当前位置:文档之家› SMC缓冲器原理

SMC缓冲器原理

SMC缓冲器原理
SMC缓冲器原理

https://www.doczj.com/doc/178845392.html, 1 产品名称:SMC 缓冲器原理

缓冲器在不同的领域有不同的含义:在计算机领域,缓冲器指的是缓冲寄存器,它分输入缓冲器和输出缓冲器两种。前者的作用是将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。有了数控缓冲器,就可以使高速工作的CPU 与慢速工作的外设起协调和缓冲作用,实现数据传送的同步。由于缓冲器接在数据总线上,故必须具有三态输出功能。

在其他领域,还有电梯缓冲器,汽车弹簧缓冲器等,其目的是用于减缓速度,提高安全性和舒适性。

燃油泵以及压力调节器的原理

燃油压力调节器 喷油器的喷油量取决于喷孔截面,喷油时间和喷油压差。ECU通过控制喷油嘴开启时间来控制喷油量,因此,在喷孔面积一定时还要保持一定的压差。 喷油压差是指输油管内燃油压力和进气歧管内气体压力的差值,而进气歧管内气压随转速和负荷(节气门开度)变化,要保持恒定的喷油压力必须根据进气管压力变化来调节燃油压力。不知道你有没有这个东西的图,我这里上不了图,就大概的讲一下:压力调节器的上方一般会有个开口用橡胶软管跟进气管连接,在内部这个开口的下方是个弹簧,弹簧下面是个膜片,膜片下面是个柱塞状的东西,堵住一个孔,这个孔就是连接回油软管的,工作时,膜片上方的压力为弹簧压力和进气压力之和,膜片下方为燃油压力,膜片上下压力相等时就会处在平衡位置,当进气管压力下降时,膜片上移回油阀开度上升,会油量上升,这样油轨中的油压就下降到原来水平。反之,气压上升时,膜片下移,回油阀开度变小,回油量变小油压就会上升到原来水平,这样油压就会控制到制造时要求的大小,也就是膜片位于平衡位置的弹力 燃油压力调节器的功用是调节至喷油器的燃油压力,使油路中的燃油压力与进气管压力之差保持常数,这样从喷油器喷出的燃油量便唯一地取决于喷油器的开启时间,使电控单元能够通过控制电脉冲宽度来精确控制喷油量。 油压调节器的构造如图5.19 所示。膜片4 将油压调节器分隔成上下两个腔。上腔有进油口1 连接燃油分配管,回油口2 与汽油箱连通。下腔通过真空接管6 与节气门后的进气管相连。当燃油压力与进气管压力之差超过预调的压力值时,膜片上方的燃油就推动膜片向下压缩弹簧,打开回油阀,超压的燃油流回燃油箱,以保持一定的燃油压力。燃油供给系统的压力与进气管压力之差由油压调节器中的弹簧5 的弹力限定,调节弹簧预紧力即可改变两者的压力差,也就是改变喷油压力。燃油压力调节器装在燃油分配管的一端,可使燃油压力调节在正常范围内(图5.20)。

调速器的工作原理

调速器的工作原理 液压调速器在感应元件和油量调节机构之间加入一个液压放大元件(液压伺服器),使感应元件的输出信号通过放大元件再传到油量调节机构上去,因此也叫间接作用式调速器。液压放大元件有放大兼执行作用,主要由控制和执行两个部分组成。一、无反馈的液压调速器其工作原理如下:当负荷减小时,由曲轴带动的驱动轴转速升高,飞球的离心力增加,推动速度杆右移。于是,摇杆以A点为中心逆时针转动,滑阀右移,压力油进入伺服器油缸的右部空间。与此同时,油缸的左部空间通过油孔与低压油路相通,其中的油被泄放。在压差的作用下,伺服活塞带动喷油泵齿条左移,以减少供油量。当转速恢复到原来数值时,滑阀也回到中央位置,调节过程结束。当负荷增加,转速降低时,调速过程按相反方向进行。从上述分析可知,调速器飞球所产生的离心力仅用来推动滑阀,因而飞球的重量尺寸就可以做得较小。而作为放大器的液压伺服器的作用力,则可根据需要,选择不同尺寸的伺服活塞和不同滑油压力予以放大。但是,在这种调速器中,因为感应元件直接驱动滑阀,无论它朝哪个方向往动,均难准确地回到原来位置而关闭油孔。这样就使柴油机转速不稳定,而产生严重的波动。为了使调速器能稳定调节,在调速器中还要加入一个装置,其作用是在伺服活塞移动的同时对滑阀产生一个反作用,使其向平衡的位置方向移动,减少柴油机转速波动的可能性。这种装置称为反馈机构。二、具有刚性反馈机构的液压调速器它的构造与上述无反馈液压调速器基本相同,只有杠杆义AC的上端A不是装在固定的铰链上,而是与伺服活塞的活塞杆相连。这一改变使感应元件、液压放大元件和油量调节机构之间的关系发生如下的变化。当负荷减小时,发动机转速升高,飞球向外张开带动速度杆向右移动。此时伺服活塞尚未动作,因此反馈杠杆AC的上端点A暂时作为固定点,杠杆AC绕A反时针转动,带动滑阀向右移动,把控制孔打开,高压油便进入动力缸的右腔,左腔与低压油路相通。这样高压油便推动伺服活塞带动喷油调节杆向左移动,并按照新的负荷而减少燃油供给量。在伺服活塞左移的同时,杠杆AC绕C点向左摆动与B点相连接的滑阀也向左移动,从而使滑阀向相反的方向运动。这样在伺服活塞移动时能对滑阀运动产生了相反作用的杠杆装置称为刚性反馈系统。当调节过程终了时,滑阀回到了起始位置,把控制油孔关闭,切断通往伺服油缸的油路。这时伺服活塞就停止运动,喷油泵调节杆随之移动到一个新的平衡位置,发动机就在相应的新负荷下工作。因此,相应于发动机不同的负荷,调速器就具有不同的稳定转速。因为发动机负荷变化时需要改变供油量,所以A点位置随负荷而变。与滑阀相连接的B点在任何稳定工况下均应处于原来的位置,与负荷无关。这样C点的位置必须配合A点作相应的变动,因而导致了转速的变化。假如当负荷减小时,调速过程结束后,滑阀回到中间原来位置时,伺服活塞处于减少了供油量位置,使A点偏左,C点偏右,因C 点偏右,弹簧进一步受压,只有在稍高的转速下运转才能使飞球的离心力与弹簧压力平衡。这说明负荷减小时稳定运转后,柴油机的转速比原来稍有升高。同理,当负荷增加时,稳定运转后,柴油机的转速比原来稍有降低。具有刚性反馈的液压调速器,可以保证调速过程具有稳定的工作特性,但负荷改变后,柴油机转速发生变化,稳定调速率d不能为零。如果要求负荷变化时即要调速过程稳定,又能保持发动机转速恒定不变(即入就必须采用另一种带有弹性反馈系统的液压调运器。三、具有弹性反馈的液压调速器它实际上是在"刚性反馈"装置中加入一个弹性环节--缓冲器和弹簧。弹簧的一端同固定的支点相连,而另一端则与缓冲器的活塞相连。缓冲器的油缸同伺服器的活塞成刚体联接。当发动机负荷减小时,转速增大,飞球的离心力增加。同样,滑阀右移,而伺服活塞则左移,减少喷油泵的供油量。当活塞的运动速度很高时,缓冲器和缓冲活塞就象一个刚体一样地运动。随着伺服活塞5的左移,缓冲器和AC杠杆上的A点也向左移动。这一过程和上述刚性反馈系统的调速器完全相同。但当调速过程接近终了时,滑阀已回到原来的位置,遮住了通往伺服油缸的

减压阀的工作原理

减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 1.调节手柄; 2.调压弹簧; 3.溢流阀; 4.膜片; 5.阀杆; 6.反馈导管; 7.进气阀门; 8.复位弹簧 上图所示为一种常用的直动式减压阀结构。 压力为P1的压缩空气,由左端输入经进气阀门节流后,压力降为P2输出。P2的大小可由调压弹簧2进行调节。若顺时针旋转调节手柄,调压弹簧被压缩,推动膜片和阀杆下移,进气阀门打开,在输出口有气压输出。同时,输出气压经反馈导管作用在膜片上产生向上的推力。该推力与调压弹簧作用力相平衡时,阀便有稳定的压力输出。 若输出压力超过调定值,则膜片离开平衡位置而向上变形,使得溢流阀打开,多余的空气经溢流口排入大气。当输出压力降至调定值时,溢流阀关闭,膜片上的受力保持平衡状态。若逆时针放置手柄,调压弹簧放松,作用在膜片上的气压力大于弹簧力,溢流阀打开,输出压力降低直到为零。台湾DPC气动提醒您,反馈导管的作用是提高减压阀的稳压精度。另外,能改善减压阀的动

态性能,当负载突然改变或变化不定时,反馈导管起着阻尼作用,避免振荡现象发生。 若输入压力瞬时升高,输出将随之升高,使膜片气室内压力升高,在膜片上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片向上移动,有少部分气流经溢流孔、排气孔排出。在膜片上移的同时,因复位弹簧的作用,使阀芯也向上移动,关小进气阀口,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。 若输入压力瞬时下降,输出压力也下降、膜片下移,阀芯随之下移,进气阀口开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮。使调节弹簧放松,气体作用在膜片上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口。再旋转旋钮,进气阀芯的顶端与溢流阀座将脱开,膜片气室中的压缩空气便经溢流孔、排气孔排出,使阀处于无输出状态。 二、减压阀的基本性能 (1)?调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)?压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

减震缓冲技术

减震缓冲技术发展综述 姓名:尚兴超 学号:511011503 指导老师:梁医 一.概述 机械振动、冲击问题广泛存在于工程机械[1]、汽车机械、建筑机械、船舶机械、航空航天、武器领域[2]等,减振器和缓冲器主要是用于减小或削弱振动或冲击对设备与人员影响的一个部件。它起到衰减和吸收振动的作用。使得某些设备及人员免受不良振动的影响,起到保护设备及人员正常工作与安全的作用,因此它广泛应用于各种机床、汽车、摩托车、火车、轮船、飞机及坦克等装备上。 振动问题的基本方程为: ()e sin n t d x A t ζωωφ-=+ 从方程中可以看出,系统振动幅值的衰减与阻尼系数大小ζ有关[3],也就是说,震动产生的能量将会被阻尼所吸收。减震器和缓冲器就是基于此原理而设计的。 二.发展历史 世界上第一个有记载、比较简单的减震器是1897年由两个姓吉明的人发明的。他们把橡胶块与叶片弹簧的端部相连,当悬架被完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓, 产生止动。1898年,第一个实用的减震器 由一个法国人特鲁芬特研制成功并被安装到摩托赛车上。他将前叉悬置于弹簧上,同时与一个摩擦阻尼件相连,以防止摩托车的振颤。1899年,美国汽车爱好者爱德华特·哈德福特将前者应用于汽车上。后来,又经历了加布里埃尔减震器、平衡弹簧式减震器和1909年发明的空气弹簧减震器。空气弹簧减震器类似于充气轮胎的工作原理,它的主要缺点是常常产生漏气。 1908年法国人霍迪立设计了第一个实用的液压减震器。其原理是液流通过小孔时产生的阻尼现象。20世纪60年代,通用公司麦迪逊工程师研制了把螺旋弹簧、液压减震器和上悬架臂杆组成的麦迪逊减震器,其体积比较小,得到了广泛的应用[4]。 三.研究现状 液压缓冲器是目前应用最为广泛的减震缓冲装置,其结构简单,运行平稳。

液压缓冲器原理

油压缓冲器讲义 一.油压缓冲器工作原理 二.油压缓冲器的应用场合及作用 应用于数控机床、自动化设备、铁路车辆、起重机、气缸、传送带、包装设备、医疗设备、机器人、铸造设备、注塑机、中空机等。 作用:消除震动和碰撞破坏等冲击,减少噪音,加速机械动作频率,延长机械寿命。 三.目前生产油压缓冲器的企业 美国ACE中国工厂、德国ITT中国工厂、台湾希捷克中国工厂、台湾亚德克、 日本KYB中国工厂以及分布在广东、浙江、江苏、山东的很多工厂。 四.目前选用的密封品牌 美系、日系、韩系、台系企业基本采用以阪上及NOK密封为基础的技术,德 系主要用B+S、Parker,但从走访企业情况来看,绝大部分企业在用阪上密封或仿阪上密封,这些企业无论是用国产密封还是用进口密封,基本都知道阪上密封在油研缓冲器行业的应用。 另外在日本,100%的缓冲器企业都选用阪上密封,如SMC/KYB/CKD/小金井KOGANEI。 五.目前各企业选用密封材料及对比分析 NBR材料:以阪上及国产品牌为主PU材料:以NOK、Parker为主 阪上推荐用NBR材料原因如下: 1.PU材料的低温性能不好; 2.刚装配或做实验时,会感觉PU密封比NBR密封的密封效果好,但长期使用后,PU材料会产生很大的

变形,导致漏油; 3.由于油压缓冲器体积小,PU材料密封的装配性不如NBR 。 六.目前使用不同品牌密封的寿命对比(以使用占多数的NBR材料为例)使用国产或台湾产NBR密封,缓冲器寿命10万次—80万次 使用阪上NMY系列密封,缓冲器寿命300万次—500万次 使用阪上NYH单道杆封,缓冲器寿命500万次—800万次 使用阪上RDH防尘+NYH杆封,缓冲器寿命1000万次以上

缓冲器

缓冲器 1、定义: 缓冲寄存器又称缓冲器,它分输入缓冲器和输出缓冲器两种。前者的作用是将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。由于缓冲器接在数据总线上,故必须具有三态输出功能。 2、专用语 接口集成电路专用语 最基本线路构成的门电路存在着抗干扰性能差和不对称等缺点。为了克服这些缺点,可以在输出或输入端附加反相器作为缓冲级;也可以输出或输入端同时都加反相器作为缓冲级。这样组成的门电路称为带缓冲器的门电路。 带缓冲输出的门电路输出端都是1个反相器,输出驱动能力仅由该输出级的管子特性决定,与各输入端所处逻辑状态无关。而不带缓冲器的门电路其输出驱动能力与输入状态有关。另一方面。带缓冲器的门电路的转移特性至少是由3级转移特性相乘的结果,因此转换区域窄,形状接近理想矩形,并且不随输入使用端数的情况而变化、加缓冲器的门电路,抗干扰性能提高10%电源电压。此外,带缓冲器的门电路还有输出波形对称、交流电压增益大、带宽窄、输入电容比较小等优点。不过,由于附加了缓冲级,也带来了一些缺点。例如传输延迟时间加大,因此,带缓冲器的门电路适宜用在高速电路系统中。 3、基本原理 在CPU的设计中,一般输出线的直流负载能力可以驱动一个TTL负载,而在连接中,CPU的一根地址线或数据线,可能连接多个存储器芯片,但存储器芯片都为MOS电路,主要是电容负载,直流负载远小于TTL负载。故小型系统中,CPU可与存储器直接相连,在大型系统中就需要加缓冲器。 任何程序或数据要为CPU所使用,必须先放到主存储器(内存)中,即CPU只与主

存交换数据,所以主存的速度在很大程度上决定了系统的运行速度。程序在运行期间,在一个较短的时间间隔内,由程序产生的地址往往集中在存储器的一个很小范围的地址空间内。指令地址本来就是连续分布的,再加上循环程序段和子程序段要多次重复执行,因此对这些地址中的内容的访问就自然的具有时间集中分布的倾向。数据分布的集中倾向不如程序这么明显,但对数组的存储和访问以及工作单元的选择可以使存储器地址相对地集中。这种对局部范围的存储器地址频繁访问,而对此范围外的地址访问甚少的现象被称为程序访问的局部化(Locality of Reference)性质。由此性质可知,在这个局部范围内被访问的信息集合随时间的变化是很缓慢的,如果把在一段时间内一定地址范围被频繁访问的信息集合成批地从主存中读到一个能高速存取的小容量存储器中存放起来,供程序在这段时间内随时采用而减少或不再去访问速度较慢的主存,就可以加快程序的运行速度。这个介于CPU和主存之间的高速小容量存储器就称之为高速缓冲存储器,简称Cache。不难看出,程序访问的局部化性质是Cache得以实现的原理基础。同理,构造磁盘高速缓冲存储器(简称磁盘Cache),也将提高系统的整体运行速度CPU一般设有一级缓存(L1Cache)和二级缓存(L2Cache)。一级缓存是由CPU制造商直接做在CPU内部的,其速度极快,但容量较小,一般只有十几K。PⅡ以前的PC一般都是将二级缓存做在主板上,并且可以人为升级,其容量从256KB 到1MB不等,而PⅡCPU则采用了全新的封装方式,把CPU内核与二级缓存一起封装在一只金属盒内,并且不可以升级。二级缓存一般比一级缓存大一个数量级以上,另外,在CPU中,已经出现了带有三级缓存的情况。 4、作用及特点 作用 汽车缓冲器是通过利用液压弹簧减震功能,当汽车瞬间相撞时,缓冲器就起到了缓冲作用从而减轻两车相撞后的破坏程度,提高车与人的安全性。一般来说,对于新车,减震缓冲器起到的是使驾驶更加舒适的作用;而当减震弹簧用久之后,往往因缺乏弹性而出现疲软现象,反应不灵敏,很容易引发事故。 特点 1、采用高档轿车的缓冲原理,明显提高车辆减震性能。 2、降低由减震器受损和老化而产生的噪音。 3、可减轻长途驾驶后的疲劳感。 4、有效解决减震器弹簧疲软问题,恢复减震器性能。

冷凝压力调节阀的工作原理

冷凝压力调节阀的工作原理 冷凝压力调节阀用于调理介质的流量、压力和液位。依据调理部位旌旗灯号,主动节制阀门的开度,然后到达介质流量、压力和液位的调理。冷凝压力调节阀分电动冷凝压力调节阀、气动冷凝压力调节阀和液动冷凝压力调节阀等。 冷凝压力调节阀由电动执行机构或气动执行机构和冷凝压力调 节阀两局部构成。冷凝压力调节阀凡间分为纵贯单座式冷凝压力调节阀和纵贯双座式冷凝压力调节阀两种,后者具有流畅才能大、不服衡办小和操作不变的特点,所以凡间特殊合用于大流量、高压降和走漏少的场所。 流畅才能Cv是选择冷凝压力调节阀的首要参数之一,冷凝压力调节阀的流畅才能的界说为:当冷凝压力调节阀全开时,阀两头压差为0.1MPa,流体密度为1g/cm3时,每小时流径冷凝压力调节阀的流量数,称为流畅才能,也称流量系数,以Cv透露表现,单元为t/h,液体的Cv值按下式核算。 依据流畅才能Cv值巨细查表,就可以确定冷凝压力调节阀的公

称通径DN。 冷凝压力调节阀的流量特征,是在阀两头压差坚持恒定的前提下,介质流经冷凝压力调节阀的相对流量与它的开度之间关系。冷凝压力调节阀的流量特征有线性特征,等百分比特征及抛物线特征三种。三种注量特征的意义如下: (1)等百分比特征(对数)等百分比特征的相对行程和相对流量不成直线关系,在行程的每一点上单元行程转变所惹起的流量的转变与此点的流量成正比,流质变化的百分比是相等的。所以它的长处是流量小时,流质变化小,流量大时,则流质变化大,也就是在分歧开度上,具有一样的调理精度。 (2)线性特征(线性)线性特征的相对行程和相对流量成直线关系。单元行程的转变所惹起的流质变化是不变的。流量大时,流量相对值转变小,流量小时,则流量相对值转变大。 (3)抛物线特征流量按行程的二方成比例转变,大体具有线性和等百分比特征的中心特征。 从上述三种特征的剖析可以看出,就其调理功能上讲,以等百分比特征为最优,其调理不变,调理功能好。而抛物线特征又比线性特征的调理功能好,可依据运用场所的要求分歧,遴选个中任何一种流

电压关断型缓冲器(RCD Snubber)的基本类型及其工作原理

本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。 RCD Snubber电路的基本类型及其工作原理 RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。 为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。 图1 常用的RCD Snubber电路 抑制电压上升率模式 对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber。 如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。 关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。 可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。 电压钳位模式 RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。 以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。

溢流阀原理及故障处理

溢流阀原理及故障处理 主编:龙游

目录 一、DB/DBW型先导溢流阀 (1) 二、DR型先导式减压阀…………………………………………………… 三、DZ型先导顺序阀……………………………………………………… 四、DA/DAW型先导控制式卸荷阀………………………………………… 五、压力继电器……………………………………………………………… 六、压力表开关……………………………………………………………… 七、单向阀、液控单向阀…………………………………………………… 八、电磁换向阀和电液换向阀……………………………………………… 九、Z2FS型叠加式单向节流阀……………………………………………… 十、行程节流阀……………………………………………………………… 十一、2FRM型调速阀………………………………………………………… 十二、分流—集流阀………………………………………………………………

一、DB/DBW 型先导溢流阀 1.结构和工作原理 DB 型阀是先导控制式的溢流阀;DBW 型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW 型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB 型阀主要是由先导阀和主阀组成。DBW 型阀是由电磁换向阀、先导阀和主阀组成。 DB 型溢流阀: A 腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B 腔(控制油内排型)或通过外排口(11) 流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A 腔流到B 腔(即卸荷)。 DBW 型电磁溢流阀: 此阀工作原理与DB 型阀相同,只是可通过安装在先导阀上的电磁换向阀 (14)使系统在任意时刻卸荷。 DB/DBW 型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X 和外排口Y 。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。 (2)空穴产生的噪声 图1 DB 型溢流阀

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。本文根据气动调节阀的结构和工作原理对在气动调节阀在日 常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。 本文以美国博雷(BARY)厂家生产的 S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。 1、气动调节阀的结构和工作原理 1.1、气动调节阀的结构 气动调节阀由执行机构和阀体两部分组成。 1.2、气动调节阀的工作原理 气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。执行机构是调节阀的推力

部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。 2、气动调节阀的日常维护 在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。 3、气动调节阀常见故障原因分析

RC缓冲电路snubber设计原理教学内容

R C缓冲电路s n u b b e r 设计原理

RC缓冲电路snubber设计原理 RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得:

因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。

矿用绞车结构与工作原理

第一章绞车的结构与工作原理 一、目的: 1、了解绞车的分类 2、掌握部分绞车的结构与工作原理 二、重点:矿用提升绞车的结构与工作原理 三、时间: 四、方法:讲述 五、过程: 第一节概述 1、绞车的主要用途 1)作为提升设备 2)作为运搬设备 2、绞车的矿山生产中的重要性 是中小型矿山的主要提升设备,一旦发生事故就会影响全矿生产,甚至导致全矿停产和人员伤亡。 3、对绞车工的要求: 作为一个合格的绞车操作工,应熟悉了解所使用的各类绞车性能、结构、和工作原理,撑握正确的操作方法,加强设备维修和管理,确保各类绞车的生产安全及经济运转,防止事故发生。 4、绞车的分类: 1)按钢丝绳缠绕方式:可分为缠绕式绞车和磨擦式绞车 2)按滚筒个数:可分为单滚洞式绞车和多滚筒式绞车 3)按传动方式:可分为齿轮传动绞车和液压传动绞车 4)按防爆性能:可分为防爆绞车和非防爆绞车 5)按滚筒直径:可分为1.6m、1.2m、0.8m及其以下绞车 6)按驱动动力:可分为电动绞车和风动绞车 7)按用途的不同:可分为矿用提升绞车、凿井绞车、耙矿绞车、调度绞车、回柱绞车等 第二节矿用提升绞车 一、老系列JT1600(1200)mm型矿用提升绞车 1、单滚筒提升绞车 1)主要技术特性(参教材表1-1)

2)结构及工作原理 单滚筒提升绞车按不同的结构有A、B、C三种型式。 A型和B型主要区别于主轴承:A型为铜瓦;B型为3516双列向心球面滚子轴承;C型是在A、B型的基础上加了液压推杆制动器。 其结构主要由主轴装臵、减速装臵、联轴器、制动器、齿轮、机座、电动机等部分组成。 2、双滚筒绞车 结构主要由基座、主轴装臵、减速器、弹性联轴器、提升电动机、牌坊式深度指示器、手动工作制动器及重锤-电磁铁丝杠螺母操纵的瓦块式安全制动器等组成。 二、新系列JT1600(1200)型矿用提升绞车: 1、组成 由主轴装臵、齿轮联轴器、中心驱动减速器、弹性联轴器、提升电动机、盘式制动器、液压站、斜面操纵台及圆盘式深度指示器等组成。 2、与老系列区别: 1)制动 2)深度指示器 第三节凿井绞车 一、技术特性(参教材表1-5) 二、结构与工作原理 1、结构 (1)主轴装臵 (2)中间轴装臵 (3)工作制动器 (4)安全制动器 (5)蜗轮减速器 (6)粉未联轴器 (7)棘爪及操纵装臵 (8)机座 2、工作原理 第四节耙矿绞车 一、主要技术特性(参教材表1-6)

汽车发动机燃油压力调节器课堂讲解

汽车发动机燃油压力调 节器课堂讲解 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

电控发动机燃油压力调节器 授课内容:电控发动机燃油压力调节器 教学目的:1、掌握压力调节器的结构和功用。 2、理解压力调节器工作原理。 3、了解压力调节器的故障诊断。 教学重点:压力调节器的结构和工作原理 教学难点:绝对压力与相对压力 讲授方法:引导、分析、提问、总结等探究式的教学法 【关键词】内部结构调压原理故障分析 我们已经知道,将喷油器的针阀行程、喷口截面积、喷油压力为一定值时,发动机ECU只要控制喷油器针阀开启时间的长短就能精确控制和满足发动机各工况所需要的喷油量。即是如此,摆在我们面前的问题就出现了。 一、课程导入 1、虽然喷油器的针阀行程可以定位、喷口截面积可以做成定值,但燃油泵在泵油过程中,油压会产生波动,喷油器脉冲喷油也会使油压脉动。就跟水龙头放水时一样,管内水压会降低。造成供油压力波动。 2、发动机负荷的变化,也会影响到进气歧管内真空度的变化,进而影响到喷油压力不稳。而无法精确控制喷油量。 3、燃油泵供油压力高于喷油器喷油压力的这部分压力油需要泄压。所以燃油压力调节器是燃油系非常重要的核心件。 二、调节器的作用 1、缓冲燃油泵泵油时产生的波动和喷油器喷油时引起的脉动波。 2、发动机负荷变化时,保持喷油器喷油绝对压差恒定不变

3、稳定燃油系统压力,高于绝对压力的燃油流回到油箱。并散热。 三、调节器的结构和工作原理 1、调节器的结构 图1给出了桑塔纳轿车燃油供给系统的结构原理示意图,可以看出燃油压力调节器所在位置。 燃油压力调节器结构如图2 所示,外部有三个接口,分别接 燃油分配管、回油管和进气歧 管。金属外壳中间通过一个卷边 的膜片,将壳体内腔分成两小 室:一个是弹簧室,内装一个带有预紧力的螺旋弹 图1 桑塔纳轿车燃油供给系结构原理 簧作用在膜片上,弹簧室的真空软管接进气歧管;另一个是燃油室,直接接分配管和回油管。 图2 燃油压力调节器实物图及结构剖面图 2、调节器的工作原理 在弹簧预紧力和进气歧管负压的共同作用下,拉动膜片,使燃油分配管中的油压随进气歧管内的真空度(发动机负荷)的变化而同步变化,达到喷油的绝对压力为恒定值。瞬时误差小于10%。见图3示意图。 分析如下: 1、如果燃油泵输出油压 是 Mpa (因车型而定),弹簧 预紧力是 MPa ,泵油时使弹簧 真空管 进气歧管

压力控制器工作原理与设定方法

压力控制器工作原理与设定方法 一、压力控制器的简介与原理 机械式压力控制器属于制冷机组压力的控制的元器件,在制冷系统中主要用作高压/低压/高低压压力控制器。使用方法简单,在压力控制器上面设定一个压力,以高于或者低于此压力的压力控制器触点动作,然后可以发出信号以保护制冷压缩机为主。 在压力控制器上常会看到DIFF和RANGE两个参数,RANGE就是压力的量程范围;DIFF就是指的是切换差,也就是死区,是一个切换区域。 高低压控制器 工作原理: 高压压力控制器和低压压力控制器的作用原理相同。当波纹管内压力升高,其值高于主调弹簧调定值时,波纹管伸长或缩短(波纹管外部受压型为缩短,内部受压型为伸长),推动摆杆,拨动触点,切断电源,起高压保护作用。压力过低时若切断电源,起低压保护作用。 二、高低压力控制器的使用与调整 高压压力控制器用于控制高压压力或者说排气压力,在风冷式冷凝器风量不足或断风时,水冷式冷凝器水量不足或水温过高,甚至断水时,或其它原因致使高压压力超过压力控制器调定值时,控制器跳开,断开接触器的电路,使压缩机停机,保护系统,高压控制器的调定压

力以制冷剂的种类及压缩机的性能有关。 低压压力控制器,用于控制低压压力或者吸气压力。当系统缺少制冷剂,或者遇堵塞、忘开阀门,或者热负荷过低及其它原因导致低压过低时,控制器起跳,断开接触器的电路,使压缩机停机保护压缩机不在过低压力下运转,提高系统运行的经济性。 设定值为上切值的调整: 加压至2.0MPa设定值,此值可由标准压力表读出,针转动设定值调节镙杆,使设定值由大变小,直至微动开关在2.0MPa处切换,校验压力上升时,切换值是否为2.0MPa,此值即为要求设定的上切换值。此值减去切换差即为下切换值。

自力式调节阀工作原理

■ 概述 自力式调节阀是一种无需外来能源,依靠被调介质自身的压力、温度、流量变化进行自动调节阀的节能仪表,具有测量、执行、控制的综合功能。 自力式调节阀主要分为自力式压力调节阀、自力式压差调节阀、自力式温度调节阀、自力式流量调节阀。 ■ 工作原理 图1 自力式压力调节阀(阀后)图2 自力式压力调节阀(阀前) 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、

阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。 图3 自力式流量调节阀(加热型)图4 自力式温度调节阀(冷却型) 3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4)

缓冲器工作原理是什么

缓冲器工作原理是什么? 缓冲寄存器又称缓冲器,它分输入缓冲器和输出缓冲器两种。前者的作用是将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。有了数控缓冲器,就可以使高速工作的CPU与慢速工作的外设起协调和缓冲作用,实现数据传送的同步。由于缓冲器接 在数据总线上,故必须具有三态输出功能。 由于结构原理与气缸颇象,故归于气缸原理一类。 工作原理是在密闭的压力缸内充入惰性气体或者油气混合物,使腔体内的压力高于大气压的几倍或者几十倍,利用活塞杆的横截面积小于活塞的横截面积从而产生的压力差来实现活塞杆的运动。因为原理上的根本不同,气弹簧比普通弹簧有着很明显的长处:速度相对缓慢、动态力变化不大(一般在1:1.2以内)、轻易控制;缺点是相对体积没有螺 旋弹簧小,本钱高、寿命相对短。 根据其特点及应用领域的不同,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等。根据气弹簧的结构和功能来分类,气弹簧有自由式气弹簧、自锁式气弹簧、牵引式气弹簧、随意停气弹簧、转椅气弹簧、气压棒、阻尼器等几种。 目前,该产品在汽车、航空、医疗器械、家具、机械制造等领域都有着广泛地应用。 气弹簧的用途 利用密闭容器中空气的可压缩性制成的弹簧。它的变形与载荷荷关系特性线为曲线,可根据需要进行设计计。空气弹簧能在任何载荷作用下保持自振频率不变,能同时承受径向和轴向载荷,也能传递一定的扭矩,通过调整内部压力可获得不同的承载能力。空气弹簧的结构形式良多,有囊式和膜式等,常用于车辆的悬架和机械设备的防振系统。 基本原理 在CPU的设计中,一般输出线的直流负载能力可以驱动一个TTL负载,而在连接中,CPU的一根地址线或数据线,可能连接多个存储器芯片,但现在的存储器芯片都为MOS电路,主要是电容负载,直流负载远小于TTL负载。故小型系统中,CPU可与存储器直接相连,在大型系统中就需要加缓冲器。

压铸机的工作原理与本体结构

第2章压铸设备 2.1 压铸机的工作原理与分类 2.1.1 压铸成型特点 熔融合金在高压、高速条件下充型,并在高压下冷却凝固成型的一种精密铸造方法。 压铸特点: ①压铸件尺寸精度和表面质量高; ②压铸件表层组织致密,硬度和强度较高,表层较耐磨。 ③可采用镶铸法简化装配和制造工艺; ④生产率高,易实现机械化和自动化; ⑤由于压铸速度极快,型腔气体难于完全排除,厚壁难以补缩,使压铸件易出现气孔和缩松; ⑥压铸模具结构复杂、材料及加工的要求高。 2.1.2 压铸机的分类、型号 1.分类 按熔炼炉设置、压射装置、锁模装置布局等。 热压室压铸机 卧式冷压室压铸机 立式冷压室压铸机 全立式冷压室压铸机 2.型号 J1113B J表示金属性铸造设备;第一位数字表示所属列,共有两列,“1”为冷压室,“2”为热压室;第二位数字表示所属“组”,共有9组,“1”表示卧式,“5”表示立式;第二位数字后数字表示锁模力的1/100kN;型号后的字母表示第几次改型设计。 2.1.3 压铸机的工作原理 2.1. 3.1 热压室压铸机 热压室压铸机工作原理图

1-动模;2-定模;3-喷嘴;4-压射冲头;5-压室;6-坩埚 a-压室通道;b-鹅颈嘴;c-鹅颈通道 压射部分与金属熔化部分连为一体,并浸在金属液中。鹅颈嘴b的高度应比坩埚内金属液最高液面略高,使金属液不致自行流入模腔。 模具闭合。压射时,冲头向下封住通道a时,压室、鹅颈通道、模腔构成密闭系统。冲头以一定的推力和速度将金属液压入模腔,充满型腔并保压适当时间后,冲头提升复位。 2.1. 3.2 立式冷压室压铸机 锁模部分呈水平设置,负责模具的开、合及压铸件的顶出。压射部分呈垂直设置,压室与金属熔炉分开。压铸时,模具闭合,舀取一定金属液倒入压室,反料冲头应上升堵住浇道b,以防金属液自行流入模腔。当压射冲头下降接触金属液时,返料冲头随压射冲头下移,使压射室与模具浇道相通,金属液迅速充满模腔a 。冷却后,压射冲头上升复位,反料冲头往上移动,切断余料e并将其顶出压室,接着开模顶出压铸件。 立式冷压室压铸机工作原理图 a)合模;b)压射;c)开模、取件 1-动模;2-定模;3-压射冲头;4-压室;5-反料冲头 a-模腔;b-浇道;c-金属液;d-压铸件;e-余料 2.1. 3.3 卧式冷压室压铸机 压室与熔炉分开设置,压室水平布置,并可从锁模中心向下偏移一定距离。 压铸时,金属液c注入压室→冲头向前压射→金属液经内浇道a压射入模腔b→保压冷却→开模,同时,冲头继续前推,将余料e推出压室,让余料随动模1移动,压射冲头复位。动模开模结束、顶出压铸件d,再合模。 卧式冷压室压铸机工作原理图 a)合模;b)压射;c)开模、取件 1-动模;2-定模;3-压室;4-压射冲头; a-内浇道;b-模腔;c-金属液;d-压铸件;e-余料 2.1. 3.4 全立式冷压室压铸机

相关主题
文本预览
相关文档 最新文档