当前位置:文档之家› 盘式制动器热_结构耦合的数值建模与分析_黄健萌

盘式制动器热_结构耦合的数值建模与分析_黄健萌

盘式制动器热_结构耦合的数值建模与分析_黄健萌
盘式制动器热_结构耦合的数值建模与分析_黄健萌

ANSYS Example07热-结构耦合分析算例 (ANSYS)

07 热-结构耦合分析算例(ANSYS) 在土木工程结构中,温度应力在很多情况下对结构的影响很大。很多时候需要先对结构进行热传导分析,得到结构内部的温度应力分布,再进行结构分析,得到由于温度产生的结构内力。ANSYS提供了很方便的热分析-结构分析切换工具,本节将以一个圆环的热应力分析为例,介绍ANSYS提供的相关功能。 (1)首先进行热分析,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete, 选择添加单元为Quad 4 node 55 号热分析单元 (2)进入ANSYS主菜单Preprocessor->Material Props->Material Models,添加热传导速率 参数Thermal->Conductivity->Isotropic,设定热传导速率为0.07。添加力学属性Structural->Linear->Elastic->Isotropic,设定弹性模量为30e9,泊松比为0.2。添加热膨胀系数Structural->Thermal Expansion->Secant Coefficient->Isotropic,设定热膨胀系数为1e-5。 (1)开始建立模型。还是按照ANSYS标准的点、线、面、体建立模型。首先建立关键点。 在ANSYS主菜单Preprocessor->Modeling->Create->Keypoints->In Active CS,输入以下关键点信息 (2)下面开始建立弧线。在ANSYS主菜单Preprocessor-> Modeling-> Create-> Lines-> Arcs-> By End KPs&Rad,首先点选关键点2和3,然后点选中心点1,最后输入半径为5,生成第一个圆弧。接着点选关键点4和5,然后点选中心点,输入半径8。生成第二个圆弧 (3)在ANSYS主菜单Preprocessor->Modeling->Create->Lines->Straight Line,连接关键 点2,4和3,5。组成圆环轮廓 (4)在ANSYS主菜单Preprocessor->Modeling->Create->Arbitrary->By Lines,点选圆环周 边轮廓线,生成圆环面。 (5)下面划分网格,由于本模型只有一种单元一种材料,所以不必复杂的设置属性。进入

制动器热-结构分析

基于HyperWorks的某通风盘式制动器热-结构分析 朱楚才史建鹏郭军朝 东风汽车公司汽车工程研究院,武汉,430058 摘要:通过对通风盘式制动器进行热-结构顺序耦合分析,了解制动盘在制动过程中的温度场分布及热应力场分布等情况,为制动盘的优化设计提供了参考。 关键词:通风盘式制动器,顺序耦合热-结构分析,温度场,热应力 1概述 制动性能是汽车的一项极其重要的性能,而制动器则是其执行部件。乘用车的盘式制动器是一种摩擦制动器,它利用两个运动表面相互接触时所产生的摩擦阻力,短时内将汽车运动所产生的动能和势能转化为热能,从而达到使汽车减速或停止运动的目的。 了解制动盘制动时的温度场分布,有助于制动盘结构的优化设计与改进。同时,受制动盘的散热能力的影响,制动时产生的热能并不能在瞬间全部散出,制动盘内会有热能聚集并产生温升,从而在盘体内产生热应力,热应力是影响制动盘的使用寿命的重要因素。详细了解制动过程中制动盘内的温度场分布状态,及热应力的分布情况,对制动盘结构的合理设计具有重要的意义。 2传热模型的建立 2.1传热分析有限元法基本原理 热传导分析可以在热载荷下求解未知的温度和热流通量,温度是体现物体热能的量,而热流通量表示热能的流量。物体分子间的热能交换称为热传导,物体和周围流体间的热能交换称为热对流,热载荷一般由流进或流出物体的能量流来定义。 在线性静态分析中,材料热物性如热传导率、对流换热系数,都是线性的,关注的重点是最后平衡状态的温度和热流分布。基本的有限元方程式如下: ([Kc] + [H]){T} = {p} (1) 其中,[Kc]为热传导率矩阵,[H]为边界自然对流矩阵,{T}为未知的节点温度,{p}为热

基于的汽车盘式制动器多学科设计优化

万方数据

19农业机械学报2010年 可观,工作难度也很大;本文应用多学科优化设计方法进行汽车盘式制动器的设计。 1模型的建立 汽车盘式制动器由制动盘和制动钳体组成,如图1所示。制动时,缸筒中的高压油推动活塞,进而推动摩擦片与制动盘发生摩擦,将汽车动能转化为制动盘的内能,以使汽车减速制动。 油 图1浮钳盘式制动器的结构 Fig.1Structureoffloatingclampdiskbrake制动盘与摩擦片的几 何模型如图2所示,汽车 盘式制动器的优化问题可 描述为:设计汽车盘式制 动器的制动盘和摩擦片, 使得制动器质量最小,制图2制动盘与 动时间最短以及制动过程摩擦片几何模型 中制动盘最高温度最低,Fig.2Geometrymodelof同时要满足摩擦片压力不brakediscandbrakepads超过许用值、油缸油压不超过许用值以及制动摩擦力矩不超过车轮与地面间附着力矩等约束条件。据此建立盘式制动器多学科设计优化数学模型。 1.1设计变量 确定盘式制动器设计变量为7个,即 X=(R1,R2,D。,口,0,Po,D)= (髫1,髫2,省3,鬈4,菇5,髫6,髫7) 式中冠.——摩擦片内径,mm R2——摩擦片外径,[Rift D。——活塞直径,mm 口——制动盘的1/2厚度,mm 口——摩擦片半角,(o)P。——油压,MPa D——制动盘直径,mm 1.2制动器各学科优化分析模型 1.2.1运动学优化模型 运动学优化目标为制动时间最短,约束条件包括:制动力矩21f不应大于车轮与路面的附着力矩;制动片的压力q不应超过规定值q…;以及油缸内的油压P。不得超过规定的范围P~。运动学优化问题描述为 min^(X1)=tbr.k。 s.tX6≤p。“ qm.。一0墅}≥o ‰?I一琢丽到 嘶卜亟鲁盟≥。 Xl=(髫l,并2,茗3,髫5,茗6) 式中形。——单个车轮承受的总重,N 妒——附着系数,给定妒=1 r——轮胎滚动半径,mm 广一制动盘与摩擦片间的摩擦因数,取厂= O.38 1.2.2结构优化模型 结构优化目标为制动盘和制动片总质量最小,并满足结构上的设计约束要求:摩擦片不应与轮毂发生干涉;摩擦片的安装位置不应超出制动盘的范围之外;油缸不应与轮毂发生干涉,设油缸的中心在摩擦片的平均半径处;制动盘的外径不能大于规定的最大值。结构优化问题描述为 min厶(X2)=m。。 ,). s.t.髫l—i--II≥O }一菇2t>0 半一等_一丁Dh≥。 22re2’ D…一茗7≥0 X2=(菇1,髫2,菇3,菇7) 式中Dh——轮毂直径,Dh=65mm tc——油缸壁厚,t。=5mm D。。。——制动盘最大直径 1.2.3热力学优化模型 热力学优化目标为制动过程中制动盘的最高温度最小,约束条件为最高温度不能超过制动盘的许用最高温度L。。。即热学科优化问题描述为 min六(X3)=瓦。。 s.t.L。≤L。 X3=(菇1,嚣2,髫,,菇4,耳5,聋6,髫7) 1.3MDO优化模型 在上述各学科分析基础上,通过一个MDO框架将各学科集成(图3),其实施模型见图4所示。 其中各子系统学科分析模型见前,MDO模型的目标函数为(推导略) 八X)=24tb,止。+4m。。。+0.3T,。。= —24W—1v2+4。。。+0.3T.4m0 3 。 T ——+…。+.. ∞ofg 18” 4万方数据

盘式制动器仿真分析

《制动器的动力学仿真》 专业:机械设计制造 学号: 姓名: 2015年1月12日

目录 第一章、概述 (1) 1.1 制动器的分类 (1) 1.2 国内外针对盘式制动器的研究 (2) 1.2.1 国外研究现状 (2) 1.2.2 国内研究现状 (2) 第二章基于ADAMS 建模的理论基础 (3) 2.1 系统动力学 (3) 第三章动力学仿真 (3) 3.1 刚柔体混合动力学模型 (3) 3.2 改变弹簧弹性系数的仿真分析 (6) 3.3 结果分析 (9)

第一章、概述 1.1 制动器的分类 制动器即为刹车,通常称之为刹车、闸,它能使机械系统中的执行构件运动运动或减速慢行。其重要装置主要有传动装置、制动构件和操纵装置以及动力能源装置等。并且某些制动器存在有自隙调整机构。制动器可分为行车制动器和驻车制动器,即分别为脚刹和手刹,其中脚刹一般都用于行车过程中,但如果制动失效时,我们需要使用手刹。但车在停稳时,需使用手刹的方式以防止车向前滑行或者向后滑动。 制动器的分类方法还有很多: 例如制动器按接触方式能够被分成非摩擦式与摩擦式这两大类。其中,前者按结构形式分类,主要可以分成磁涡流式制动器(利用励磁电流的改变来使制动力矩大小得以改变)、磁粉式制动器(磁化磁粉产生的剪力进行制动)与水涡流式制动器等[3];还能够根据制动件的结构的组成形式进行分类,又能够把它分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器(碟刹)等;按制动件的工作状态一般可以分为常处于闭合制动器(只有施加外力才能把使制动不工作,正常为紧闸状态)和常处于张开状态的制动器(只有在受到外力时才可会正常工作即具有制动作用,正常为松闸状态);按操纵的形式进行分类时,又可以分为人力、液压、气压和电磁力操纵的制动器;按制动系统的作用进行分类,又可以把它分为驻车与行车这两种类型的制动系统以及应急、辅助类型的制动系统等。而当前各辆的汽车上都一定备置脚刹同手刹;按制动操纵的能源装置进行分类,可以把它分为人力、动力和伺服类型等;按制动能量的传输方式分类,可以分为机械式、液压式、气压式、电磁式及组合式(同时含量中已上两种供能方式)等。

制动器时间优化设计报告

汽车盘式制动器的制动时间优化设计摘要:利用matlab编程及工程优化的算法,建立以制动的最短时间为目标函数的数学模型,对汽车的制动时间进 行科学的优化设计。有效减少汽车盘式制动器的制动 时间,从而提高汽车的制动与安全性能。 关键词:盘式制动器、最短制动时间、优化设计、单目标优化 盘式制动器以其结构简单、尺寸紧凑,制动性能好,在同样大小的制动力矩条件下,其结构尺寸和质量都比鼓式制动器小,热稳定性和水稳定性好,无机械衰退问题,制动盘高温下形成热裂和热点的可能性小,不会如制动鼓那样的热膨胀引起制动踏板行程损失以及具有安全可靠,迅速平稳,摩擦衬片使用寿命长,重量轻,维修方便等一系列优点,被广泛应用于工程机械和各种汽车上。但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。 1.目标函数与设计变量的确定 盘式制动器的设计本质上是一个多目标优化问题。在在制动器设计中有效提高制动效果、缩短制动时间是工程上普遍关注的问题。缩短制动时间是缩短制动距离的有效措施之一,能够有效提高汽车的制动效能,提高汽车的制动性及安全性能。汽车制动时间是重要的技术指标。相同类型、级别的汽车,制动时间较短则汽车的安全性较高以制动时间最短为目标函数, 2.建立盘式制动器优化设计的数学模型 为分析问题的方便,作如下假设引入几个简化条件: 1)制动盘为实体的 2)制动钳或盘是浮动的,一边消除盘上的 弯曲应力。 3)所有吸收的热量均匀分布在整个制动器 上。 盘式制动器的结构剖面图如图所示。如果将 制动器的摩擦衬片的圆形摩擦面划分为无数个与 盘心同心的圆弧单元,则该单元的摩摄与该处的 压力p与线速度v成正比。虽然摩擦衬片上的压力 开始是均匀的,但是随着单元所在半径r的加大, 其滑动线速度也会加大而导致单元磨损的加重。

第19章热-结构耦合分析

第19章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 19.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构中的温度场,然后再进行结构分析,且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,我们需要先了解热分析的基本知识,然后在学习耦合分析方法。 19.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

汽车液压盘式制动器结构优化设计

汽车液压盘式制动器结 构优化设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

摘要 汽车制动系统是汽车最重要的主动安全系统,制动器则是制动系统的执行机构,其性能好坏直接影响汽车的安全。盘式制动器作为鼓式制动器的替代产品,具有热稳定性好、反应灵敏等优势,但是盘式制动器本身也存在一些问题,并且鼓式制动器存在的一些问题,虽然盘式制 动 器有一定程度改善,但并未得到完全解决,如热衰退、制动噪声等。本文开篇阐明了盘式制动器发展与现状,然后是设计的背景,性质及任务。通过对轿车盘式制动器的深入学习和设计实践,主要是对轿车盘式制动器的零部件结构选型及设计计算,更好地学习并掌握盘式制动器的结构原理与设计计算的相关知识和方法。介绍了盘式制动器的各种类型,性能等,分析了盘式制动器和摩擦衬片的特性. 关键词:盘式制动器;设计;性能分析

Abstract Automobile brake system is the most important initiative safety system, brake is the enforcer of brake system, whose performance affects the vehicle’s safety directly. As the substitution of drum brake, disc brake has advantages of fine thermal stability, delicate feedback, and so on. But it also has some defects, and though the problems of drum brake have been improved, they are not resolved completely, such as thermal fade and brake noise. This paper illustrated disc brake’s development at beginning, then the design’s background, quality and mission. Through the disc brake in-depth study and design practice, mainly for c ar’s disc brake structure selection and design calculation, can better study and master the disc brake structure and working principle and the related knowledge and methods. Introduce the brake disc’s kind and performance. Analyze the disc brake and rub linings’behavior. Key words: disc brake; design; Performance Analysis

制动盘的热分析

制动盘的热分析 摘要 制动是一个把车辆的动能转变成机械能并必将以热的形式耗散的过程。制动时,在制动盘和衬垫间产生的摩擦热可导致过高的温度。更重要的是在接触过程中切向压力和相对滑动速度是很重要的。本次主要通过ANSYS分析了制动盘的全热行为。盘式制动器的温度分布的建模是用来确认在制动操作时所涉及到的所有的因数和输入参数,例如制动类型,制动盘的几何设计和常用的材料。通过仿真所得到的结果是比较满意的。 关键词:干接触,制动盘,热流,传热系数 1.简介 在制动系统的研究中,热分析还处在一种原始阶段。在制动阶段,温度和热梯度很高,这会产生压力和变形,这种影响会在外观和裂缝的加重上显示出来[1,2]。然后很重要的是在盘式制动器中精确地确定温度场。 停车制动时,温度没有时间来被稳定在制动盘。一个瞬态分析是必要的。这对鉴定热梯度也是必不可少的,这就是需要三维建模的问题了。热负荷表现在热通量进入制动盘通过刹车衬垫。在制动盘和衬垫的接触面产生的大量的热量毫无疑问的引起了在域内对转子的不均匀的温度分布,然而衬垫的的环境在相互的滑动中被不断的加热[3].这种在盘式制动器的接触表面确定温度分布的瞬态热分析方法被执行了。这种制动盘和固定衬垫相互滑动所产生的摩擦热效应分布不均匀的问题使用有限元力学模型试验有几种可能发生在汽车的应用传热系数上。对在制动盘循环制动时的温度分布能够有一个比较,在制动过程中每一种情况分析下的能量转化在最后释放时的周期是相等的。 程序的改变是用来发展移动热源,就像热流对流冷却的分界线。在转子旋转时准确模拟它的加热的困难通过使用代码而被忽略,这可以保证使成型的曲线负责让热通量在随后的某个时刻进入制动盘[4]。在本次研究中,我们将会在三维空间呈现出一个数值模拟来分析全热行为和通风的盘式刹车。基于有限元计算方法的热量的计算将利用软件ANSYS 11。 2.热量进入制动盘

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 21 指导教师:李同杰 日期: 2010年12月 盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:21 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。

盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。[2] 一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳

Maxwell与Fluent电磁热流耦合分析介绍

14.5耦合实例4——Maxwell和FLUENT电磁热流耦合 例, 14.5.1 析钢块在上述工况下的温度场分布情况、风的流线图及风的温度分布云图。 图14-164几何模型 14.5.2软件启动与保存 Step1:启动Workbench。如图14-165所示,在Windows XP下单击“开始”→“所有程序”→ANSYS14.0→Workbench 14.0命令,即可进入Workbench主界面。 图14-165 Workbench启动方法 Step2:保存工程文档。进入Workbench后,单击工具栏中的按钮,将文件保

存为“MagtoThemtoFluid”,单击Getting Started窗口右上角的(关闭)按钮将其关闭。 注意:本节算例需要用到ANSOFT Maxwell14.0软件,请读者进行安装; 由于ANSOFT Maxwell软件不支持保存路径中存在中文名,故在进行文档保存时,保存的路径不不能含有中文字符,否则会发生错误。 14.5.3导入几何数据文件 Step1:创建几何生成器。如图14-166所示,在Workbench左侧Toolbox(工具箱)的Analysis Systems中单击Maxwell 3D并按住左键不放将其拖到右侧的Project Schematic窗口中,此时即可创建一个如同EXCEL表格的项目A。 Step2:双击A2(Geometry)进入如图14-167所示的电磁分析环境,此时启动了Maxwell 3D软件。 图14-166项目A Step3:依次选择菜单Modeler→Import,在出现的Import File对话框中选择ThermaltoFluid.x_t几何文件,并单击打开按钮。 图14-167电磁分析环境 Step4:此时模型文件已经成功显示在Maxwell软件中,如图14-168所示,同时弹出Modal Analysis对话框,在对话框左侧的栏中显示的几何图形为Good表示数据读取无误,单击Close按钮。

制动盘优化设计原稿

交通与汽车工程学院 课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 刘陈 学号: 312011********* 开始时间: 2014 年 03 月 18 日 完成时间: 2014 年 05 月 25 日 课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100) 指导教师签名:年月日

前言 (1) 1汽车刹车盘国内外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国内研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致谢 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要内容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国内外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。 从20世纪60年代开始,美、欧、日等国家大面积推广使用的第二代刹车盘是半金属石墨复合材料制造的一。其主要成分是钢纤维、石墨、金属粉及其辅料,用改性酚醛树腊粘结成型。半金属刹车盘比石棉刹车盘耐磨性提高25%以上,摩擦系数高、导热性好加工易成型。同时,这种刹车盘也出现钢纤维在潮湿环境中易生锈、刹车时噪音大等缺点。 后来,由于铸铁具有一定的强度和良好的耐磨性,材料和制造成本都较低,

热结构耦合

第21章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析。且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法。 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

盘式制动器的高温裂纹

盘式制动器的高温裂纹 摘要盘式制动器在一般的制动中受到很大的热压力,在紧急制动受到非同寻常的 热压力。大减速度的客车通常每个衬块每秒中产生达900度的高温。这种高温将产生两种结果:(1)热震动,产生表面裂缝,(2)制动盘产生较大的塑性变性。在转动圈数相对较少的大减速制动中,如果没有热震动,,将在旋转体的最厚处和盘式制动器的径向产生可见的裂缝。由此分析发现,制动器失效是短周期热力学疲劳的结果。用热流方程分析有限元素作出制动器温度纵断面图。如果得到制动温度,将用这个温度来估计紧急制动时增大的压力。研究表明,在大减速度制动时由于热压应力较大,而导致塑性变形发生。算出拉力位移量,然后用Coffin—Manson法则来估计制动失效的圈数。 关键字:热疲劳;热裂缝;制动失效;热压力;疲劳。 1.简介 在大减速度制动后,在制动盘上可观察到热裂缝。热裂缝可分为两类:一类是热裂缝部分的穿过制动盘表面;另一类是透过性热裂缝,他完全透过制动盘体。虽然热裂缝是由紧急制动引起的,但是仍没办法防止其发生。本文将对盘水制动器的制动盘热裂缝做一个彻底的分析。在此,将以载重汽车F-250皮卡的前制动盘热裂缝为例进行分析,如图1所示。当卡车拖拽的挂车装满货物时,如果频繁的刹车,当听到“嘭”的一声或显著的滴答声,表示制动器失效。 制动盘是由灰铸铁按照图2的几何尺寸制造而成。选择会铸铁是由于其熔点低,传热和散热较快。制动盘由连接车轮和轴的头部.内制动片和外制动片组成。外制动片直接与头部相连,,而内制动片则通过一系列的通风叶片连与外制动片。在制动盘的头部加工一道沟槽,用以改变该部的应力集中现象。内制动片不是直接与头部相连,它通过冷却叶片连接。制动是内外盘面被制动衬块压紧。频繁的摩擦阻止车轮旋转,同时产生大量的热。当制动数秒后,制动盘上产生了大量的热而邻近的空间内却与常温无异。热裂缝在客车上不常见,但是在卡车和动力车辆上却相对常见。许多车辆还暴露出相当极端的问题。值得注意的是,这些情况不是所谓的滥用,而是显示了制动技术的局限。虽然这篇文章是由卡车的制动器失效的例子引出的,接下来就这个问题作一个人和车辆都使用的一般性论述。 图1 图2 2.车辆力学 制动就是以及时和重复的方式消耗掉车辆的动能。为了估计制动中升高的温度,就必须算出施加于制动盘上的力。图3展示了车辆的解析图,求质心的瞬时平衡,得如下公式: ()()() 2 1 2 1 2 1 sin cos x x l V g h V K h x b mg F G G Z? + ? + -- - ? - = ?α α (1a) ()()() 2 1 2 2 2 2 sin cos x x l V g h V K h x a mg F G G Z? + ? + -- - ? + = ?α α (1b) 图3

制动盘优化设计原稿

交通与汽车工程学院课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 学号: 6117 开始时间:2014 年03 月18 日 完成时间:2014 年05 月25 日课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100)

指导教师签名:年月日

前言 (1) 1汽车刹车盘国外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。

热结构耦合分析的例子

这是两个同心圆,我画的不是很圆,请大家见谅。外圆外边温度70o 内圆内边温度200 求圆筒的温度分布,径向盈利,主环向应力 /batch,list /show /title,thermal stress in concentic cylinders-indirect method /prep7 et,1,plane77,,,1 mp,kxx,1,2.2 mp,kxx,2,10.8 rectng,0.1875,0.4,0.05 rectng,0.4,0.6,0,0.05 aglue,all numcmp,area asel,s,area,,1 aatt,1,1,1 asel,s,area,,2 aatt,2,1,1 asel,all esize,0.05 amseh,all esize,0.05 amesh,all nsel,s,loc,x,0.1875 d,all,temp,200 nsel,s,loc,x,0.6 d,all,temp,70 nsel,all finish /solu solve finish /post1 path,radial,2 !设置路径名和定义路径的点数 ppath,l,,,0.1875 !通过坐标来定义路径 ppath,2,,0.6 pdef,temp,temp !温度映射到路径上 T0

paget,path,points,radial !用数组的形式保存路径 plpath,temp finish /prep7 et,1,82,,,1 mp,ex,1,30e6 mp,alpx,1,0.65e-5 mp,nuxy,1,0.3 mp,ex,2,10.6e6 mp,aplx,2,1.35e-5 mp,nuxy,2,0.33 nsel,s,loc,y,0.05 cp,1,uy,all nsel,s,loc,x,0.1875 cp,2,ux,all nsel,s,loc,y,0 d,all,uy,0 nsel,all finish /solu tref,70 ldread,temp,,,,,,rth solve finish /post1 paput,path,points,radial pmap,,mat !设置路径映射来处理材料的不连续 pdef,sx,s,x !映射径向应力 pdef,sz,s,z !映射环向应力 plpath,sx,sz !显示应力结果 plpagm,sx,,node !在几何模型上显示径向应力 finish 这儿是一个在热结构耦合分析的例子,大家有兴趣可以看看,我想同时问一下,cp 这个命令是什么意思啊

汽车盘式制动器优化设计2

#设计与计算# 汽车盘式制动器优化设计 沈荣华 邹定平 黎桂英 (广东石化专科学校 茂名 525000) 摘 要 以制动时间最短、制动温升最低为目标函数,应用复合型优化方法,对汽车盘式制动器进行了优化设计计算。为实际生产和设计提供 了理论指导。 关键词 盘式制动器 优化设计 目标函数中图分类号 U 27012 汽车盘式制动器常规设计是保证制动盘有足够的强度和刚度,并验证制动块磨损量,据此选择各结构参数。其缺陷是对热负荷的考虑仅凭经验,而缺乏理论指导。因此,在盘式制动器表面温升定量计算的基础上进行优化设计 112 是很有实际意义的。 1 数学模型的建立 为分析问题的方便,作以下假设:(1)制动盘为实心盘; (2)制动钳浮动,以消除盘上的弯曲应力;(3)制动块为矩形; (4)吸收的摩擦热均匀分布在整个制动器上。111 设计变量 盘式制动器的结构设计见图1所示,包括以下3项主要内容 : 图1 卡钳与制动盘的结构关系 (1)制动盘尺寸参数:直径D 、厚度h ; (2)制动块尺寸参数:表面尺寸为I @b 、厚度为h p ; (3)制动块相对于制动盘的尺寸参数:制动块作用半径R 1。 制动块厚度h p 的确定是一个比较复杂的专项课题,在此不作深入分析。从设计制动器的一般要求出发,为保证制动器有足够的输出力矩,足够的热容量和散热面积,取D 、h 、I @b 、R 1这5个主要结构参数作为设计变量。 112 目标函数 制动时间对保证汽车安全行驶非常重要。此外,制动摩擦副表面温升直接影响制动器寿命,故取这两者为最优化目标。考虑到这2项指标在重要程度方面的差异,引入加权因子,将它们组合到总的目标函数中: f (x )=w 1t z +w 2T 式中:w 1为制动时间t z 的加权因子,取w 1=1; w 2为制动摩擦副表面温升T 的加权因子,取w 2=0.5。 t z =2G #v 0#R/(n #L #P #D 22#p L #R 1+ 2L r #G #g #R )(1)T =C 1#t z (6t z -10C z #t 2z + 4C 3#t 3z ) 1/2(2) C 1=1/(48K p #R #I #b )#A 1/2#L # P #D 2 2#p L #R 1(1-C 0)C 2=(L #P #D 22#p L #R 1)/(G #R #v 0) 式中:t z 为制动时间(s),G 为车质量(kg ),v 0为制动前车速(m/s),R 为车轮半径(m),R 1为衬片作用半径(m),n 为制动器个数,L 为衬片摩擦系数,L r 为车轮滚动摩擦系数,K p 为衬片导热系数1W/(m #K)2,A 为热扩散率(m 2 /s),C 0为热流分配系数,D 2为制动油缸直径(m),p L 为制动器管路油压(Pa),T 为制动 # 19#第12卷第1期 5机械研究与应用6 MECHANICAL RESE ARC H &APPLICATION Vol 12No.1 1999

热力耦合分析单元简介

热力耦合分析单元简介! SOLID5-三维耦合场实体 具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界 用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体 具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。 LINK31-辐射线单元 用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。 允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆 用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆 用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK34-对流线单元 用于模拟节点间热对流的单轴单元。该单元每个节点只有一个温度自由度。热对流杆单元可用于二维(平面或轴对称)或三维、稳态或瞬态的热分析问题。 如果包含热对流单元的模型还需要进行结构分析,热对流单元可被一个等效(或空)的结构单元所代替。单元的对流换热系数可分为非线性,即对流换热系数是温度或时间的函数。

车辆盘式制动器仿真与优化设计(MATLAB版)

车辆盘式制动器仿真计算与优化设计(上) 运用了fmincon函数来进行求解最优值。 优化主函数: clear all clc hd = pi/180; r = 0.302; f = 0.35; rou = 7513; x0 = [ 261e-3 14.2e-3 50.8e-3 3.20e6 0.062 0.126 0.8727 ]; x = x0; Re = 2/3*(x(6)^3-x(5)^3)/(x(6)^2-x(5)^2); Tf0 = 2*f*0.25*pi*x(3)^2*Re*1e6; md0 = 0.25*pi*x(1)^2*x(2)*rou; lb = [245e-3 13.5e-3 48e-3 1.5e6 0.05 0.09 0.82]; ub = [280e-3 15.1e-3 58e-3 7.5e6 0.075 0.16 1.5708]; [x,y] = fmincon ('disc_m',x0,[ ],[ ],[ ],[ ],lb,ub,'disc_y'); Re = 2/3*(x(6)^3-x(5)^3)/(x(6)^2-x(5)^2); Tf = 2*f*0.25*pi*x(3)^2*Re*x(4); md = 0.25*pi*x(1)^2*x(2)*rou; fprintf('优化前盘式制动器制动力矩Tf0 = % 3.2f N·m \n',Tf) fprintf('优化前制动盘质量md0 = % 3.2f kg \n',md0) fprintf('优化后盘式制动器制动力矩Tf = % 3.2f N·m \n',Tf) fprintf('优化后制动盘质量md = % 3.2f kg \n',md) 优化目标函数 function o = disc_m(x) dh = 0.305; dg = 0.12; va = 8.33; v1 = 100/3.6; v2=0; P = 2.76e6; lmd = 1.15; r=0.307; ul = 0.65; f = 0.35; rou = 7513; A = 0.94; x(3) = 50.8e-3; Re = 2/3*(x(6)^3-x(5)^3)/(x(6)^2-x(5)^2); Tf = 2*f*0.25*pi*x(3)^2*Re*x(4); z = 0.9; J = 4.18; m = 1880; beta = 0.6; cd = 482; md = 0.25*pi*x(1)^2*x(2)*rou; E = 0.5*m*(v1^2-v2^2)*beta; a = 0.34; dt = a*z*E/(J*md*cd); o = Tf/dt; 优化约束函数 function [c,ceq] = disc_y(x); ceq = [ ];

相关主题
文本预览
相关文档 最新文档