后进行传输。这样可以保证数据的精度不丢失,且不易受干扰。

二、虚拟仪器的软件平台

硬件仅仅是为了解决信号的输入输出,软件才是整个系统的关键。开发虚拟仪器,必须有合适的软件工具。目前已有多种虚拟仪器的软件开发工具,比较常用的有:

1、文本式编程语言:如基于传统语言的C,Visual C++,Visual Basic,LabWindows/CVI等,采用大家比较熟悉的语言,拥有众多函数和类库,适应面广,开发灵活多变,可以自己开发驱动程序等。往往用来开发大型的、功能复杂的仪器软件,但开发人员需有较多的编程经验和较强的调试能力。

2、图形化编程图形组态软件:如LabVIEW,HP-VEE等。可以不用管理内基于虚拟仪器的传感器虚拟实验与虚拟实验室部数据的分配等问题。拥有逼真的仪器面板元件,图形化的常用模块,智能化的数据连线,简便易用、丰富多彩的函数库和工具包。软件通过建立和连接图标来构成虚拟仪器工作程序并定义其功能,具有编程效率高,通用性强的特点。适合对VC等大型开发软件不熟悉的人员,软件规模不很大的系统。

这些软件开发工具为用户设计虚拟仪器应用软件提供了最大限度的方便与良好的开发环境。

心电信号处理系统的设计与实现

2.3 Proteus简介

Proteus软件是来自英国Labcenter Electronics公司的EDA工具软件,Proteus软件除了其具有和其它EDA工具一样的原理布图,PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,它的电路仿真是互动的,针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试,如有显示及输出,还能看到运行后输入输出的效果,配合系统配置的虚拟仪器如示波器,逻辑分析仪等,不需要别的,Proteus建立了完备的电子设计开发环境[6]。

Proteus与其它单片机仿真软件不同的是,它不仅能仿真单片机CPU的工作情况,也能仿真单片机外围电路或没有单片机参与的其它电路的工作情况。因此在仿真和程序调试时,关心的不再是某些语句执行时单片机寄存器和存储器内容的改变,而是从工程的角度直接看程序运行和电路工作的过程和结果。对于这样的仿真实验,从某种意义上讲,是弥补了实验和工程应用间脱节的矛盾和现象。

Proteus是目前最好的模拟单片机外围器件的工具,可以仿真51 系列、AVR,PIC等常用的MCU及其外围电路(如LCD,RAM,ROM,键盘,马达,LED,AD/DA,部分SPI器件,部分IIC器件等)。当然,软件仿真精度有限,而且不可能所有的器件都找得到相应的仿真模型,用开发板和仿真器是最好选择。所以当属于所用元件没有时,可以自主开发元器件。

本设计采用汇编语言,并且在proteus中,可以直接加载WAVE软件中经过编译形成的*.hex文件,进行仿真,用示波器观察输出电压波形。

7

3 电子电路设计

3.1 总体设计思路

因为人体生理信号非常微弱,不便于直接进行数据分析,所以要将这些信号进行加强,这里主要用到了放大电路。其次,因为收集到的呼吸信号中掺杂有别的生理信号,会影响到目的信号的纯度给分析带来困难,所以要对收集到的信号进行滤波。使这些信号分别通过预先设计好的滤波器就可以达到此目的。由探测电极从体表采集的微弱心电信号经过放大、滤波等前置处理后,直接送入信号采集模块进行模数转换,转换后的数据暂存于89C51单片机。整个系统主要由心电信号采集模块,心电信号的放大、滤波电路,数据的处理与存储模块及LCD显示模块组成。

3.2 导联方式

采用肢体导联中的Ⅰ、Ⅱ、Ⅲ三个标准导联方式,右胸上电极及左腹下电极为心电采样电极,右腹下电极为右腿驱动电极。这种联接方式有效实用,有利于便携使用[7]。

3.3 前置放大电路

3.3.1 模块分析

主要由导联信号拾取、前置放大电路、带通滤波、工频陷波四部分组成。从体表获得心电信号后,通过心电导联输入心电放大器。心电信号首先经过前置放大器放大。然后又经过滤波后。送入A/D 转换器变成数字信号,供计算机分析处理。

由于心电幅度只有mV量级,需要放大上千倍才能被观察到,并且人体的内阻比较大,因此一个高阻抗、高增益的放大器是准确获取心电信号的关键。放大级通常包括初级差分放大和运放构成的主放大级。由于体表液体与电极之间可能形成原电池,致使电极之间存在固定的电位差,因此第一级差分放大的增益不能太高,否则容易饱和。通常这一级增益选10左右。在第一级和第二级之间必须进行直流隔离。第二级采用同相放大电路,增益可以高达100倍,这样整个电路放大倍数可以达到1000倍。

由于信号中混有各种干扰噪声会影响有用信号,因此需要对这些噪声进行滤波。噪声来源主要有两类,一类是各种电子设备辐射出的高频噪声,一种是市电的50Hz噪声,通常情况下后者影响尤为明显。

该模块结构如图3-1所示。

心电信号处理系统的设计与实现

9

3.3.2 电路实现

它的第I 级是有两个运放A 1和A 2组成,信号由两个同相输入差分放大器,

因而有很高的的输入阻抗,可达10M Ω以上;第II 级是由A 3构成的基本差分放

大器,将差分输入转化成单端输出。

为了实现高性能的生物电放大器,前置放大级采用了差动输入的三运放形式。如图2-1所示,A 1、A 2组成同向并联第一级放大,A 3位差动放大[8]。

此电路的特点:

一、A 1,A 2成的第I 级电路因信号从同向侧输入能提高放大器的输入阻抗;

二、输出回路不产生共模电流,电路的共模抑制能力只于A 1、A 2共模抑制比

的匹配有关系,与外围电路电阻是否匹配完全无关;

三、采用对称形式,有利于克服失调,温漂的影响。传递放大级A 3的接入,

隔断共模电压在电路中的传递。

四、传递放大级A 3的接入,隔断共模电压在电路中的传递。差动放大级A 3的共模抑制比主要取决于外围电路电阻的匹配

同相并联三运放结构可以较好地满足上面三条要求。放大器的第I 级主要用来提高整个放大电路的输入阻抗。第II 级采用差动电路用以提高共模抑制比。

图3-3 同相并联型差分放大器的电路原理图

由上图看到,放大器是由第一级两个运放A 1和A 2并联,然后与第二级运放

A 3串联构成的基本放大器。设输入电压为1i u 和2i u ,运放A 1和A 2的输出端电压分导联信号拾取 前置放大 工频陷波

带通滤波 图3-2 心电信号前置放大滤波电路结构图

别为1o u 和2o u ,运放A 3的输出电压为o u 。

由于理想运放两个输入端“虚短”知:

111i U U U ==-+;

222i U U U ==-+;

-+=33U U ; (3-1) 对于第一级:

1

12

322R U U R U U i i i o -=- ;

1

12311R U

U R U U i i o i -=- ;

+1U =_1U =1i U ;

+2U =_2U =2i U ;

))(21(121

3

12i i o o U U R R U U -+=-

(3-2) 所以第一级差摸电压放大倍数为:

1

3

121R R A d +=

(3-3) 对于第二级:

4

1

3533R U U R U U o

o -=---;

5

3432R U R U U o ++

=-;

-+=33U U ;

)124

5

3(o o o U U R R U -=;

(3-4) 所以第二级差摸电压放大倍数为:

4

5

2R R A d =;

3-5) 故前置放大电路的电压放大倍数为:

心电信号处理系统的设计与实现

11 4

51321)21(R R R R A A A d d d +=?= (3-6) 要求差动增益约为1000,则可令:

1000)21(4

513=+R R R R (3-7) 可取R 1=20kohm,R 3=40kohm,R 4=1kohm,R 5=200kohm 。(如图3-3所示)

这样的电路有以下几个优点:

一、A 1、A 2提高了差模信号与共模信号之比,即提高了信噪比,因差模信号

按差模增益比放大,远高于共模成分(噪声);

二、决定增益的电阻(R1、R3)对共模抑制比没有影响,因此电阻的容差不重要,R1、R3的失配仅使两输出端之间的差模增益失配,与共模抑制比相比,这一点并不重要。

电路的另一个特点是对共模输入信号没有放大作用,共模电压增益接近零。这个因素不仅与实际的共模输入有关,而且也与A 1和A 2的失配电压和漂移有关。

如果A 1和A 2有相等的漂移速率,且向同一方向漂移,那么漂移就作为共模信号

出现,没有被放大,还能被第二级抑制。这样对于A 1和A 2的漂移要求就会降低。

A 1和A 2前置放大级的差模增益要做得尽可能高,相比之下,第二级A 3的漂移和

共模误差就可以忽略,对放大器的要求就可以大大降低。

由此可知,上述电路具有输入阻抗高,共模抑制比高等优点,可作为通用仪用放大器使用。

3.3.3 仪用放大器实现

前置级的设计参数主要由处在最前端的仪用放大器决定。一旦仪用放大器决定则前置级参数便基本确定。设计时应当考虑仪用放大器的增益,一般来说共模抑制比随增益增大而有所提高,但考虑到前置级对整个放大电路噪声的贡献,假设对于多级放大器,若以N1、N2……分别表示各级噪声系数,以P1、P2……表示各级的功率增益,则整个放大电路的噪声系数N 表示为

N =N1+ (112)

1312+-+-P P N P N (3-8) 放大器的噪声性能一般随第一级增益的提高而明显变差,特别是集成器件噪声性能一般比分立元件差。特别是集成器件噪声性能一般比分立元件差。因此,第一级增益不宜取值过度,一般G<20为宜。

选用低功耗、低电压的仪表放大器AD620作为前置放大器的核心器件,可满足心电前置放大器高输入阻抗、低噪声、低漂移的设计要求。如图3-4所示是其引脚分布图。AD620具有高输入电阻、低输入偏置电流、低输入失调电流、低噪声、低功耗、小体积等特点,另外其增益G 的调节直接由一个外部电阻控制要技术指标如下[9]:

图3-4 AD620管脚图

低电源电流:50uA

输入失调电压:125uV

输入失调电流:0.3nA

输入偏置电流:0.5nA

最小共模抑制比:60dB(G=10)

等效输入噪声电压:9nV/Hz

等效输入噪声电流:0.1pA /Hz

高输入电阻:10G Ω

功耗:最大650mW

根据以上AD620的技术指标,可得出结论,凭其优异的性能,完全满足心电放大器的设计要求。且其极小的体积,较小的功耗为整个监护仅的体积和功耗的降低提供了可能.

AD620的工作原理:AD620是在传统的三运放组合方式改进的基础上研制的单片仪用放大器。输入三极管Q1和Q2提供了唯一双极差分输入,因内部的超β处理,它的输入偏移电流比一般情况低10倍。通过Q1-A1-R1环路和Q2-A2-R2环路的反馈,保持了Q1,Q2集成极电流为常量,所以输入电压相当于加在外接电阻Rg 的两端,从输入到A1/A2输出的差分放大倍数为:

121++=g

R R R G (3-9) 由A3组成的单位增益减法器消除了任何共模成分,而产生一个与REF 管脚电位有关的单路输出。

Rg 的值还确定了前级运放的跨导。当Rg 减小时,放大倍数增大,对输入三极管的跨导渐渐地增大,这具有明显的优点:放大倍数增加使得开环增益增大,因此减小了增益带宽乘积增加,因此频率响应得到改善;主要由输入三极管集成电极电流和基极电阻确定的输入电压噪声减小到9nV/Hz 。

内部增益电阻R1和R2被精确确定24.7k Ω,使得运放增益精确地由Rg 确定 14.49+Ω=g

R K G (3-10)

心电信号处理系统的设计与实现

13

图3-5 AD620结构简图

AD620由于体积小、功耗低、噪声小及供电电源范围广等特点,使AD620特别适宜应用到诸如传感器接口、心电图监测仪、精密电压电流转换等应用场合。

为达到心电放大器的要求,我们采用了差动输入的方式,即将患者体表的电位差作为信号予以放大,如图3-6所示[11]

图3-6 心电放大前级原理图

1、输入阻抗

差动输入电阻就是AD620的差动输入电阻值,可达到10G ,因此满足心电放大器的要求。

2、低噪声、低漂移

根据仪表放大器AD620的参数,可以得到结论,即低噪声、低漂移。

3、增益

AD620的增益是通过外部的电阻Rg 来调节的,可达到1~1000倍。增益的计算

公式如(3-3)式所示。

为了保证患者不受到可能的伤害并且保证前置放大器不工作在截止区,前置放大器的增益不能过大,因此我们设计了第一级的放大倍数不高于10倍。

4、共模抑制比

电路的共模抑制比主要由心电前级放大器决定,而AD620的60dB ( G=10)的共模抑制比十分符合我们的设计要求。为了进一步提高前置放大器的共模抑制比同时抑制50HZ工频干扰,我们设计了激励系统,如图3-6所示,由TLC2254以及R1,R4,R6,R7和C1构成。人体的共模电压被两个阻值相等的电阻R6,R7检测出,经过TLC2254将其倒相、放大并反馈到人体上。这是个负反馈,其使共模电压降低。人体的位移电流不流到地,而是流到运放输出电路。就心电放大器来说,这样就减小了共模电压的拾取,并且有效地使病人接地。

由于手头没有现成的AD620和芯片,本设计中暂不采用。AD620是一个很好的放大器,只要用一个外部电阻就可以进行1~1000的放大倍数。不过它也是沿用了三运放差分电路的特点来进行信号的放大,再者三运放差分电路运用广泛,得到的效果也不错;而且用运放741组成的三运放差分电路具有典型性,简单易懂,适合毕业设计,作为学生对741的了解也比较深刻,做起课题较容易入手。三运放差分电路已经有它的历史,它也为以后更深远的研究等做好了铺垫。所以在选择放大电路的时候运用了三运放差分电路来进行信号的放大。

3.4 滤波电路

3.4.1 模块分析

滤波电路的功能是使特定频率范围内的信号顺利通过,而阻止其他频率信号通过。

心电图机所需检测的心电信号幅值在0.05~4 mV,频率在0.05~100Hz。而检测中存在的主要干扰信号有电极板与人之间的极化电压、50Hz工频干扰、仪器内部噪声和仪器周围电场磁场电磁场的干扰等等。因此需要进行一系列滤波。

本电路采用了低通滤波和高通滤波把放大器的频率相应范围限定在0.05~100Hz之间。设定高频是为了消除肌肉和电磁干扰噪声,下限是为了减少由呼吸带来的极限漂移。

3.4.2 分块电路实现

(1)低通滤波器(如图3-7所示)

图3-7 低通滤波器电路

=100Hz。则

令低通滤波器的截止频率为f

1

心电信号处理系统的设计与实现

15 取 C 1=2C =1

10f μF=0.1μF 又 100100418

721221?==R R C C f π 则 287250kohm R R =

取 R 7=25kohm,R 8=10kohm

又 电压放大倍数为:

│A 1u │=6

8R R (3-11) 取 R 6=R 8=10kohm

则 差动增益为1。

(2)高通滤波器

只需将低通滤波器电路中的三个电阻改为电容,并且把两个电容改为电阻可构成高通滤波器电路(如图3-8所示)。

图3-8 高通滤波器电路

令 高通滤波器的截止频率为f 2=0.05Hz 。则

取 2

54310f C C C ===μF=200μF 又 05.005.04110

954222?==R R C C f π 则 2109250kohm R R =

取 10R =25kohm,9R =10kohm

又 电压放大倍数为

│A 2u │=5

3C C =1 (3-12) 则 差动增益为1。

(3)带通滤波器:

将低通滤波器和高通滤波器串联,就可得到带通滤波器(如图3-9所示)。

图3-9 带通滤波器电路

带通滤波器电压放大倍数为:

│A u │=│A 1u │*│A 2u │=1 (3-13)

(4)陷波电路

工频干扰是生理信号的主要干扰,当然前置放大电路对共模干扰具有较强的抑制作用,但还是会有部分工频干扰将以查模信号方式进入电路,并且其频率是处于心电信号的频带之内,如果再加上电极和输入回路不稳定等因素,前置电路输出的心电信号将存在较强的工频干扰,所以应该专门滤除。因此现代精密生物信号放大装置中采用潜入陷波器地方法,消除市电电网电源信号的干扰或其他

特定频率信号的干扰[13]。

本系统所使用电路如图3-10所示:

数字信号处理课程设计报告

抽样定理的应用 摘要 抽样定理表示为若频带宽度有限的,要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。 语音信号处理是研究用数字信号处理技术和语音学知识对语音 信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息手段,所以对其的研究更显得尤为重要。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用 软件,它可以将声音文件变换成离散的数据文件,然后用起强大的矩阵运算能力处理数据。这为我们的本次设计提供了强大并良好的环境! 本设计要求通过利用matlab对模拟信号和语音信号进行抽样,通过傅里叶变换转换到频域,观察波形并进行分析。 关键词:抽样Matlab

目录 一、设计目的: (2) 二、设计原理: (2) 1、抽样定理 (2) 2、MATLAB简介 (2) 3、语音信号 (3) 4、Stem函数绘图 (3) 三、设计内容: (4) 1、已知g1(t)=cos(6πt),g2(t)=cos(14πt),g3(t)=cos(26πt),以抽样频率 fsam=10Hz对上述三个信号进行抽样。在同一张图上画出g1(t),g2(t),g3(t)及其抽样点,对所得结果进行讨论。 (4) 2、选取三段不同的语音信号,并选取适合的同一抽样频率对其进 行抽样,画出抽样前后的图形,并进行比较,播放抽样前后的语音。 (6) 3、选取合适的点数,对抽样后的三段语音信号分别做DFT,画图 并比较。 (10) 四、总结 (12) 五、参考文献 (13)

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

数字信号处理课设+语音信号的数字滤波

语音信号的数字滤波 ——利用双线性变换法实现IIR数字滤波器的设计一.课程设计的目的 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 二.设计方案论证 1.IIR数字滤波器设计方法 IIR数字滤波器是一种离散时间系统,其系统函数为 假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它 是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。 2.用双线性变换法设计IIR数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=e sT转换 平面的-π/T~π到Z平面上。也就是说,第一步先将整个S平面压缩映射到S 1 /T一条横带里;第二步再通过标准变换关系z=e s1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。 图1双线性变换的映射关系 为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现

数字信号处理课程设计报告

《数字信号处理》课程设计报告 设计题目: IIR滤波器的设计 专业: 班级: 姓名: 学号: 指导教师: 2010年月日

1、设计目的 1、掌握IIR 滤波器的参数选择及设计方法; 2、掌握IIR 滤波器的应用方法及应用效果; 3、提高Matlab 下的程序设计能力及综合应用能力。 4、了解语音信号的特点。 2、设计任务 1、学习并掌握课程设计实验平台的使用,了解实验平台的程序设计方法; 2、录制并观察一段语音信号的波形及频谱,确定滤波器的技术指标; 3、根据指标设计一个IIR 滤波器,得到该滤波器的系统响应和差分方程,并根据差分方程将所设计的滤波器应用于实验平台,编写相关的Matlab 程序; 4、使用实验平台处理语音信号,记录结果并进行分析。 3、设计内容 3.1设计步骤 1、学习使用实验平台,参见附录1。 2、使用录音机录制一段语音,保存为wav 格式,录音参数为:采样频率8000Hz、16bit、单声道、PCM 编码,如图1 所示。 图1 录音格式设置 在实验平台上打开此录音文件,观察并记录其波形及频谱(可以选择一段较为稳定的语音波形进行记录)。 3、根据信号的频谱确定滤波器的参数:通带截止频率Fp、通带衰减Rp、阻带截止频率Fs、阻带衰减Rs。 4、根据技术指标使用matlab 设计IIR 滤波器,得到系统函数及差分方程,并记录得到系统函数及差分方程,并记录其幅频响应图形和相频响应图形。要求设计 第 1页出的滤波器的阶数小于7,如果不能达到要求,需要调整技术指标。 5、记录滤波器的幅频响应和系统函数。在matlab 中,系统函数的表示公式为:

因此,必须记录系数向量a 和b。系数向量a 和b 的可以在Matlab 的工作空间(WorkSpace)中查看。 6、根据滤波器的系统函数推导出滤波器的差分方程。 7、将设计的滤波器应用到实验平台上。根据设计的滤波器的差分方程在实验平台下编写信号处理程序。根据运行结果记录处理前后的幅频响应的变化情况,并试听处理前后声音的变化,将结果记录,写入设计报告。 3.2实验程序 (1)Rs=40; Fs=1400; Rp=0.7; Fp=450; fs=8000; Wp=2*pi*Fp;Ws=2*pi*Fs; [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); [b1,a1]=butter(N,Wn,'s'); [b,a]=bilinear(b1,a1,fs); [H,W]=freqz(b,a); figure; subplot(2,1,1);plot(W*fs/(2*pi),abs(H));grid on;title('频率响应'); xlabel('频率');ylabel('幅值');、 subplot(2,1,2); plot(W,angle(H));grid on;title('频率响应'); xlabel('相位(rad)');ylabel('相频特性'); 3.3实验结果(如图): N =5 Wn=6.2987e+003 第 2页

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

数字信号处理课设共18页文档

数字信号处理课程设计 姓名:刘倩 学号:201014407 专业:信息与计算科学 实验一:常见离散信号产生和实现 一、实验目的: 1、加深对常用离散信号的理解; 2、掌握matlab 中一些基本函数的建立方法。 二、实验原理: 1.单位抽样序列 在MATLAB 中可以利用zeros()函数实现。 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: 2.单位阶越序列 在MATLAB 中可以利用ones()函数实现。 3.正弦序列 在MATLAB 中 4.复指数序列 在MATLAB 中 5.指数序列 在MATLAB 中

实验内容:由周期为10的正弦函数生成周期为20的余弦函数。 实验代码: n=0:30; y=sin(0.2*pi*n+pi/2); y1=sin(0.1*pi*n+pi/2); subplot(121) stem(n,y); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); subplot(122) stem(n,y1); xlabel ('时间序列n');ylabel('振幅'); title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); 实验结果: 实验二:离散系统的时域分析 实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。实验原理:离散系统 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应 则系统响应为如下的卷积计算式:

当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应。 实验内容:用MATLAB 计算全解 当n>=0时,求用系数差分方程y[n]+y[n-1]-6y[n-2]=x[n]描述的一个离散时间系统对阶跃输入x[n]=8μ[n]的全解。 实验代码: n=0:7; >> [y,sf]=filter(1,[1 1 -6],8*ones(1,8),[-7 6]); >> y1(n+1)=-1.8*(-3).^n+4.8*(2).^n-2; >> subplot(121) >> stem(n,y); >> title('由fliter 函数计算结果'); >> subplot(122) >> stem(n,y1); >> title('准确结果'); 实验结果: 结果分析:有图可得由fliter 函数得出的结果与计算出的准确结果完全一致。 实验三FFT 算法的应用

数字信号处理课程规划报告

数字信号处理课程设计报告《应用Matlab对信号进行频谱分析及滤波》 专业: 班级: 姓名: 指导老师: 二0 0五年一月一日

目录 设计过程步骤() 2.1 语音信号的采集() 2.2 语音信号的频谱分析() 2.3 设计数字滤波器和画出其频谱响应() 2.4 用滤波器对信号进行滤波() 2.5滤波器分析后的语音信号的波形及频谱() ●心得和经验()

设计过程步骤 2.1 语音信号的采集 我们利用Windows下的录音机,录制了一段开枪发出的声音,时间在1 s内。接着在C盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。通过wavread函数和sound的使用,我们完成了本次课程设计的第一步。其程序如下: [x,fs,bite]=wavread('c:\alsndmgr.wav',[1000 20000]); sound(x,fs,bite); 2.2 语音信号的频谱分析 首先我们画出语音信号的时域波形;然后对语音信号进行频谱分析,在Matlab中,我们利用函数fft对信号进行快速傅里叶变换,得到信号的频谱特性性。到此,我们完成了课程实际的第二部。 其程序如下: n=1024; subplot(2,1,1); y=plot(x(50:n/4)); grid on ; title('时域信号') X=fft(x,256); subplot(2,1,2); plot(abs(fft(X))); grid on ; title('频域信号'); 运行程序得到的图形:

数字信号处理课程设计报告 杨俊

课程设计报告 课程名称数字信号处理 课题名称数字滤波器设计及在语音信号分析中的应用 专业通信工程 班级1281 学号201213120101 姓名杨俊 指导教师彭祯韩宁 2014年12月5日

湖南工程学院 课程设计任务书 课程名称数字信号处理 课题数字滤波器设计 及在语音信号分析中的应用专业班级通信工程1281班 学生姓名杨俊 学号201213120101 指导老师彭祯韩宁 审批 任务书下达日期2014 年12月5日 任务完成日期2014 年12月13日

《数字信号处理》课程设计任务书 一、课程设计的性质与目的 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。通过该课程的课程设计实践,使学生对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解;巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。 二、课程设计题目 题目1:数字滤波器设计及在语音信号分析中的应用。 1、设计步骤: (1)语音信号采集 录制一段课程设计学生的语音信号并保存为文件,要求长度不小于10秒,并对录制的信号进行采样;录制时可以使用Windows自带的录音机,或者使用其它专业的录音软件,录制时需要配备录音硬件(如麦克风),为便于比较,需要在安静、干扰小的环境下录音。 然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。 (2)语音信号分析 使用MATLAB绘出采样后的语音信号的时域波形和频谱图。根据频谱图求出其带宽,并说明语音信号的采样频率不能低于多少赫兹。 (3)含噪语音信号合成 在MATLAB软件平台下,给原始的语音信号叠加上噪声,噪声类型分为如下几种:①白

心电信号处理昆明理工大学

昆明理工大学信息工程与自动化学院学生实验报告 (2016 —20 17 学年第二学期) 课程名称:生物医学信号处理开课实验室:设备编号:实验日期:2018年5月30日 一、实验目的 1、对心电信号的记录、处理、心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂有总体了解。 2、能利用MATLAB GUI设计简单的GUI程序。 二、实验原理 1、心电信号的特点: 心电信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号;心电信号通常比较微弱,至多为mV量级,且能量主要在几百赫兹以下;干扰即来自生物体内,如肌电干扰、呼吸干扰等,也来自生物体外,如工频干扰,信号拾取时因不良接地等引入的其他外来干扰等;干扰信号与心电信号本身频带重叠(如工频干扰等)。 2、工频干扰抑制:现在使用较多的方法是使用滤波器对工频干扰进行抑制。 3、基线漂移:基线漂移是因呼吸、肢体活动或运动心电图测试所引起的,故这样使得ECG信号的基准线呈现上下飘逸的情况。 三、实验内容 1、对心电信号处理 主程序:

clear;close all;clc; load 100_ECG_0_20 //加载心电信号 %%%Eliminate Baseline Drift //消除基线漂移 s1=ECG_2; //把心电信号ECG-2赋给s1 s2=smooth(s1,150); //利用移动平均法对s1做平滑处理 ecgsmooth=s1-s2; //消除基线漂移 %%%apply Wavelet Transform //应用小波变换 [C,L]=wavedec(ecgsmooth,8,'db4'); //用db4对ecgsmooth进行8层分解,其中返回的近似和细节都存放在C中,L存放是近似和各阶细节系数对应的长度(阶数为4阶) [d1,d2,d3,d4,d5,d6,d7,d8]=detcoef(C,L,[1,2,3,4,5,6,7,8]); //提取小波的细节系数%%%Denoise //降噪,消除干扰 [thr,sorh,keepapp]=ddencmp('den','wv',ecgsmooth); //返回小波除噪和压缩后的信号cleanecg=wdencmp('gbl',C,L,'db4',8,thr,sorh,keepapp);//通过门限阈值处理得到小波系数(执行降噪操作) %%%thresholding1 //取阈值 max_value=max(cleanecg); //最大值(波峰) mean_value=mean(cleanecg); //最小值(波谷) threshold=(max_value-mean_value)/2; //最大值与最小值差的一半作为阈值 %%%R detection algorithm//用R检测算法检测信号 a5=appcoef(C,L,'db4',5);//取分解后的近似部分,也就是第5层低频系数 C1=[a5;d5;d4;d3]; // L1=[length(a5);length(d5);length(d4);length(d3);length(cleanecg)]; R_detect_signal=waverec(C1,L1,'db4'); //用二维小波分解的结果C1,L1重建信号 R_detect_squared=R_detect_signal.^2; //对R检测信号求平方 %%%Beat_Rate_Extraction_Algorithm //计算心率 for a=1:length(R_detect_squared) if R_detect_squared(a)>threshold R_detect_new(a)=R_detect_squared(a); Else R_detect_new(a)=0; end end mean_R_detect=5*mean(R_detect_new); for q=1:length( R_detect_new)-1 if R_detect_new(q)

基于MATLAB的心电信号的分析与处理设计

河南科技大学 课程设计说明书 课程名称医学信号处理 题目基于MATLAB的心电信号的分析与处理设计(2) 院系医学技术与工程学院 班级医疗器械工程111班 学生姓名 指导教师侯海燕宋卫东_ 日期2014年9月11号

课程设计任务书 (指导教师填写) 课程设计名称医学信号处理学生姓名专业班级医疗器械工程111班 设计题目基于MATLAB的心电信号的分析与处理设计(2) 一、课程设计目的 1.熟练掌握使用MATLAB程序设计方法 2.掌握数字信号处理的基本概念、理论、方法 3.掌握序列离散傅里叶变换的MATLAB实现,并进行频谱分析 4.熟练掌握使用MATLAB设计IIR或FIR数字滤波器 5.学会用MATLAB对信号进行分析和处理 二、设计内容、技术条件和要求 一)设计内容与技术条件 1.根据给定的一段MIT-BIH心电信号(101号),画出心电信号的时域波形和频谱图(幅频和相频); 2.根据心电信号频率范围及其噪声的频率范围设计2个滤波器(一个IIR,一个FIR)实现对心电信号滤波。滤波器的种类(高通,低通,带通,带阻),滤波器性能指标(通阻带截止频率,衰减系数),滤波器的设计方法(IIR有冲击响应不变法和双线性变换法,FIR有窗函数法及频率抽样法)等自行设计。要求输出所设计的滤波器的系统函数,画出滤波器的频率响应(幅频响应和相频响应)曲线; 3.用该滤波器对心电信号进行滤波,画出滤波以后心电信号的时域波形和频谱(幅频);分析信号滤波前后心电信号的时域和频域的变化;

4.两个滤波器滤波效果异同分析; 5.运用GUI设计一个心电信号处理系统界面。(选作) 二)设计要求 1.根据滤波器的性能指标要求,设计数字滤波器; 2.程序中按照IIR滤波器的步骤一步步完成设计;尽可能的少调用MATLAB自带 的函数文件;

数字信号处理课程设计

数字信号处理 课 程 设 计 院系:电子信息与电气工程学院 专业:电子信息工程专业 班级:电信班 姓名: 学号: 组员:

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB 窗函数法巴特沃斯

目录 摘要 (1) 1 引言 (1) 1.1课程设计目的 (1) 1.2 课程设计内容及要求 (1) 1.3课程设计设备及平台 (1) 1.3.1 数字滤波器的简介及发展 (1) 1.3.2 MATLAB软件简介 (2) 2 课程设计原理及流程 (4) 3.课程设计原理过程 (4) 3.1 语音信号的采集 (4) 3.2 语音信号的时频分析 (5) 3.3合成后语音加噪声处理 (7) 3.3.1 噪声信号的时频分析 (7) 3.3.2 混合信号的时频分析 (8) 3.4滤波器设计及消噪处理 (10) 3.4.1 设计IIR和FIR数字滤波器 (10) 3.4.2 合成后语音信号的消噪处理 (13) 3.4.3 比较滤波前后语音信号的波形及频谱 (13) 3.4.4回放语音信号 (15) 3.5结果分析 (15) 4 结束语 (15) 5 参考文献 (16)

脉搏信号处理课程设计

目录 摘要 ................................................................................. 错误!未定义书签。第一章绪论 (2) 第二章滤波器的设计 (3) 第三章时域分析 (5) 第四章频域分析......................................................... 错误!未定义书签。第五章程序及图形....................................................... 错误!未定义书签。第六章结果分析......................................................... 错误!未定义书签。心得体会、致谢 .............................................................. 错误!未定义书签。参考文献.......................................................................... 错误!未定义书签。

摘要 脉搏是人体重要的动力学信号之一,它能反映人体心脏器官和血液循环系统的生理变化,在临床健康观察和疾病诊断中十分重要。随着电子技术与计算机技术的发展,将人体脉搏信号转化为电信号进行检测与分析,实现智能化的脉搏检测与分析技术,已是生物医学工程领域的发展方向。 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 第一章绪论 1.1 设计内容及要求 1.睡意检测实验与数据采集 2. 脉搏信号分析 (1)设计滤波器,实现对脉搏信号的噪声抑制。 (2)时域分析:波形特征检测。 (3)功率谱分析:对消噪后的信号进行功率谱分析。要求计算信号的功率谱、功率谱峰值、峰值频率。 3.信号特征分析。

郑州大学数字信号处理课程设计报告

实验一:基于DFT的数字谱分析以及可能出现的问题 一、实验目的: 1.进一步加深对DFT的基本性质的理解。 2.掌握在MATLAB环境下采用FFT函数编程实现DFT的语句用法。 3.学习用DFT进行谱分析的方法,了解DFT谱分析中出现的频谱泄露和栅栏效应现 象,以便在实际中正确应用DFT。 二、实验步骤: 1.复习DFT的定义、物理含义以及主要性质。 2.复习采用DFT进行谱分析可能出现的三个主要问题以及改善方案。 3.按实验内容要求,上机实验,编写程序。 4.通过观察分析实验结果,回答思考题,加深对DFT相关知识的理解。 三、上机实验内容: 1.编写程序产生下列信号供谱分析用: 离散信号: x1=R10(n) x2={1,2,3,4,4,3,2,1},n=0,1,2,3,4,5,6,7 x3={4,3,2,1, 1,2,3,4},n=0,1,2,3,4,5,6,7 连续信号: x4=sin(2πf1t)+sin(2πf2t) f1=100Hz, f2=120Hz,采样率fs=800Hz 2.对10点矩形信号x1分别进行10点、16点、64点和256点谱分析,要求256点 频谱画出连续幅度谱,10点、16点和64点频谱画出离散幅度谱,观察栅栏效应。 3.产生信号x2和x3分别进行8点、16点谱分析,画出离散幅度谱,观察两个信 号的时域关系和幅度谱的关系。 4.对双正弦信号x4以采样率fs=800Hz抽样,生成离散双正弦信号并画出连续波形; 对离散双正弦信号进行时域截断,截取样本数分别为1000、250、50。对不同样本的双正弦信号分别进行1024点谱分析,画出连续幅度谱,观察频谱泄露现象。

ECG(心电图)

1.引言 心脏是血液循环的动力器官。心肌细胞的任何活动,都伴随着电的变化,这是一种生物电。把特制的、有放大装置的电流计连接到体表,就可将每一心动周期内所发生的电位变化描记成连续的曲线,即心电图(简称ECG)。由于各种病理原因引起的心脏疾病,几乎都和心脏的生物电活动相关,因此,心电图反映出心血管病人的许多病变信息,所以,它是心血管疾病诊断中十分重要的一种方法。 早期的ECG分析完全由医生用人工的方法完成。这一过程不仅费时费力,且可靠性不高。计算机辅助的ECG分析与诊断系统的研究始于五十年代末,在计算机辅助的ECG分析与诊断系统中,心电图中常存在由于各种干扰而造成的心电图的改变,这种改变称为心电图伪差。伪差给心电图诊断带来一定的困难。所以,从带有伪差的实际心电图中正确检测出我们需要的信息是很多科研工作者愿意研究的课题。随着生活水平的提高,人们对健康的重视程度也愈来愈强。心血管疾病是现代人患病率最高的疾病之一。心电图能够反映出心血管病患者不少的病变信息,所以,对心电图的研究具有很重要的意义。 在心电图中,每一个周期波形代表一个心动周期,它是由以下各个波和时间段构成的(图 1-1):

图1-1 QRS波群:反映心室肌除极和最早复极过程的电位和时间的变化,但以心室肌除极化为主。 P波:反映心房肌除极过程的电位与时间的变化。 P—R间期:代表激动从窦房结通过心房、心室交界区到心室开始除极的时间。 S—T 间期:从QRS波群终点到T波起点间的线段。它反映心室肌早期复极化过程的电位及时间变化。 T波:反映心室肌晚期复极化过程的电位与时间的变化。 Q—T 间期:从QRS波群起点到T波终点间的时间。代表心室肌除极化与复极化的时间。 当心脏有病变时,将使相应的心电波形有所改变。例如,QRS波群电压增高主要原因是心室肥大,S—T波段抬高有可能是心肌梗死,T波倒置有可能是心肌缺血等。 本设计中应用的标准心电信号ECG_X1是由UW DigiScope软件产生的,并以文本文件的形式存于Matlab的Work文件夹中。而各种噪声是用Matlab编写程序添加的。程序如下:clear %清除内存中的变量和函数 clc %清屏幕 fs=150; %设置取样频率 N = 512; %设置取样点数 load ECG_X1.txt %调出由UW DigiScope软件生成的标准心电图数据 x=( ECG_X1/256)'; %归一化 f=fs/N*(0:N/2-1); %设置频谱分辨率 k=0:N-1; %设置离散频率变量 z1=0.2*sin(2*pi*50*k/fs); %设置50HZ工频噪声 z2=0.2*sin(2*pi*49.5*k/fs); %设置频率偏移50HZ工频噪声

数字信号处理课程设计 1

(一)用窗函数法设计FIR数字滤波器 一、设计题目用窗函数法设计FIR数字低通滤波器 二、设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波特性的影响。 4. 学会根据指标要求选取合适的窗函数。 三、设计原理 窗函数法又称为傅里叶级数法,FIR数字滤波器的设计问题就是要所设计的FIR数字滤波器的响应H(ejw)去逼近所要求的理想滤波器的响应Hd(ejw)。从单位取样响应序列来看,就是使所设计的滤波器的h(n)逼近理想单位取样响应序列hd(n)。而且Hd(ejw)=逐段恒定的,且在频带边界处有不连续点,因此序列hd(n)是无限长的,通过直接截取无限长序列以得到有限长序列的办法,可以形象的比喻为h(n)通过一个窗口所看到的一段hd(n)。因此,h(n)也可以表达为hd(n)和一个窗函数w(n)的乘积,h(n)=w(n)hd(n)。这里的窗函数就是矩形序列RN(n)。 四、实现方法 用MATLAB编程实现给定指标要求的滤波器设计 五、设计内容及要求 1、各窗函数图(假设N=67;) N=67;

n=0:N-1; wn1=ones(1,N); stem(n, wn1);矩形窗 figure; wn2=hamming(N); stem(n, wn2);海明窗 figure; wn3=BARTLETT(N); stem(n, wn3);巴特列特 figure; wn4= Hanning(N); stem(n, wn4);汉宁窗 将窗函数分别画出来 2、计算理想低通滤波器单位冲激响应的源程序function[hd]=ideal(wc,N) q=(N-1)/2; n=0:N-1; m=n-q+eps; hd=sin(wc*m)./(pi*m); 3、计算频率响应的源程序 function[H]=fr(b,a,w); m=0:length(b)-1; l=0:length(a)-1; num=b*exp(-j*m'*w); den=a*exp(-j*l'*w); H=num./den;

《数字信号处理》课程设计,基于MATLAB的音乐信号处理和分析解析

《数字信号处理》课程设计设计题目:基于MATLAB的音乐信号处理和分析 院系:物理工程学院 专业:电子信息科学与技术 学号: 姓名:

一、课程设计的目的 本课程设计通过对音乐信号的采样、抽取、调制解调、滤波、去噪等多种处理过程的理论分析和MATLAB实现,使学生进一步巩固数字信号处理的基本概念、理论以及频谱分析方法和数字滤波器设计方法;使学生掌握的基本理论和分析方法只是得到进一步扩展;使学生能有效地将理论和实际紧密结合;增强学生软件编程实现能力和解决实际问题的能力。 二、课程设计的基本要求 1 学会MATLAB的使用,掌握MATLAB的基本编程语句。 2 掌握在Windows环境下音乐信号采集的方法。 3 掌握数字信号处理的基本概念、基本理论和基本方法。 4 掌握MATLAB设计FIR和IIR数字滤波器的方法。 5 掌握使用MATLAB处理数字信号、进行频谱分析、涉及数字滤波器的编程方法。 三、课程设计内容 实验1音乐信号的音谱和频谱观察 使用windows下的录音机录制一段音乐信号或采用其它软件截取一段音乐信号(要求:时间不超过5s、文件格式为wav文件) ①使用wavread语句读取音乐信号,获取抽样率;(注意:读取的信号时双声道信号,即为双列向量,需要分列处理); ②输出音乐信号的波形和频谱,观察现象; 使用sound语句播放音乐信号,注意不同抽样率下的音调变化,解释现象。 程序如下: [Y,FS,NBITS]=WAVREAD('怒放的生命 - 汪峰5s'); %读取音乐信号 plot(Y); %显示音乐信号的波形和频谱 sound(Y,FS); %听音乐(按照原来的抽样率) Y1=Y(:,1); %由双声道信号变为单声道信号 size(Y1) figure subplot(2,1,1);

数字信号处理数字滤波器设计及在心电信号滤波中的应用的课程设计报告

一、课程设计的性质与目的 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。通过该课程的课程设计实践,使学生对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解;巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。 二、课程设计题目 方向二:数字滤波器设计及在心电信号滤波中的应用。 三、课程设计步骤: 1、心电信号采集 心电信号作为心脏电活动在人体体表的表现,信号一般比较微弱,幅度在10μV~5mV,频率为0.05~100Hz。在心电信号的采集、放大、检测及记录过程中,有来自外界的各种干扰。记录一段时间内的人体心电信号波形,要求长度不小于10秒,并对记录的信号进行数字化,保存为数据文件;这里,请同学们使用美国的MIT/BIH心电原始数据,由实验老师给出一定长度的的心电原始数据,数据保存在文件“a01.txt~a10.txt”中,在MATLAB中通过如下语句读取:load ‘a01.txt’; %从当前路径下的a01.txt文件读取心电原始数据到变量a01中,a01为二维数据,第一列%为心电信号时间,第二列为心电信号幅度。 2、心电信号分析 使用MATLAB绘出数字化后的心电信号的时域波形和频谱图。根据频谱图求出其带宽,并说明心电信号的基本特征。 3、含噪心电信号合成 在MATLAB软件平台下,给原始的心电信号叠加上噪声或干扰,干扰类型分为

如下几种:(1)白噪声;(2)工频干扰(50Hz);(3)谐波干扰(二次、三次谐波为主,分别为100Hz、150Hz);(4)其它干扰,可设置为低频、高频、带限噪声,或冲激干扰。绘出叠加噪声后的心电信号时域和频谱图,在视觉上与原始心电信号图形对比,绘出其时域波形差,分析频域基本特征变化。 4、数字滤波器设计及滤波,完成以下题目中的一个 给定滤波器的规一化性能指标(参考指标,实际中依据每个同学所叠加噪声情况而定)例如:通带截止频率wp=0.25*pi, 阻通带截止频率ws=0.3*pi; 通带最大衰减Rp=1 dB; 阻带最小衰减Rs=15 dB,每个题目至少设计出5个用不同方法的不同类型滤波器。 题目(1):采用窗函数法与等波纹法分别设计各型FIR滤波器(低通、高通、带通、带阻中的至少3种类型)来对叠加干扰前后的心电信号进行滤波处理,绘出滤波器的频域响应,绘出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;在相同的性能指标下比较各方法的滤波效果,并从理论上进行分析(或解释)。 题目(2):采用双线性变换法与脉冲响应不变法,分别利用不同的原型低通滤波器(Butterworth型与切比雪夫I型)来设计各型IIR滤波器(低通、高通、带通、带阻中的至少3种类型),绘出滤波器的频域响应;并用这些数字滤波器对含噪心电信号分别进行滤波处理,比较不同方法下设计出来的数字滤波器的滤波效果,并从理论上进行分析(或解释)。 5、心电信号波形观察、频谱观察 对滤波后的心电信号观察其时域、频域特征变化。绘出滤波后、滤波前、加噪后三个心电信号的差值波形,观察相互间的差异性;同时,分析频谱变化。 四、课程设计要求 1、在一周内学生须上机16小时以上,程序调试完后,须由指导老师在机器 上检查运行结果,经教师认可后的源程序可通过打印机输出,并请教师在程序清单上签字。 2、课程设计报告内容和格式:设计题目,设计的详细步骤,设计过程中的 结果、图形等,设计总结。

ECG信号处理

精确心电图(ECG)信号处理 来源:本站整理作者:叶子2011年08月31日 11:42 分享 [导读]心电图(ECG)是用来捕捉心脏在一段时间内情况的反映,它通过外部电极连接到皮肤转换成电信号来采集。心脏外面形成的每个细胞膜都有一个关联电荷,它在每次心跳期间去极化。它以微 关键词:ECG心电图信号处理 心电图(ECG)是用来捕捉心脏在一段时间内情况的反映,它通过外部电极连接到皮肤转换成电信号来采集。心脏外面形成的每个细胞膜都有一个关联电荷,它在每次心跳期间去极化。它以微小电信号的形式出现在皮肤上,可以通过心电图探测到并放大显示。 早在1900年Willem Einthoven就发明了第一台实用的心电图。该系统很笨重,需要很多人去操纵它。病人需要把他的胳膊和腿放到含有电解液的大型电极中。今天的心电监护设备结构紧凑,携带方便,这样病人走动时也可以带着。家用十二导联心电图可以装在口袋里。 心电图基础: 文中这个关于心电图的术语“导联(lead)”,指的是两个电极间的电压差,这就是设备记录下来的差异。例如,“Lead_I”是左臂和右臂电极之间的电压。Lead_I和Lead_II都指的是肢体导联。V1-V6指的是胸部导联。心电图追踪V1就是Vc1电压(胸部电极的电压),和Lead_I,Lead_II ,Lead_ III的平均电压之间的差别。一个标准的十二导联心电图系统包括八个真实数值和四个派生值。表1给出了各种导联电压(真实的和派生的)的简介。 导联名称计算注释

这是一个真实导联,显示在心电图轨迹中。 表1:导联名称及心电图记录位置。 一个典型的心电图波形如图1所示。X轴表示时间刻度。在这里每格(5毫米)对应的是20毫秒。Y轴显示的是捕获信号的振幅。Y轴上每格(5毫米)对应的是0.5 毫伏。(10毫米/毫伏及25毫米/秒)

相关主题
文本预览
相关文档 最新文档