当前位置:文档之家› 球床模块式高温气冷堆核电站特点及推广前景研究

球床模块式高温气冷堆核电站特点及推广前景研究

球床模块式高温气冷堆核电站特点及推广前景研究
球床模块式高温气冷堆核电站特点及推广前景研究

综述与专论

球床模块式高温气冷堆核电站

特点及推广前景研究

赵木1,马波1,董玉杰2

(1.中核能源科技有限公司,北京,100084

2.清华大学核能与新能源技术研究院,北京,100084)

摘要:结合20万千瓦级球床模块式高温气冷堆核电站示范工程技术特点,从安全性与经济性等角度深入研究高温气冷堆核电站的发展优势和前景。探索球床模块式高温气冷堆核电站潜在商机和未来融资方式。探索未来发展的产业布局和潜在用户。得出结论:球床模块式高温气冷堆核电站采用氦气透平发电技术能充分利用其技术潜力,未来群堆建设的经济性好,在国内和发展中国家大量建设有广阔的市场和重大意义。关键词:球床模块式高温气冷堆核电站;技术特点;群堆建设;固有安全性中图分类号:TL31

文献标识码:A

文章编号:1006-8759(2011)05-0001-04

THE STRATEGIC STUDY OF PEBBLE MODEL HIGH TEMPERATURE GAS-COOLED REACTOR PLANT WITH POWER GENERATION FEATURE AND INDUSTRIAL

APPLICATION PROSPECT

ZHAO Mua 1,MA Boa 1,DONG Yu-jieb 2

(1.Chinergy CO.,ltd,Beijing,100084;2.Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing,100084,China)

Abstract:On the basis of the technical feature of pebble model high temperature gas-cooled reactor (HTR-PM)plant,its developmental advantage and future are deeply investigated from inherent safety and economics.It is explored about the business opportunity and future fi -nancing mode of HTR-PM plant.Industrial distribution and potential user are studied.It is resulted that the technical potential can be developed fully using Gas turbine power genera -tion technology.It has wide market and great significance to build more group modules at home and developing countries.

Keywords:pebble model high temperature gas-cooled reactor plant;technical feature;group modules construction;inherent safety

收稿日期:2011-5-12

基金项目:大型先进压水堆及高温气冷堆核电站重大专项(2008ZX06905-002)。

第一作者简介:赵木(1981-),男,辽宁省大石桥市人,工程师,硕士,高温气冷堆工程。

1球床模块式高温气冷堆核电站特点及优势分析

1.1球床模块式高温气冷堆核电站技术特点我国的核电发展必须符合国际发展趋势,必

须发展更安全、更经济的新一代堆型。球床模块式高温气冷堆核电站具有固有安全性,潜在的经济竞争力,尽量采用成熟技术,实现标准化、模块化设计和建造,是新一代核能系统的优秀堆型,符合

能源环境保护

Energy Environmental Protection Vol.25,No.5Oct.,,2011

第25卷第5期2011年10月

进一步改善经济性的要求。图1是华能山东石岛湾核电厂高温气冷堆核电站示范工程一回路三维模型图。如图所示,核岛采用通风式低耐压型安全壳堆芯,直流蒸汽发生器与反应堆“肩并肩”布置,三个壳体组成一回路压力边界。球床模块式高温气冷堆核电站采用两套核蒸汽供应系统带一台汽轮发电机组的技术方案,每座反应堆热功率为250MWt,总功率为500MWt,汽轮发电机组额定输出功率为211MWe。反应堆一回路采用氦气冷却方式,由设置在蒸汽发生器上部的主氦风机驱动,反应堆压力为7Mpa,氦气出口温度为750℃。主蒸汽系统采用母管制,“2-1-2”布置方式,从

核岛出来后合并成一个母管,进入汽机房后由母管再分成两个支管进入汽轮机,主要技术参数见表1。

球床模块式高温气冷堆核电站的主要技术特点为:系统简单,最大限度避免了堆芯进水事故,热力循环效率高。用石墨作为慢化剂和结构材料,堆芯周围没有金属部件。设置两套独立的停堆系统:控制棒系统和吸收球停堆系统。球形全陶瓷包覆颗粒燃料球形元件从堆芯顶部连续装入堆芯,同时从堆芯底部卸料管连续卸出燃料元件,采用连续装卸料循环的燃料管理模式,任何工况下燃料元件最高温度不超过其安全限值1620℃[1]。1.2球床模块式高温气冷堆核电站优势分析

球床模块式高温气冷堆核电站是具有固有安全性的新一代堆型,完全符合核电未来发展方向,未来具有很好的经济性。球床模块式高温气冷堆的经济分析结果表明,与大容量的压水堆核电厂相比较,其发电成本有很好的竞争力[2]。

1.2.1球床模块式高温气冷堆核电站模块化理念

球床模块式高温气冷堆核电站实现全新的核安全概念:按照模块化概念和准则设计建造,增强了项目建设的标准化,减少了施工现场的工程量,大大缩短了项目的建设周期,降低了投资风险,降低后续工程的建设费用。后续球床模块式高温气冷堆核电站的建设中,设备定型和批量制造,设备造价降低。多模块反应堆带一机,组成较大功率规模的发电机组,通过共用辅助系统,降低造价。1.2.2球床模块式高温气冷堆核电站固有安全性

提高安全性、改善经济性是国际、国内核电发展中必须解决的问题。球床模块式高温气冷堆核电站满足阻止放射性释放的多重屏障纵深防御的基本安全原则,实现了固有安全性,其非能动安全特性使系统大为简单,不必设置压水堆核电厂中的堆芯应急冷却系统等专设安全设施,使得其依赖电力驱动的安全负荷的容量大为减少,并节省了建造投资。消除公众对核电安全性的疑虑,促进表1球床模块式高温气冷堆核电站主要技术参数

参数单位数值堆芯热功率MW500电站名义电功率MWe211

堆芯直径M3

堆芯高度M11一回路氦气压力Mpa7

堆芯出口氦气温度℃750

堆芯入口氦气温度℃250

主蒸汽压力Mpa13.5

主蒸汽温度℃540堆芯平均功率密度MW/m3 3.22

电站效率(额定工况)%42.2

电站可用率%90

电站设计寿期a40

·2·赵木等

球床模块式高温气冷堆核电站特点及推广前景研究

核电进一步发展。

1.2.3球床模块式高温气冷堆核电站满足小容量电网需求

球床模块式高温气冷堆核电站具有固有安全特性,采用了较小的单堆容量,热功率约为200~260MW。其单堆容量较小,对电网的冲击较小,尤其适合呈离散式的小规模电网。由球床模块式高温气冷堆核电站支撑的小规模电网,可以大大降低输电成本,是非常理想的选择。

1.2.4球床模块式高温气冷堆核电站发电效率高

球床模块式高温气冷堆核电站示范工程的发电效率为42.2%。随着工业技术进步,采用氦气直接循环技术,利用高效换热和气体压缩装置,可将发电效率提高到48%左右。如果将氦气温度提高到900~1000℃,采用直接循环氦气透平发电,热效率可以提高到50%,从而大大提高经济性。

1.2.5球床模块式高温气冷堆核电站不停堆燃料循环技术

高温气冷堆核电站采用不停堆装卸料技术,核燃料的高燃耗可降低核电站的折旧成本和燃料成本,大幅提高了核电站的经济性。卸出的燃料元件如果未达到预定的燃耗深度,则再送回堆内使用,使每个燃料元件的燃耗深度基本一致,未来最高燃耗可从100GWd/tU提高到150GWd/tU。电站负荷因子可从首堆设计的70%提高到90%以上,又无需储备补偿燃耗所需的反应性,从而大大提高了反应堆的安全性。

1.2.6球床模块式高温气冷堆核电站选址灵活

球床模块式高温气冷堆核电站由于安全性好,因而选址灵活,可以建立在工业区内或人口稠密的城市附近等负荷中心,就近经济地供电。另外,球床模块式高温气冷堆核电站采用非能动余热排除设计,不需大规模冷却用水,对可靠水源的依赖程度较低。设备的尺寸和重量都比压水堆的小很多,可以通过陆路运输的方式进行运输。

未来,可建立针对球床模块式高温气冷堆核电站的核安全法规,从而减少不必要的安全技术要求,则可进一步降低球床模块式高温气冷堆核电站的建造和运行成本。另外,球床模块式高温气冷堆用途广泛,满足国家未来的能源需求。高温气冷堆内氦气温度高,不仅可用来发电,也可用于大规模高效制氢,和为稠油热采、冶金、化工、煤的气化液化等提供大量高温工艺热。2球床模块式高温气冷堆核电站发电的潜在商机和未来融资方式

2.1球床模块式高温气冷堆核电站发电的潜在商机

目前,我国人均用电量仅为世界平均水平的1/2,由于工业化和城市化的驱动,未来能源需求预计将继续显著增长。2020年能源需求极有可能达到甚至超过31亿t标准煤,届时核电将从国家电力的补充地位,发展到国家电力不可缺少的重要组成部分,在我国未来电力结构中扮演越来越重要的角色。

受环境污染和可开发资源等因素的限制,因此规模发展核电是实现我国能源可持续供应的不可替代的战略选择。加快发展核电,填补一次能源缺口,调整能源结构,减轻常规能源重负,核电将成为我国能源可持续发展的战略性接替能源[3]。在核电市场上,大型先进压水堆核电站将起主导作用,球床模块式高温气冷堆核电站可作为大型压水堆核电站的补充,同时可满足国家未来对核能制氢和高温工艺热的需求。球床模块式高温气冷堆核电站具有很好的固有安全性,选址灵活,不需大规模冷却用水,能源取代潜力高于其他堆型,其经济指标在将来充分发展成熟后可能与压水堆相近。高温气冷堆单堆容量较小,初始投资低,电站在经济方面较压水堆电站更有竞争力,尤其适合在中、小规模电网地区发展,适应国家西部大开发的需求。

2.2球床模块式高温气冷堆核电站未来发展的融资方式

随着产业化的推进,球床模块式高温气冷堆核电站进入群堆建设阶段时,如果单一地采取注册项目公司,再进行企业融资的方式将难以适应高温气冷的大规模发展。借鉴国外核电建设和国内其他电站的筹融资方式,充分地发挥产业化平台的作用,采取企业融资和项目融资相结合的方式将是推进球床模块式高温气冷堆核电站大规模产业化的有效途径。将核电事业融入电力事业,面向市场竞争,允许电力公司投资建设核电,经营管理核电。在保持国有资本控股的前提下,允许民营资本及外资进入核电建设和经营事业。大力发展项目融资,以项目的预期收入和资产对外承担债务偿还责任。

第25卷第5期·3·

能源环境保护

在球床模块式高温气冷堆核电站发展的国际战略中,采用中外合资的方式,由中外双方共同投资和经营核电站,由中外业主共担经济风险,能大幅度降低电站造价。可使我国较快地形成球床模块式高温气冷堆核电站产业,进而加入到国际电站市场中去,用售电收入偿还投资的本息。同时中外双方应寻求适当的外币还贷方式,以及外方应提供优于常规核交易的贷款金融条件。在国际融资上还可以采用BOT(build-operate-transfer,即建设-经营-转让)模式或其演变形式。投资者与政府签订特许权协议投资建设项目,建成后由其经营,在一定年限后将该项目无偿转让或移交给东道国政府拥有并经营。第三世界国家往往虽然主观上非常想发展球床模块式高温气冷堆核电站,可是资金不足,BOT模式是一种很好的解决这种主观意愿与现实困难的方法。可以通过业主公司或其它球床模块式高温气冷堆核电站建设主体与国内开发银行等金融机构合作,提供球床模块式高温气冷堆核电站的建设资金。通过开辟国外市场,促进球床模块式高温气冷堆技术的成熟,从而最大限度的降低经济成本。

3球床模块式高温气冷堆核电站的产业布局和潜在用户

在对电力需求巨大的沿海地区,球床模块式高温气冷堆核电站由于受功率和规模容量的限制,不可能也不应当与压水堆核电形成竞争的关系,而应该形成对压水堆核电的有益补充,同时大力开拓海外市场。

3.1在国内的广大内陆地区发展球床模块式高温气冷堆核电站

球床模块式高温气冷堆核电站由于安全性好,选址灵活,可以建在内陆水资源相对匮乏的地区。我国广大内陆地区,干旱缺水,他们要求建造很小容量的核电站,并要求操作运行比较简单,即使发生误操作或故障也不会引起严重后果。同时,这也为我国内陆行将退役的火电厂改建提供了可能性。

3.2实现热-电联供多用途化

球床模块式高温气冷堆核实现热一电联供。电站输出多种参数和高品位的蒸汽,且能靠近用户(例如燕山石化总厂、胜利油田等),这是水堆难于与之竞争的,以核代高价油在经济上是能够承受的。

3.3海岛上建设球床模块式高温气冷堆核电站

在远离大陆的海岛(比如南海岛屿)建设球床模块式高温气冷堆核电站,改善海岛生存条件,实现维持人类居住及其本身的经济生活。由于固安全性、单堆容量较小等独特优点,所以可在南海我国控制的岛屿或建设的人工岛上建造球床模块式高温气冷堆核电站进行发电和海水淡化,彻底解决驻守军人和岛民的生活问题,弥补了南海岛屿后勤补给难以维持的问题。未来以这些岛屿为据点,与远洋能力相配合,全面控制我国管辖的海域,改变我国300万平方公里的海洋国土近一半存在争议的局面,使我国由海洋大国成为海洋强国。

3.4在全球核电市场中寻找高温堆的细分市场

广大发展中国家对电力等能源的需求呈快速增长的势态,为球床模块式高温气冷堆核电站的发展提供契机。同时,球床模块式高温气冷堆单堆规模小等特点也完全符合中小发展中国家的电网容量要求。贯彻"走出去"的方针,球床模块式高温气冷堆核电站国际战略可从这些中小国家开端,争取在在相关政府部门的支持下,取得国际市场的突破。

4结论

球床模块式高温气冷堆核电站的能源取代潜力高,进行群堆建设,采用多模块反应堆带一台超临界蒸汽透平或氦气透平,组成较大功率规模的发电机组,可以进一步提高发电效率。球床模块式高温气冷堆可实现发电、制氢、稠油热采等功能,在国内外有广阔的市场和重大意义,必将成为未来先进核能系统的一个重要发展方向。

参考文献

[1]吴宗鑫,肖宏才.模块式高温气冷堆的安全特性.高技术通讯, 1994,11:34-38.

[2]吴宗鑫,张作义.世界核电发展趋势与高温气冷堆.核科学与工程,2000,20(3):211-219.

[3]周苏军,王迎苏,池金铭.高温气冷堆发电技术的发展和应用前景.中国电力,2001,34(12):8-10.

·4·赵木等球床模块式高温气冷堆核电站特点及推广前景研究

先进的规则床模块式高温气冷堆概念

第28卷 第2期核科学与工程Vol.28 No.2 2008年 6月Chinese Journal of Nuclear Science and Engineering J un. 2008 先进的规则床模块式高温气冷堆概念 田嘉夫 (清华大学核能技术设计研究院,北京100084) 摘要:规则床模块堆是燃料球呈规则堆积的一种先进的模块式高温气冷堆设计。燃料球在平面上成正方形排列,四个球的中心是次一层球的位置,形成正四棱锥堆积。当燃料球落入被做成一定几何形状的堆芯空腔时,就自动形成规则堆积。燃料球可以从反应堆顶部装入和卸出,能够在较短的停堆时间内完成换料操作。规则床堆芯是一种密实体,具有很强的结构适应性和稳定性。在模块化设计中,保持非能动冷却和限制最高燃料温度的条件下,它能够提高输出功率和降低堆芯压降,同时还兼有球形燃料堆和柱状燃料堆的主要优点。本文介绍规则堆积床特性和预测规则床模块堆的设计性能。 关键词:模块式高温气冷堆;卵石床;规则床;球形燃料堆;柱状燃料堆 中图分类号:TL3,TL4 文献标识码:A 文章编号:025820918(2008)022******* Advanced ordered bed modular HTGR reactor concept TIAN Jia2f u (Institute of Nuclear Energy Technology,Tsinghua University,Beijing100084,China) Abstract:The Ordered Bed Modular Reactor(OBMR)is an advanced modular H T GR design in which t he reactor core is filled wit h an ordered bed of f uel sp heres.The or2 dered beds are packed in a pyramid geomet ry in which t he unit cell layer is formed by four sp heres lying at t he corners of a square,and t he individual sp heres in subsequent layers fill t he cusp s formed by t hem.This arrangement allows f uel element s to be poured into t he core cavity which is shaped so t hat an ordered bed is formed and to be discharged f rom t he core t hrough t he opening holes in t he reactor top.These operations can be performed in a shorter shut down time.The core of t he OBMR as a compact core has great st ruct ural flexibility and stability.The geomet ry of t he core st ruct ures is t hat passive cooling to t he environment and maximum f uel temperat ures are kept wit hin safe limit s.It is allowed to increase reactor outp ut power and decrease core p ressure drop as well as having mo st of t he advantages of bot h t he pebble bed reactor and block type re2 actor.This paper introduces ordered packing bed characteristics and predicted design 收稿日期:2007206207;修回日期:2007211207 作者简介:田嘉夫(1937—),男,辽宁人,教授,从事核能应用和先进反应堆方面研究 741

高温气冷堆的技术及装备

高温气冷堆的技术及装备 随着经济社会发展,人类对能源需求日渐增多。但传统化石能源有着污染大,不可再生的缺陷,并且储量日益减少。核能为人类提供了一个清洁,取之不尽用之不竭的能源宝库,到现在为止已有四代核电技术的历史,人们通常把五、六十年代建造的验证性核电站称为第一代;70、80年代标准化、系列化、批量建设的核电站称为第二代;第三代是指90年代开发研究成熟的先进轻水堆;第四代核电技术是指待开发的核电技术,其主要特征是防止核扩散,具有更好的经济性,安全性高和废物产生量少。第四代核反应堆的六个构型中,就有高温气冷堆,高温气冷堆是国际公认的具有先进技术的新型核反应堆,我国的高温气冷堆研究技术处于国际领先地位。其主要特点是固有安全性能好、热效率高、系统简单。目前已成功地建设了10MW实验电站,并完成了多项安全性实验工作,在向商业化转化的过程中,得到国家有关部门的大力扶持。项目已经列入《国家中长期科学和技术发展规划纲要》和《中华人民共和国国民经济和社会发展第十一个五年规划纲要》。 传统核反应堆存在建造周期长,相对效率较低,安全性不高成本高的不足。自从前苏联切尔诺贝利电站发生核泄漏事故以后,人类更希望有更安全的利用核能的方式。高温气冷堆是在以天然铀为燃料、石墨为慢化剂、CO2为冷却剂的低温气冷堆的基础上发展起来的,具有固有的安全性,使得反应堆辅助系统减少,有效降低了成本

并且拥有很高的效率。高温气冷堆是现有堆型中工作温度最高的堆型,可以广泛应用于需要高温高热的工业部门。高温气冷堆作为第四代核反应堆具有广阔的应用前景。 1.高温气冷堆的组成结构及其工作原理 通俗地说,反应堆就是“原子锅炉”,是通过控制核燃料的反应来产生原子能的装置。通常,反应堆的核燃料是铀235,在中子的作用下能够产生核裂变。一个铀235原子核吸收一个中子以后,会分裂成两个较轻的原子核,以热的形式释放出能量,并产生两个或者三个新的中子。在一定的条件下,新产生的中子会引发其它的铀235原子核裂变,这种反应延续下去,就是“链式裂变反应”。要形成“链式裂变反应”,不仅铀235要达到一定数量,还必须用慢化剂把高能量的中子减慢为“热”中子。控制反应堆中核燃料的反应使核能缓慢释放,并用载热剂从反应堆中导出热量,就能对核能加以利用。 高温气冷堆是一种用氦气作冷却剂的先进核反应堆,采用全陶瓷型球形燃料元件(核燃料经20多道工序加工成直径为6cm的球状物),冷却剂即为氦气,慢化剂和结构材料采用石墨,堆芯最高温度达到1600摄氏度。反应堆可采用模块化方式制造,建造时就像搭积木般,能随时连续地装卸核燃料和不定期停堆拆卸更换,因而和其它反应堆相比,可用率约高达45%以上。高温气冷堆的堆芯核燃料由低富集铀或高富集铀加钍的氧化物(或碳化物)制成直径约200微米的陶瓷型颗粒核心,外面涂上2-3层热解碳和碳化硅,涂层厚度约150-200 微米,构成直径约为1毫米左右的核燃料颗粒。然后将颗粒弥散在石

张禄庆话说德国球床高温气冷堆的安全教训

张禄庆话说德国球床高温气冷堆的安全教训 来源:中国核电信息网发布日期:2009-08-31 2009年4月1日,互联网上登出了一篇题为《再探球床式反应堆(PBR)安全性》的文章【1】。作者摩曼(Rainer Moormann)先生长期在德国于利希研究中心工作,是一位具有丰富球床高温气冷堆研发经验的专家。该文语出惊人,开篇第一句话就概括说:“PBR的安全性能并不象人们较早时想象的那样美好”。于利希研究中心2008年6月发表的一项新的关于20多年前关闭的德国球床堆AVR运行经验的研究指出,未来的PBR要增加安全措施,还需要投入相当大的研发努力。该文的观点在核电界内不胫而走,引起广泛的重视。有消息灵通人士透露,摩曼先生是个高温气冷堆的坚决反对派。笔者不知就里,不予置评,但坚信,赞成或反对的观点都只能建立在科学依据上。因此,本文想就其中涉及到而又普遍关注的PBR的共性安全问题从技术上进行探讨。 1 高温气冷堆发展概况 从20世纪60年代开始,英国、美国和德国开始研发高温气冷堆。1964年,英国与欧共体合作建造的世界第一座高温气冷堆龙(Dragon,20MWth)堆建成临界。其后,德国建成了15MWe的高温气冷试验堆AVR和300MWe的核电原型堆THTR-300。美国建成了40MWe的实验高温气冷堆桃花谷(Peach-Bottom)堆和330MWe的圣符伦堡(Fort. St. Vrain)核电原型堆。它们大多采用钍-铀燃料。日本于1991年开始建造热功率为30MWth的高温气冷工程试验堆HTTR,1998年建成临界。 上世纪80年代后期,高温气冷堆发展进入模块式阶段。有潜在市场应用前景的两种模块式高温气冷堆设计是:德国Siemens/Interatom公司的球床模块式高温气冷堆HTR-Module和美国

高温气冷堆

高温气冷堆 高温气冷堆,用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。堆芯出口温度为 850~1000℃,甚至更高。根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。 高温气冷 高温气冷堆,(high temperature gas cooled reactor),高温气冷堆的蒸发器能达到560℃,发电效率大大提升,高温气冷堆核电站具有良好的固有安全性,它能保证反应堆在任何事故下不发生堆芯熔化和放射性大量释放。高温气冷堆具有热效率高 (40%~41%),燃耗深(最大高达20MWd/t铀),转换比高 (0.7~0.8)等优点,由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。 70年代中期,中国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。 1986年,在国家863计划支持下,清华大学正式开始了10兆瓦高温气冷堆实验堆的研发。 1988~1989年,间德国的两座球床高温气冷堆反应堆相继被关闭,其原因是担心安全性。

2000年12月,建成临界。 高温气冷 2003年1月,实现满功率并网发电,中国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核心技术和系统设计集成技术。这一科技成果在国内外引起广泛的影响,使中国在高温气冷堆技术上处于国际先进行列。 2004年9月底,由国际原子能机构主持,清华大学核研院在10兆瓦高温气冷堆实验堆上进行了固有安全验证实验。实验结果显示,在严重事故下,包括丧失所有冷却能力的情况下,不采取任何人为和机器的干预,反应堆能保持安全状态,并将剩余热量排出。 2006年1月,国务院将大型先进压水堆和高温气冷堆核电站示范工程列为国家重大专项。 2008年2月,高温气冷堆核电站重大专项实施方案获国务院批准,专项牵头实施单位为清华大学核研院、华能山东石岛湾核电有限公司、中核能源科技有限公司。 2009年9月,美国能源部发表声明说:“下一代核电站(NGNP)项目将采用新型的高温气冷堆技术,一个设施支持多种工业应用,比如发电的同时进行石油精炼。NGNP项目将使核能利用延伸到更宽广的工业和交通领域,降低燃料消耗和污染,并在现有的商业化轻水堆技术基础上提高固有安全性。”而后来美国选择了阿海珐公司设计的棱柱高温气冷堆。 2011年3月1日,筹备了7年之久的山东荣成石岛湾核电站终于通

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

高温气冷堆实习报告[1]

高温堆相关技术及安全性 摘要:以清华大学核研院10MW高温气冷堆为基础,简要地介绍高温堆的应用及其安全性,高温堆的使用现状及其应用前景等。经过科学的分析和大量的实验经验验证了:高温气冷堆较其他堆型是具有较强竞争力的。 关键词:高温堆安全性 一、高温堆的的简介 高温气冷堆是采用耐高温的陶瓷型涂敷颗粒燃料、用化学惰性和热工性能良好的氦作冷却剂、用耐高温的石墨作慢化剂和结构材料、冷却剂出口温度可达750~950 ℃的核反应堆,甚至更高。高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。其核燃料一般采用高浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。 人们通常把五、六十年代建造的验证性核电站称为第一代;70、80年代标准化、系列化、批量建设的核电站称为第二代;第三代是指90年代开发研究成熟的先进轻水堆;第四代核电技术是指待开发的核电技术,其主要特征是防止核扩散,具有更好的经济性,安全性高和废物产生量少。 第四代核反应堆的六个构型中,就有高温气冷堆,这是一个很有前途的方案,现行的高温气冷堆有两个流派:石墨球床和柱状燃料的,前者的使用者是中国和南非,后者是美、俄和日本喜欢的,这里着重说一下我国的石墨球床堆电厂的技术特点。 石墨球床堆也叫卵石堆,最早是德国在本世纪60年代建成了原理堆,由于技术和需求的限制,30年没有大的发展,直到上个世纪90年代,国际能源危机的压力日趋严重,南非和中国先后开始了对这一技术的现代化研究和实用化探索,分别是南非国营电力设计的PBMR(400MW热功率)和中国原子能技术研究

放射性石墨粉尘-球床式高温气冷堆的固有不安全性

编号:AQ-JS-00167 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 放射性石墨粉尘-球床式高温气冷堆的固有不安全性Radioactive graphite dust inherent insecurity of pebble bed high temperature gas cooled reactor

放射性石墨粉尘-球床式高温气冷堆 的固有不安全性 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 2009年4月1日,互联网上登出了一篇题为《再探球床式反应堆(PBR)安全性》的文章。作者摩曼(RainerMoormann)先生长期在德国于利希研究中心工作,是一位具有丰富球床高温气冷堆研发经验的专家。该文语出惊人,开篇第一句话就概括说:“PBR 的安全性能并不象人们较早时想象的那样美好”。于利希研究中心2008年6月发表的一项新的关于20多年前关闭的德国球床堆AVR 运行经验的研究指出,未来的PBR要增加安全措施,还需要投入相当大的研发努力。该文的观点在核电界内不胫而走,引起广泛的重视。有消息灵通人士透露,摩曼先生是个高温气冷堆的坚决反对派。笔者不知就里,不予置评,但坚信,赞成或反对的观点都只能建立在科学依据上。因此,本文想就其中涉及到而又普遍关注的PBR的

(完整word版)我国核电发展现状及未来发展趋势

一、我国核电发展现状: 在党中央、国务院地正确领导下,我国核电经过多年地发展,取得了显著成绩.核电设计、建设和运营水平明显提高,核电工业基础已初步形成.经过起步和小批量两个阶段地建设,目前形成了浙江秦山、广东大亚湾和江苏田湾三个核电基地.在浙江、广东两省,年核发电量均超过本省总发电量地,核电成为当地电力供应地重要支柱.当前我国运行地核电有台机组、万千瓦发电运行,占全国发电装机总容量地左右,分别是秦山核电站、秦山二期核电站及扩建工程、秦山三期核电站,广东大亚湾核电站、广东岭澳核电站一期和江苏田湾核电站一期.文档收集自网络,仅用于个人学习 目前建设中核电站:广东:岭澳核电站二期、阳江核电站、台山核电站一期;辽宁:红沿河一期;福建:宁德核电站一期、福清核电站;浙江:秦山核电站一期扩建工程、三门核电站;山东:海阳核电站一期、石岛湾核电站.文档收集自网络,仅用于个人学习筹建中地核电站:湖南:桃花江核电站;湖北:大畈核电站;江西:彭泽核电站;海南:昌江核电站一期;广东:陆丰核电站、海丰核电站;广西:红纱核电站;辽宁:徐大宝核电站、东港核电站;重庆:涪陵核电站;四川:三坝核电站;浙江:龙游核电站;安徽:芜湖核电站、吉阳核电站;吉林:靖宇核电站;湖南:小墨山核电站;河南:南阳核电站;福建:漳州核电站、三明核电站.文档收集自网络,仅用于个人学习 秦山一期核电站已经安全运行年,在年结束地第七个燃料循环中创造了连续安全运行天地国内核电站最好成绩,年世界核电运营者协会()九项性能指标中,秦山核电站有六项指标达到中值水平,其中三项指标达到世界先进水平.秦山二期国产化核电站全面建成投产,实现了我国自主建设商用核电站地重大跨越,比投资美元千瓦,国产化率,经受住了初步运行考验,表现出了优良地性能,实现了较好地经济效益和社会效益.秦山三期重水堆核电站提前建成投产,实现了核电工程管理与国际接轨,创造了国际同类型核电站地多项纪录.广东大亚湾核电站投运十几年来,保持安全稳定运行,部分运行指标达到国际先进水平,取得了较好地经济效益.广东岭澳核电站也已经全面建成投产并取得良好地运行业绩.江苏田湾核电站号机组正在调试过程中.年月日,国务院批准建设广东岭澳核电站二期工程、浙江三门核电站一期工程.总之,中国核电在技术研发、工程设计、设备制造、工程建设、项目管理、营运管理等方面,具备了相当地基础和实力,为加快发展积累了经验、奠定了坚实地基础.加快核电发展地时机已经成熟,条件基本具备.文档收集自网络,仅用于个人学习、核电设计.我国核工业拥有一支专业配置齐全、知识和年龄结构较为合理地核电研究设计队伍,形成了设计管理和接口控制程序以及质量管理体系;掌握了一些国外核电成熟地设计技术;能自主设计建设万千瓦和万千瓦压水堆核电站,也具备了以我为主、中外合作设计建设百万千瓦级压水堆核电站地能力.中国核工业集团公司组织有关核电设计院,开展了国产化百万千瓦级压水堆核电机组地设计工作,目前初步设计已经完成,进入初步设计审查阶段. 文档收集自网络,仅用于个人学习 、核电技术研发.我国核工业建立了专业齐全地核科研体系,培养了一支水平较高地核电科研队伍,已建成了具有国际水平地大型核动力技术试验基地,各种试验台架、科研设施齐全,具备了较强地自主开发能力和消化吸收国外先进技术地能力,基本上可以满足自主设计地需要,为核电技术进步和后续发展提供了有力保证.在设计技术研究工作中,解决了核电站工程设计地许多技术难点,初步形成了较为完善地核电工程设计分析地骨干程序系统.初步形成了一套先进反应堆设计方法和试验验证手段,提高了我国先进压水堆设计开发地能力.目前我国正在立足自主开发第三代、第四代核电关键技术. 文档收集自网络,仅用于个人学习 、核电工程建设管理.目前开工建设地核电项目,无论是国产化项目,还是中外合作地项目,都建立了规范地法人治理结构,项目业主对核电站建设和运营全面负责.在工程项目

核电汽轮机介绍-考试答案-82分

核电汽轮机介绍 1. 由上海电气供货的我国首台出口325MW 核电汽轮机用于哪个哪个国家? ( 3.0 分) A. 印度 B. 土耳其 C. 巴基斯坦 2. 上海电气百万等级核电机组26 平米的低压缸模块末级叶片长度为?( 3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: B √答对 3. 上海电气百万等级核电机组适用于AP1000 的高压缸模块型号为?( 3.0 分) A. IDN70 B. IDN80 C.IDN90 我的答 B √答对 4. 上海电气百万等级核电汽轮机组转速?( 3.0 分)

A. 1500RPM B. 3000RPM C.3600RPM 我的答 A √答对 5. 上海电气百万等级核电机组20 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: A √答对 6. 上海电气的山东石岛湾200MW 项目是什么堆型?(3.0 分) A. M310 B. 华龙一号 C. 高温气冷堆 我的答案: C √答对 7. 上海电气出口巴基斯坦的300MW 等级核电汽轮机共有几台?( 3.0 分) A. 2 台 B. 3 台 C. 4 台 我的答案: C √答对 8. 至2018 年 6 月,上海电气已投运核电汽轮机多少台?( 3.0 分)

A. 10 台 B. 11 台 C. 12 台我的答案: C √答对 9. 上海电气百万等级核电机组30 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: C √答对 10. 上海电气百万等级核电汽轮机高压缸模块运输方式为?(3.0 分) A. 整缸发运 B. 散件发运 C. 其他 我的答案: A √答对 1. 以下哪些为高温气冷堆堆核电汽轮机特点?( 4.0 分)) A. 进汽参数高 B. 无MSR C.低压缸加强除湿 我的答ABC √答对 2. 以下哪项说法是错误的?( 4.0 分)) A. 2008 年上海电气获得阳江和防城港CPR1000 核电汽轮机订单 6 台

放射性石墨粉尘——球床式高温气冷堆的固有不安全性.docx

放射性石墨粉尘——球床式高温气冷堆的固有不安全性 2009年4月1日,互联网上登出了一篇题为《再探球床式反应堆(PBR)安全性》的文章。作者摩曼(Rainer Moormann)先生长期在德国于利希研究中心工作,是一位具有丰富球床高温气冷堆研发经验的专家。该文语出惊人,开篇第一句话就概括说:“PBR的安全性能并不象人们较早时想象的那样美好”。于利希研究中心2008年6月发表的一项新的关于20多年前关闭的德国球床堆AVR运行经验的研究指出,未来的PBR要增加安全措施,还需要投入相当大的研发努力。该文的观点在核电界内不胫而走,引起广泛的重视。有消息灵通人士透露,摩曼先生是个高温气冷堆的坚决反对派。笔者不知就里,不予置评,但坚信,赞成或反对的观点都只能建立在科学依据上。因此,本文想就其中涉及到而又普遍关注的PBR的共性安全问题从技术上进行探讨。 1 高温气冷堆发展概况 从20世纪 60年代开始,英国、美国和德国开始研发高温气冷堆。 1964年,英国与欧共体合作建造的世界第一座高温气冷堆龙(Dragon,20MWth)堆建成临界。其后,德国建成了15MWe的高温气冷试验堆 AVR和300MWe的核电原型堆 THTR-300。美国建成了40MWe 的实验 高温气冷堆桃花谷(Peach-Bottom)堆和330MWe的圣符伦堡(Fort. St. Vrain)核电原型堆。它们大多采用钍-铀燃料。日本于 1991年开始建造热功率为 30MWth的高温气冷工程试验堆HTTR,1998年建成临界。 上世纪80年代后期,高温气冷堆发展进入模块式阶段。有潜在市场应用前景的两种模块式高温气冷堆设计是:德国Siemens/Interatom公司的球床模块式高温气冷堆 HTR-Module和美国GA公司的柱状燃料元件模块式高温气冷堆MHTGR。前者单堆热功率 200MWth,电功率80MWe,其示范电厂拟采用2个模块;后者热功率为350MWth,采用蒸汽循环,示范电厂拟采用4个模块。1994年GA公司又提出更先进的热功率600MWth、采用氦气直接循环发电的GT-MHR设计。 2 关于球床高温气冷堆安全性的再认识 2.1 流行的球床高温气冷堆安全设计 已经发表了大量的文章介绍球床高温气冷堆的安全特性。在球床高温气冷堆的各个发展阶段,燃料元件均采用包覆颗粒燃料球。典型的元件球直径为 60mm。其中直径为 50mm 的中心石墨基体内均匀地弥散包覆燃料颗粒,元件外区为 5mm厚的不含燃料的石墨球壳。目

高温气冷堆

高温气冷堆 高温气冷堆 来源:中国核电信息网发布日期:2009-07-06 【英文名】:high temperature gas cooled reactor 用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。堆芯出口温度为850~1000℃,甚至更高。核燃料一般采用高 浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分球床高 温气冷堆和棱柱状高温气冷堆。高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。 【实际应用】 10兆瓦高温气冷实验堆: 在国家"863"计划的支持下,自上世纪八十年代中期,我国开展了10MW高 温气冷实验堆的研究、开发,于2000年12月建成临界,2003年1月实现满功 率并网发电,我国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核 心技术和系统设计集成技术。这一科技成果在国内外引起广泛的影响,使我国 在高温气冷堆技术上处于国际先进行列。2006年1月,国务院正式发布的"国 家中长期科学和技术发展规划纲要(2006--2020年)"中,将"大型先进压水堆和 高温气冷堆核电站示范工程"列为国家重大专项。 第四代先进核能系统 近年来,国际上提出了"第四代先进核能系统"的概念,这种核能系统具有 良好的固有安全性,在事故下不会对公众造成损害,在经济上能够和其它发电 方式竞争,并具有建设期短等优点,高温气冷堆是有希望成为第四代先进核能 系统的技术之一。

我国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。 值得一提的是,建成的首座高温气冷堆的压力壳直径4.7米,高12.6米,重150吨,是我国自己设计和制造的迄今体积最大的核安全级压力容器。蒸汽发生器直径2.9米,高11.7米,重30吨,堆内有约13000个零部件,总重量近200吨。这些设备的制造成功,使我国成为少数几个能够加工制造高温气冷堆关键设备的国家之一,为高温气冷堆的国产化做出了重要贡献。 高温气冷堆特点 1安全性好 高温气冷堆是国际核能界公认的一种具有良好安全特性的堆型。三里岛核事故后世界核反应堆安全性改进的趋势,其堆芯融化概率有了显著的改进。目前世界上的核电厂堆芯融化概率均能达到图2中实线所表示"满足要求的电厂"的水平,而且一些核电厂达到了"优异安全性电厂"的水平。美国电力研究所(EPRI)制定的《电力公司用户要求》文件提出的先进轻水堆的堆芯融化概率设计要求为10-5/堆.年。模块式高温气冷堆(MHTR)为革新型的堆型,其估计的堆芯熔化概率低于10-7/堆.年,远小于先进轻水堆堆芯熔化概率的要求。 高温气冷堆采用优异的包覆颗粒燃料是获得其良好安全性的基础。铀燃料被分成为许多小的燃料颗粒,每个颗粒外包覆了一层低密度热介碳,两层高密度热介碳和一层碳化硅。包覆颗粒直径小于1mm,包覆颗粒燃料均匀弥散在石墨慢化材料的基体中,制造成直径为6cm的球形燃料元件(见图3)。包覆层将包覆颗粒中产生的裂变产物充分地阻留在包覆颗粒内,实验表明,在1600℃的高温下加热几百小时,包覆颗粒燃料仍保持其完整性,裂变气体的释放率仍低于10-4。高温气冷堆具有如下的基本安全特性: 1.1反应性瞬变的固有安全特性在整个温度范围内,高温气冷堆堆芯反应性温度系数(燃料和慢化剂温度系数之和)均为负,具有瞬发效应的燃料温度系数也为负。因此,在任何正反应性引入事故情况下,堆芯均能依靠其固有反应性反馈补偿能力,实现自动停堆。高温气冷堆正反应性引入事故主要有:

球床高温气冷堆

从20世纪 60年代开始,英国、美国和德国开始研发高温气冷堆。 1964年,英国与欧共体合作建造的世界第一座高温气冷堆龙(Dragon,20MWth)堆建成临界。其后,德国建成了15MWe的高温气冷试验堆 AVR和300MWe的核电原型堆 THTR-300。美国建成了40MWe的实验高温气冷堆桃花谷(Peach-Bottom)堆和330MWe的圣符伦堡(Fort. St. Vrain)核电原型堆。它们大多采用钍-铀燃料。日本于 1991年开始建造热功率为 30MWth的高温气冷工程试验堆HTTR,1998年建成临界。 上世纪80年代后期,高温气冷堆发展进入模块式阶段。有潜在市场应用前景的两种模块式高温气冷堆设计是:德国Siemens/Interatom公司的球床模块式高温气冷堆HTR-Module和美国GA公司的柱状燃料元件模块式高温气冷堆MHTGR。前者单堆热功率200MWth,电功率80MWe,其示范电厂拟采用2个模块;后者热功率为350MWth,采用蒸汽循环,示范电厂拟采用4个模块。1994年GA公司又提出更先进的热功率600MWth、采用氦气直接循环发电的GT-MHR设计。 模块式高温气冷堆是在以往高温气冷实验堆和大型示范堆的基础上, 为了适应国际社 会对反应堆安全越来越高的要求而提出和发展的。这种堆型以小型化和固有安全性为特征, 设计保证在任何事故情况下, 由于堆的负反应性温度系数和很大的温升裕度能够使反应堆 安全停堆; 停堆后的余热可以依靠热传导、对流和辐射等自然机理传输到堆外;反应堆功率密度设计较低, 从设计上保证堆芯燃料元件的最高温度限制在其允许的安全温度以下; 耐 高温的石墨堆芯结构和全陶瓷型的燃料元件避免了发生堆芯燃料元件熔化的危险。其次, 由于反应堆规模的小型化, 可以采用模块化建造方案, 从而降低成本提高经济竞争力。 模块式高温气冷堆的安全特性可以从以下3个方面得到保障。 ①阻止放射性释放的多重屏障 反应堆设有三道安全屏障以阻止放射性释放,第一道屏障是全陶瓷包覆颗粒燃料元件。高温气冷堆的堆芯设计时, 在所有运行和事故工况下都应保证堆芯中心区域的燃料元件最高温 度限制在1600 ℃以内。在1600 ℃以下时, 燃料颗粒的包覆层能保持其完整性, 放射性裂变产物几乎全部被阻挡在燃料颗粒内。第二道屏障是一回路压力边界,由反应堆压力壳、蒸汽发生器压力壳(或能量转换压力壳) 和连接这两壳的热气导管压力壳组成, 这些压力容器发生贯穿破裂的可能性可以排除。第三道屏障是包容体, 由一回路舱室、氦净化系统舱室、燃料装卸系统舱室组成, 可以阻留和控制放射性气体裂变产物向大气释放。 ②非能动余热载出安全特性 高温气冷堆在堆芯的热工计算时考虑了在事故工况下, 堆芯的冷却不需要专设的余热冷却 系统,堆芯的衰变热可以由热传导、对流和辐射等非能动机制传到反应堆压力容器外的堆舱表面冷却器, 再通过自然循环由空气冷却器将传出的堆芯余热散发到大气中。如果一回路冷却剂失压, 主传热系统和辅助传热系统全部失效, 堆芯余热仍可通过上述的非能动机制传 出堆外, 可以避免发生堆芯熔化事故的可能性, 具有非能动的安全特性。当然, 在事故情况下, 由于余热已不可能通过主传热系统载出,势必导致堆芯中心区域的燃料元件温度升高。为了保证堆芯燃料元件的最高温度不超过其安全限值1600 ℃, 需要对堆芯功率密度和堆芯几何尺寸的设计加以限制, 这也是高温气冷堆的单堆容量较小的原因。 ④负反应性温度系数具有很大的反应性补偿能力 反应堆具有较大的燃料和慢化剂负反应性温度系数, 并且在正常情况下燃烧元件的最高温 度与其允许的温度限值之间还有相当大的裕度, 因此借助于负反应性温度系数所提供的反 应性补偿能力, 当发生正反应性引入事故时, 反应堆可以依靠自身的负反应性温度系数的 反应性补偿能力实现自动停堆。 在球床高温气冷堆的各个发展阶段,燃料元件均采用包覆颗粒燃料球。典型的元件球直径为 60mm。其中直径为 50mm的中心石墨基体内均匀地弥散包覆燃料颗粒,元件外区为 5mm 厚的不含燃料的石墨球壳。目前最新的包覆颗粒技术是全陶瓷型三重各向同性包覆(TRISO)。

10MW高温气冷堆蒸汽安全阀全性能试验

第38卷第5期 原子能科学技术Vol.38,No.5 2004年9月Atomic Energy Science and Technology Sep.2004 10MW 高温气冷堆蒸汽安全阀全性能试验 吴莘馨,厉日竹 (清华大学核能与新能源技术研究院,北京 100084) 摘要:文章介绍10MW 高温气冷堆(HTR 210)二回路超压保护系统中的核二级蒸汽安全阀的设计要求、结构特点及性能要求,并对其性能进行了实验验证。实验结果表明:蒸汽安全阀的性能满足设计要求,达到了核规范的标准。 关键词:高温气冷堆;核级安全阀;全性能试验 中图分类号:TL353.11 文献标识码:A 文章编号:100026931(2004)0520391204 Full Performance T est of the Steam Safety V alves for 10MW High T emperature G as 2cooled R eactor WU Xin 2xin ,L I Ri 2zhu (Institute of N uclear and New Energy Technology ,Tsinghua U niversity ,Beijing 100084,China )Abstract : The design requirements and structural peculiarity as well as performance require 2ments of the steam safety valves which are nuclear safety class 2component installed in the over 2pressure protection system of the second loop of 10MW High Temperature G as 2cooled Reactor (HTR 210)are introduced.The demonstration test for full performance of the steam safety valves was carried out in special test system.The test results show that the perfor 2mance of the steam safety valves can meet the design requirement and relevant nuclear code.K ey w ords :High Temperature G as 2cooled Reactor ;nuclear class safety valve ;full perfor 2mance test 收稿日期:2003210209;修回日期:2003212205 基金项目:国家“863”计划资助项目(8632614202) 作者简介:吴莘馨(1961-),女,安徽肥东人,副教授,硕士,核科学与工程专业 10MW 高温气冷堆HTR 210二回路超压 保护系统中安装了2台核二级蒸汽安全阀。安 全阀的运行参数和安全级别均较高,使蒸汽安 全阀的制造有一定难度,而它们的性能关系着 HTR 210的安全。本工作对蒸汽安全阀的性能 进行试验验证。1 蒸汽安全阀的功能及主要技术参数111 功能蒸汽安全阀安装在蒸汽发生器与主蒸汽隔离阀之间的管道上,主要功能是在蒸汽发生器、蒸汽发生器与主蒸汽隔离阀之间的管道压力达到设计限值时,通过安全阀排出部分蒸汽,防止

核电发展前景.

核电发展前景 摘要随着化石燃料的紧缺和污染加重,核电是当今唯一可规模化应用的新能源,发展前景非常好。但是日本的核泄漏事件,给世界核电发展带来了新的问题和挑战。 关键词核电;核泄漏;发展;现状;走向 1引言火力发电会产生一系列问题,而核电具有很多优势。我国发展核电的二十多年来,取得了良好的业绩,具备了推进核电建设的基础条件。世界各国都很重视核电发展,虽然日本核泄漏事件让各国对核电更加谨慎,但核电的发展前景依然看好。 2 火力发电产生的问题 火力发电是指利用煤炭、石油、天然气等固体、液体、气体燃料燃烧时产生的热能,通过热能来加热水,使水变成高温产生高压水蒸气,然后再由水蒸气推动发电机继而发电的一种发电方式。在所有发电方式中,火力发电是历史最久的,也是最重要的一种。 但是由于地球上化石燃料的短缺,火力发电不能持久。而且火力发电带来了一系列的环境问题,如噪音污染、粉尘污染、温室效应、酸雨等。 3 核电的优势 核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。核电站还可以大大减少燃料的运输量。例如,一座100万千瓦的火电站每年耗煤三四百万吨,而相同功率的核电站每年仅需铀燃料三四十吨。核电的另一个优势是干净、无污染,几乎是零排放,对于发展迅速环境压力较大的中国来说,再合适不过。 4 我国核电发展现状 4.1 核电建设和运营取得良好业绩。 自1991年我国第一座核电站—秦山一期并网发电以来,我国有6座核电站共11台机组906.8万千瓦先后投入商业运行,8台机组790万千瓦在建。 截至目前,我国核电站的安全、运行业绩良好,运行水平不断提高,运行特征主要参数好于世界均值;核电机组放射性废物产生量逐年下降,放射性气体和液体废物排放量远低于国家标准许可限值。秦山一期核电站已安全运行20

华能集团介绍

中国华能集团公司的中文全称:中国华能集团公司 中文简称:华能集团公司 英文全称:China Huaneng Group 英文简称:CHINA HUANENG 英文缩写:CHNG 中国华能集团公司法定住所:北京市海淀区学院南路40号。 该企业在中国企业联合会、中国企业家协会联合发布的2006年度中国企业500强排名中名列第三十六,2007年度中国企业500强排名中名列第三十八。 公司简介 中国华能集团公司是经国务院批准成立的国有重要骨干企业,是国家授权投资的机构和国家控股公司的试点,是世界500强企业。 按照国务院关于国家电力体制改革的要求,中国华能集团公司是自主经营、自负盈亏,以经营电力产业为主,综合发展的企业法人实体。 中国华能集团公司依照[公司法],对其全资、控股、参股企业进行改建和规范,建立资本纽带关系,实行母子公司体制,逐步建立起符合社会主义市场经济要求的管理体制和运行机制。 中国华能集团公司根据业务需要,可以按照国家规定在境内外投资设立全资或控股的子公司以及分公司、办事处等分支机构。 中国华能集团公司的经营宗旨是:遵守国家法律、法规,执行国家政策,根据国民经济发展规划、国家产业政策以及市场需求,依法自主从事生产经营活动,坚持改革、改组、改造和加强管理,改善产业结构,发挥集团整体优势,提高经济效益,增强市场竞争力,确保国有资产保值增值;以电为主,综合发展,逐步成为实力雄厚、管理一流、服务国家、走向世界,具有国际竞争力的大型企业集团。 中国华能注册资本200亿元,主要包括:电源的开发、投资、建设、经营和管理,电力(热力)的生产和销售,金融、交通运输、新能源、环保相关产业及产品的开发、投资、建设、生产、销售,实业投资经营及管理。 中国华能从1985年创立第一家公司至今,历经20余年的发展历程,为国民经济建设和电力工业的改革与发展做出了积极贡献,逐步形成了“为中国特色社会主义服务的红色公司,注重科技、保护环境的绿色公司,坚持与时俱进、学习创新、面向世界的蓝色公司”的“三色”公司理念和“坚持诚信、注重合作、不断创新、积极进取、创造业绩、服务国家”的核心价值观。 截至2009年6月底,中国华能在全国26个省、市、区及海外拥有运营的全资、控股电厂130 座,装机容量8896.7万千瓦,煤炭、金融、科技研发、交通运输等产业初具规模。

我国核电现状及发展趋势分析

我国核电现状及发展趋势分析 发表时间:2018-05-28T11:41:47.087Z 来源:《基层建设》2018年第8期作者:郭晶吴婷婷王昱辰 [导读] 摘要:随着我国快速的发展,核能源得到了迅速的发展,在全球的能源结构当中占据了相当重要的地位。 中国核电工程有限公司北京 100840 摘要:随着我国快速的发展,核能源得到了迅速的发展,在全球的能源结构当中占据了相当重要的地位。核电作为一种清洁、安全、经济的新型能源,因其具有高效性,且符合可持续发展的需求,已有逐步取代化石能源的趋势。基于此,本文以核电的概述为基础,分析了我国核电现状及发展趋势,并提出了促进我国核电事业发展的对策措施。 关键词:我国核电;现状;发展趋势 引言 近些年,核电能源属于新能源产业当中的重要领域,可以说在全球能源的结构当中起着相当重要的作用。据不完全统计,在2010年的时候,核电的发电量已经到达了全球发电量的16%左右。现代的核电产业具备了投资规模相对较大、产业链条长、辐射带动作用强等一系列的社会效益,因此成为了现代经济增长点和促进工业结构化升级的重要领域的同时,也成为了实现可持续化发展的必然选择。在此种情况下,需要对发展核电产业的地区做出趋势的分析,从而根据实际情况来提出一系列发展的对策和建议,最终实现推动其经济平稳、持续增长和能源结构、工业结构的优化升级,实现核电产业的可持续发展。 1核电的概述 核电作为一种重要的清洁能源,在保障能源供应、实现能源低碳清洁发展方面具有重要作用,已为世界各国广泛使用。与风电、太阳能等可再生能源相比,核电具有经济性好、单位投资减排效益高等优点。随着核电技术的发展,核电的安全性与经济性不断提高,大规模发展核电已成为提高我国能源供应能力、推进能源消费清洁、低碳发展的重要举措之一。近年来,我国政府已制定了庞大的核电发展计划,我国已进入核电快速发展时期。另一方面,核电的基本特性决定了它在改变能源结构上有以下重要作用:(1)核电是不排放和清洁能源;(2)核电是高负荷因子大功率密集性的能源;(3)核电的安全可靠性正继续不断提高;(4)核电对煤电具有较强经济竞争力和替代能力;(5)核电的燃料运输量小,发展核电可以有效调整能源布局。因此,积极发展核电是中国能源发展的战略选择。 2我国核电现状 我国是世界上少有的具备核电全产业链的国家。核电没有大的安全问题,但要做好公众沟通,不能只去讲核电是安全的,还需要有一套完整的制度。核电安全管理提升年活动中,我们在检查的同时也在研究如何将新技术,如大数据、互联网、智能化等应用到核电管理中。从技术水平来看,我国核电的自主技术已经取得突破,自主三代核电已开工建设,AP1000技术消化吸收基本完成,依托项目很快就可以投产。目前,我国已有10台三代压水堆机组在建,应该说,我国已进入了三代技术时代。具有第四代安全特征的高温气冷堆示范项目正在建设,先进的小堆技术正在稳步推进。装备制造水平持续提升,核电关键设备的制造取得重大突破。我国已具有每年有8-10台核电主设备的制造能力,关键设备国产化稳步推进,除了少数的部件和材料,基本实现了国产化。展望未来,核电发展仍处于重要的战略期。 3我国核电发展形势与展望 我国核电发展起步较之欧美发达国家显得落后不足,值得庆幸的是国家抓住好近几十年核电发展的机遇,开始有计划地实施,加快核电的建设与装机工作,与之逐渐配套了管理监察体系,并通过对外合作,引进了新一代先进的核电技术,在不断地探索、实践、引进、消化、吸收过程中,在消化吸收的基础上进行过优化改进,提高了核电的经济性和安全性,核电工程设计工作也逐渐走向成熟,形成自己的发展模式,核电的前景方兴未艾。(1)从总量上看,随着我国城市化、工业化不断推进,社会电气化水平不断提高,我国电力需求总量在中长期内仍将会不断增加,发展核电的空间仍长期存在[4]。中国政府计划到2020年,核电装机容量将达到在运58GW,在建30GW。从2002年到2015年,中国己完成了28台新核电机组的建造及运营。目前,已有33台机组在运,22台机组在建,其中包括4台AP1000核电机组(全球首堆)和高温气冷堆示范电厂,更多机组还在计划建造中,可能将会在三年内开始。除此之外,中国对国产反应堆已经开始了设计,中国核反应堆技术的研究与发展同样是首屈一指。所以说,未来我国核电发展的市场和空间非常广阔。(2)从能源消费结构上看,也必须大力发展核电等清洁能源。我国提出到2020年实现非化石能源占比15%的目标,及2020年比2006年单位GDP二氧化碳排放强度下降40-45%目标,发展核电是必须选项。(3)核电建设的总投资额巨大,拉动地方经济作用非常明显,并且巨额的装备制造业市场,有助于带动自主化装备制造业积极快速发展。中核集团旗下的中国核燃料有限公司在“十三五”规划中有过这样的描述:到2020年,建立军民深度融合的核燃料产业体系,在满足国内核电发展需要的同时,实现在国际市场上规模化经营,到2020年末,占国际市场份额10%,到2030年占国际市场份额20%。我国核电经过20多年的发展,取得了显著成绩。核电设计、建设和运营水平明显提高,核电工业基础已初步形成。经过起步和小批量两个阶段的建设,目前形成了浙江秦山、广东大亚湾和江苏田湾三个核电基地。不过从发展阶段看,我国的核电整体发展还处于自主技术成熟化和批量建设的准备阶段,而法国、美国等核电强国已经走过了批量建设的阶段,由于其技术先进成熟,现已处于技术输出阶段。我国在建及将要开工建设的核电机组中,既有国产第2代加技术的核电机组,也有法国EPR和美国AP1000第3代核电技术机组。不过,无论是EPR和AP100 0,或是我国自主开发的CAP1400,以目前的科技来看都不能完全确保其绝对的安全发展,未来我国核电的大发展将仍面临较大的建设、运行管理和安全等方面的风险。 4促进我国核电事业发展的对策措施 4.1统筹好核电的安全性和经济性 随着大众对核电安全问题的关注,核电的安全性受到了高度重视。可以说,近年来核电技术的进步主要体现在核电安全措施上,特别是非能动安全系统的应用。但了解后会发现,核电保持良好的安全业绩,这些安全系统就是无用的,但若是发挥了作用,核电将会面临发展危机。这是非常被动的局面。而安全系统带来的成本越来越高,无论美国的AP1000,还是法国的EPR都是如此。而其他能源,如太阳能、风电的上网价格都在下降,利用小时数在提升。随着核电技术不断进步,核电经济性不仅要与过去比,与全世界比,还要和别的能源品种比,参照物要调整,否则其经济性将没有竞争力。 4.2把握核电技术的发展方向 核能是能源系统的重要组成部分,核能的发展也必然受到能源系统变革的影响,要深入研究能源转型和变革新型思想,进而准确把握核电发展的技术方向,如如何做好大堆和小堆的布局,如何把握好核电发电和供热之间的关系,还包括快堆与热堆、裂变与聚变等更长远

相关主题
文本预览
相关文档 最新文档