当前位置:文档之家› C8051F060的USB高速A/D数据采集器设计

C8051F060的USB高速A/D数据采集器设计

C8051F060的USB高速A/D数据采集器设计
C8051F060的USB高速A/D数据采集器设计

C8051F060的USB高速A/D数据采集器设计

引言

在工业控制现场,常常需要采集多路的现场数据,如电压、电流、温度、湿度、气压等。数据采集器将现场的模拟量经过A/D转换后变成数字量并传输到主机进行处理,由主机根据处理的结果,将控制信号传输给现场执行模块进行各种操作。由于有些工业现场需要对现场的模拟量进行高速A/D数据采集,目前常用的数据传输网络(如RS232/RS485,CAN等)已经不能满足大量采集数据和高速实时数据传输的要求。而USB传输具有高速可靠传输的优势,具有成本低、可靠性高、维护方便等优点。本文介绍一个基于C8051F060的USB高速A/D 数据采集器。通过本系统,不仅能了解数据采集的一般过程以及一般数据采集系统的构成,还能了解C8051F060单片机、USBl00模块的功能。该系统最高传输速度可达8 Mbps。

1 系统原理

该系统由工控机、USBl00、C805lF060单片机、多路模拟切换开关、四路模拟运算放大器、可反复充放电的锂离子电池等构成。系统电路原理框图。

1.1 C8051F060单片机

C8051F060是Silicon Laboratories公司推出的完全集成的混合信号片上系统型MCU。具有59个数字I/0引脚,片内集成了2个16位、1 Msps的ADC;有与高速流水线结构的8051兼容的CIP一51内核(可达25MIPS),有DMA控制器和局域网(CAN2.OB)控制器;32个消息对象,每个消息对象有自己的标识屏蔽;具有全速、非侵入式的在系统调试接口(片内),10位、200 ksps的ADC,带8通道模拟多路开关,2个12位DAC;具有可编程数据更新方式;

64 KB可在系统编程的Flash内存,4352(4K+256)字节的片内RAM,可寻址64 KB地址空间的外部数据存储器接口,硬件实现的SPI、SMBus/I2C和2个UART串行接口;5个通用的16位定时器,6个捕捉/比较模块的可编程计数器/定时器数组,片内看门狗定时器、VDD监视器、时钟振荡器和温度传感器。关键字:C8051F060 USB AD数据采集器

C8051F060是真正能独立工作的片上系统。所有模拟和数字外设均可由用户固件使能/禁止和配置。Flash存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051固件。

C8051F060单片机的P0.O配置为外部中断源(INT0)。P0.1配置为外部中断源(INTl),下降沿触发输入,当USBl00模块接收到工控机数据时触发INTl中断。PO.2配置为通用I /0,当电池电压低到一定程度时被MCU检测到并做低电压处理。P3.0~P3.7配置为通用I /0,P3.0用于驱动发光二极管,P3.1用作USBl00的写控制线,P3.2用作USBl00的读控制线,P3.3、P3.4用作模拟控制开关的控制线,P3.5用于控制传感器的供电(当不需要采集数据时关掉传感器电源以减少系统功耗),P3.6、P3.7用作电平转换芯片74ALVCl64245的数据方向选择控制线。P1配置为通用I/O,作为8位并行数据线。P5配置为通用I/O,作为8位拨码开关的输入,用8位拨码开关设定MCU的数据采集速度。C8051F060接线图。

1.2 USBl00通用串行总线模块

USBlOO是基于ASIC设计的,内部封装了USBl.1全部协议以及300位元组的内部FIF0,8位并行数据接口,对USB的操作类似于对外部内存的操作,由USBl00模块完成全部协议的转换和封装,使开发的过程变得简单。注意:由于USBlOO输出TTL电平的数据,可以与5V 的单片机很好地连接,而C8051F060是3.3 V的系统,为了系统的稳定性,中间需要增加3~5 V电平转换电路。

DO~D7:数据口是一个8位双向I/0口。它是一个8位并口,C8051F060通过它和USBlOO 交换数据。RD:允许内部接收缓冲区数据通过8位并行总线读出。

WR:将8位并行总线上的数据锁存入内部缓冲区。

TXE:高表示模块发送缓冲区已满;低表示发送缓冲区为空,可以发送数据。

RXF:高表示模块没有数据输出;低表示模块有数据输出,可以读数据。

LISBVCC:USB界面的电源脚。

D+:USB数据脚。

D一:USB数据脚。

GND:电源地。

0UTVCC:+5V输出,可以提供给外部MCU使用,最大为400 mA。

NC:空引脚。

USBl00模块的控制时序:

发送时序。当单片机检测到USBl00模块TXE为低时,表示内部发送缓冲区允许发送数据,可以将数据通过8位数据总线DO~D7发给USBl00模块,发送数据锁存由WR控制;USBl00模块TXE为高时,禁止发送数据。

接收时序,当单片机检测到USBl00模块RXF为低时,表示内部接收缓冲区有数据,可以通过8位数据总线DO~D7发给C8051F060单片机,接收数据锁存由RD控制。

1.3 多路模拟切换开关

因为C8051F060只有2路高速A/D转换器,而实际上有4路模拟量需要采集,故需要一个多路模拟切换开关。NLAS4684是两路单刀双执CMOS模拟切换开关,具有很低的导通电阻。当ADO_CON、ADl_CON为高电平时,运放的输出OUT2进入ADO进行A/D转换,运放的输出OUT4进入ADl进行A/D转换;当ADO_CON、ADl_CON为低电平时,运放的输出OUTl进入ADO 进行A/D转换,运放的输出OUT3进入AD1进行A/D转换,。

1.4 模拟运算放大电路

LM134、R1、R2、D1构成恒流源电路,对桥式电路传感器提供恒流源。桥式电路传感器输出信号INl+、INl一经INA326EA放大后送入多路模拟切换开关,然后由C805lF060的A/D电路进行A/D转换。INA326EA是一款单电压供电、高性能、低功耗、满幅度输入输出的仪表运算放大器。运算放大器电路放大倍数G=2K1/R3。总共有4路模拟运算放大电路。图6为其中一路模拟运算放大电路。

1.5 供电电路

为了符合工业现场便携式的需要,选用上海捷士电池制品有限公司的JS一7.4V一1.2Ah 可反复充放电的锂离子电池。电池采用锂离子083448电芯,组合方式为两串,电池容量1.2 Ah,电池电压7.4 V,外形尺寸50 mm×37mm×17 mm,重量55 g。该电池具有电池过充保护、过放保护、短路保护、过流保护功能(这些功能已经集成在电池内部,便于使用)。TPS76650[)是具有250 mA输出能力的LDO芯片,电池电压通过该芯片的5、6脚输入,7脚输出稳定的+5 V电压供系统使用;2脚是对TPS76650D是否工作正常的指示输出,当芯片工作正常时,2脚输出高电平,当芯片输出电压在4.6~4.9 V时,2脚输出低电平,R1为外部上拉电阻。TPSll00为大电流驱动能力、低导通电阻的电源分配开关;输出5 V电压为传感器电路提供恒流源,通过SPXlll7稳压成3.3 V为传感器放大电路供电。为了节省耗电,C8051F060可以通过TPSll00的4脚关掉传感器电路的恒流源和放大电路。

另外,当采集器和计算机通过USB相接时,因为USB提供+5 V/500 mA电源,采集器可以通过USB连接线对采集器供电。供电电路。

2 采集系统的编程

2.1 单片机编程

采用Silicon公司的Silicon Laboratories IDE集成编辑、编译、仿真、下载软件包,用C语言进行软件编写。系统通电后,首先要对单片机进行初始化,包括单片机的I/0端口和交叉开关、定时器的初始化,A/D转换器的初始化以及A/D参考电压的初始化等。工控机通过USB口对便携式数据采集器发送0x41、0x42、0x43、0x4_4,便携式数据采集器分别回送传感器1、2、2、4的200个A/D采集数据,高位在前,低位在后。(部分源代码程序略——编者注)

2.2 工控机编程

在工控机上安装好USBlOO模块的专用驱动程序后,USBl00即可作为一个标准的设备,按照与串口完全一样的方法进行编程。本次设计采用了VB编程。在VB中采用MSComm控件,将USB接口作为一个标准的串口使用。程序分为两部分:一部分是USB接口程序;另一部分是应用程序。将由C8051F060采集到的数据用直观的图像方法显示出来。

结语

C8051F060作为新一代8051单片机,具有功能强大、体积小、工作稳定等特点,适用于复杂控制系统。本文只介绍了基于C8051F060的USB高速A/D数据采集器。数据采集器已经成功运用于某工程中。对其他相类似的数据采集、USB数据传输应用具有一定的参考价值。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

数据采集系统的软件设计

1104322035 公开 TP241 代号 分类号 学号 密级 10701 题(中、英文)目 数据采集系统的软件设计 Software Design of Data Acquisition System 作者姓名 张瑜 朱荣明 教授 工学 提交论文日期 二○一四年三月 控制理论与控制工程 指导教师姓名、职称 学科门类 学科、专业

西安电子科技大学 学位论文独创性(或创新性)声明 秉承学校严谨的学风和优良的科学道德,本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果;也不包含为获得西安电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示了谢意。 申请学位论文与资料若有不实之处,本人承担一切的法律责任。 本人签名:日期 西安电子科技大学 关于论文使用授权的说明 本人完全了解西安电子科技大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属西安电子科技大学。学校有权保留送交论文的复印件,允许查阅和借阅论文;学校可以公布论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存论文。同时本人保证,毕业后结合学位论文研究课题再撰写的文章一律署名单位为西安电子科技大学。 (保密的论文在解密后遵守此规定) 本学位论文属于保密,在年解密后适用本授权书。 本人签名:日期 导师签名:日期

摘 要 随着工业技术需求的不断加深,计算机技术在电子仪器测试领域得到了广泛的应用,新的测试平台虚拟仪器成为了当前测试领域的发展主流。虚拟仪器不仅极大的提高了测试手段,而且具有实现容易、扩展性强,在信号调理、数据存储、数据分析、数据显示等多个方面与传统的测试仪器相比,具有十分突出的优点,使得人类的测试技术跨入了一个新的时期。 本文运用虚拟仪器开发平台LabWindows/CVI设计了一个数据采集系统软件。软件可以对飞行控制系统测试的模拟信号、离散信号和网络数字信号进行采集、显示、存储和回放。本文先介绍了虚拟仪器、软件开发平台LabWindows/CVI和多线程技术的相关知识,然后对数据采集系统软件的需求进行了分析,提出了数据采集系统的概要设计。根据系统的概要设计,结合人机工程学相关理论,开发了简单、友好、方便、一致的人机交互界面。同时,对软件的数据采集和记录、通道配置、通道监控和数据回放功能,在LabWindows/CVI软件开发环境下进行编程实现。经过测试表明:软件的界面显示直观、操作简便;程序设计思路正确、性能良好,满足设计要求。 关键词:虚拟仪器 LabWindows/CVI 数据采集 人机界面

USB接口的高速数据采集卡的设计与实现

摘要:讨论了基于USB接口的高速数据采集卡的实现。该系统采用TI公司的TUSB3210芯片作为USB通信及主控芯片,完全符合USB1.1协议,是一种新型的数据采集卡。 关键词:USB A/D FIFO 固件 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI 卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采集卡原理 1.1 USB简介 通用串行总线适用于净USB外围设备连接到主机上,通过PCI总线与PC内部的系统总线连接,实现数据传送。同时USB又是一种通信协议,支持主系统与其外设之间的数据传送。USB器件支持热插拔,可以即插即用。USB1.1支持两种传输速度,既低速1.5Mbps和高速 12Mbps,在USB2.0中其速度提高到480Mbps。USB具有四种传输方式,既控制方式(Control mode)、中断传输方式(Interrupt mode)、批量传输方式(Bulk mode)和等时传输方式(Iochronous mode)。 考虑到USB传输速度较高,如果用只实现USB接口的芯片外加普通控制器(如8051),其处理速度就会很慢而达不到USB传输的要求;如果采用高速微处理器(如DSP),虽然满足了USB传输速率,但成本较高。所以选择了TI公司内置USB接口的微控制器芯片 TUSB3210,开发了具有USB接口的高速数据采集卡。 1.2 系统原理图

PL对模拟量数据的计算方法(114)

PLC对模拟量数据的计算方法 可编程控制器(简称PLC) 是专为在工业环境中应用而设计的一种工业控制用计算机, 具有抗干扰能力强、可靠性高、体积小等优点, 是实现机电一体化的理想装置, 在各种工业设备上得到了广泛的应用, 在机床的电气控制中应用也比较普遍, 这些应用中常见的是将PLC 用于开关量的输入和输出控制。 随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。本文将谈论利用PLC处理模拟量的方法, 以对机床液压系统工作压力的检测处理为例, 详细介绍PLC处理模拟量的各重要环节, 特别是相关软件的设计。为利用PLC全面地实现对机床系统工作参数的检测打下技术基础; 为机床故障的判断、故障的预防提供重要的数据来源。 1 PLC采集、处理模拟量的一般过程 在PLC组成的自动控制系统中, 对物理量(如温度、压力、速度、振动等) 的采集是利用传感器(或变送器) 将过程控制中的物理信号转换成模拟信号后, 通过PLC提供的专用模块, 将模拟信号再转换成PLC可以接受的数字信号, 然后输入到PLC中。由于PLC保存数据时多采用BCD码的形式, 所以经过A /D专用模块的转换后, 输入到PLC的数据存储单元的数据应该是一个BCD 码。整个数据传送过程如图1所示。 图1 PLC采集数据的过程图 PLC对模拟量数据的采集, 基本上都采用专用的A /D模块和专用的功能指令相配合, 可以让设计者很方便地实现外部模拟量数据的实时采集, 并把采集的数据自动存放到指定的数据单元中。经过采集转换后存入到数据单元中的BCD码数字, 与物理量的大小之间有一定的函数关系, 但这个数字并不与物理量的大小相等, 所以, 采集到PLC中的数据首先就需 要进行整定处理, 确定二者的函数关系, 获得物理量的实际大小。通过整定后的数据, 才是实时采集的物理量的实际大小, 然后才可以进行后序的相关处理, 并可根据需要显示输出数据, 整个程序设计的流程图如图2所示。

数据采集卡技术原理

核心提示:一、数据采集卡の定义:数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。二、数据采集简介:在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时 一、数据采集卡の定义: 数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。 假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时间间隔Δ t 被称为采样间隔或者采样周期。它の倒数1/ Δ t 被称为采样频率,单位是采样数 / 每秒。t=0, Δ t ,2 Δ t ,3 Δ t …… 等等, x(t) の数值就被称为采样值。所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。这样信号x(t) 可以用一组分散の采样值来表示: 下图显示了一个模拟信号和它采样后の采样值。采样间隔是Δ t ,注意,采样点在时域上是分散の。 图 1 模拟信号和采样显示 如果对信号 x(t) 采集 N 个采样点,那么 x(t) 就可以用下面这个数列表示: 这个数列被称为信号 x(t) の数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )の信息。所以如果只知道该信号の采样值,并不能知道它の采样率,缺少了时间尺度,也不可能知道信号 x(t) の频率。 根据采样定理,最低采样频率必须是信号频率の两倍。反过来说,如果给定了采样频率,

高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。 图一高速数据采集卡MR-HA-250M 高速数据采集卡MR-HA-250M模块参数: ●输入接口: 连接器:SSMC; 输入方式:AC或DC耦合; 通道数量:8通道,可同步32通道 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-250M

●ADC模块: 高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS) 图三高速数据采集卡MR-HA-250M动态性能 ●时钟管理模块: 高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。 ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。 ●FIFO模式 高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。 图四高速数据采集卡MR-HA-250M

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

0-10V模拟量采集模块,模数转换器

C2000 MDV8为通道隔离增强型智能模拟量数字量采集器,8路24位高精度电压型模拟量输入(量程为-10V~10V),采用通道隔离、全差分输入、插补输出设计,确保设备适用于更加复杂的环境。2路数字量(干接点)输入,RS485接口光电隔离和电源隔离技术,有效抑制闪电,雷击,ESD和共地干扰。且支持用户标定,满足了几乎所有情况对精度的要求。为系统集成商、工程商集成了标准的Modbus RTU协议。通过RS-485即可实现对远程模拟量和开/关设备的数据采集和控制。下层设备通常有接近开关、机械开关、按钮、光传感器、LED以及光电开关等数字量开关设备及PH、电导计、温度计、湿度计、压力计、流量计、启动器和阀门等模拟量设备。 特点: →8路模拟量(电压量)输入; →2路数字量干接点输入; →I/O与系统完全隔离; →AI分辨率:24位; →AI输入通道采取全差分输入,支持标定,插补输出; →模拟量输入通道之间完全隔离,隔离度350VDC; →AI输入测量范围:-10V~10 V ; →采用Modbus RTU通信协议; →RS485通信接口提供光电隔离及每线600W浪涌保护; →电源具有过流过压保护和防反接功能; →安装方便。 1.2 技术参数 模拟量接口AI 8路差分输入 AI分辨率24bit AI量程-10V~10 V(可标定)AI通道隔离度350V DC AI输入阻抗1MΩ 数字量输入接口 DI 2路干接点输入 DI保护过压小于240V ,过流小于80mA 串口通讯参数接口类型RS-485 波特率1200~115200bps 数据位8

奇偶校验 None 停止位 1 流量控制 None 通信协议 Modbus RTU 串口保护 串口ESD 保护 1.5KV 串口防雷 600W 串口过流,过压 小于240V ,小于80mA 电源参数 电源规格 9-24VDC (推荐12VDC) 电流 100mA@12VDC 浪涌保护 1.5kW 电源过压,过流 60V ,500mA 工作环境 工作温度、湿度 -25~85℃,5~95%RH ,不凝露 储存温度、湿度 -60~125℃,5~95%RH ,不凝露 其他 尺寸 72.1*121.5*33.6mm 保修 5年质保 MDV8外观

34970A数据采集器中文说明书

Agilent34970A 数据采集仪基本操作实验 一、实验目的 1.了解Agilent34970A数据采集仪的基本结构和功能。 2.了解Agilent34901A测量模块的基本功能和工作原理。 3.学习Agilent34970A数据采集仪使用面板进行数据采集的方法。 二、实验要求 1.根据Agilent34970A数据采集仪用户手册,掌握各开关、按钮的功能与作用。 2.通过Agilent34901A测量模块,分别对J型热电偶、Pt100、502AT热敏电组、直流电压、直流电流进行测量。 三、实验内容与步骤 1.实验准备 Agilent34970A数据采集仪的基本功能与性能。Agilent 34970A数据采集仪是一种精度为6位半的带通讯接口和程序控制的多功能数据采集装置,外形结构如图1、图2所示:

其性能指标和功能如下: 1.仪器支持热电偶、热电阻和热敏电阻的直接测量,具体包括如下类型: 热电偶:B、E、J、K、N、R|T型,并可进行外部或固定参考温度冷端补偿。 热电阻:R0=49?至?,α=(NID/IEC751)或α=的所有热电阻。 热敏电阻:k?、5 k?、10 k?型。

2.仪器支持直流电压、直流电流、交流电压、交流电流、二线电阻、四线电阻、频率、周期等11种信号的测量。 3.可对测量信号进行增益和偏移(Mx+B)的设置。 4.具有数字量输入/输出、定时和计数功能。 5.能进行度量单位、量程、分辨率和积分周期的自由设置。 6.具有报警设置和输出功能。 7.热电偶测量基本准确度:℃,温度系数:℃。 8.热电阻测量基本准确度:℃,温度系数:℃。 9.热敏电阻测量基本准确度:℃,温度系数:℃。 10.直流电压测量基本准确度:+(读数的℅+量程的℅)。 11.直流电流测量基本准确度:+(读数的℅+量程的℅)。 12.电阻测量基本准确度:+(读数的℅+量程的℅)。 13.交流电压测量基本准确度:+(读数的℅+量程的℅)(10Hz~20kHz 时)。 14.交流电流测量基本准确度:+(读数的℅+量程的℅)(10Hz~5kHz 时)。 15.频率、周期测量基本准确度:(读数的℅)(40Hz~300kHz时)。16.具有系统状态、校准设置和数据存储等功能。 Agilent34970A 数据采集仪的面板按钮功能与作用。 1. 在所显示的通道上配置测量参数:

USB原理及接口设计

USB原理及接口设计 吴 磊 0 引言 通用串行总线USB是Intel、Microsoft等大厂商为解决计算机外设种类的日益增加与有限的主板插槽和端口之间的矛盾而提出制定的。是一种用于将适用USB的外围设备连接到主机的外部总线结构,主要用在中速和低速的外设。USB同时又是一种通信协议,主持主机和USB的外围设备之间的数据传输。 1 USB的结构与工作原理 1.1 物理结构 在USB2.0中,高速方式下Hub使全速和低速方式的信令环境独立出来。通过使用集线器扩展可外接多达127个外设。USB的电缆的四根线,两根传送的是5V的电源,另外的两根是数据线。功率不大的外围设备可以直接通过USB总线供电,而不必外接电源。USB总线最大可以提供5V500m A 电流,并支持节约能源的挂机和唤醒模式。 1.2 USB设备逻辑结构 USB的设备可以分成多个不同类型,同类型的设备可以拥有一些共同的行为特征和工作协议,这样可以使设备驱动程序的编写变得简单一些。每一个USB设备会有一个或者多个的逻辑连接点在里面每个连接点叫端点。在USB的规范中用4位地址标识端点地址,每个设备最多有16个端点。端点0都被用来传送配置和控制信息。 1.3 USB通信分层模型 一台主机到设备的连接需要许多层与实体之间相互作用。USB总线接口层提供了主机和设备之间的物理/信令/包的连接。在系统软件看来, USB设备层执行的是一般的USB操作。功能接口层提供和应用软件层相对应的附加功能,虽然逻辑上USB设备层和功能层各自与主机上相应层通信,但物理上是通过USB总线接口层实现数据传输的。 1.4 四种传输方式 USB提供了四种传输方式,以适应各种设备的需要。这四种传输方式分别是: 控制传输方式,用在主计算机和USB外设中端点0之间,等时传输方式,中断传输方式,用于定时查询设备是否有中断数据传送;大量传输方式。1.5 USB通信协议 USB的物理协议规定了在总线上传输的数据格式,一个全速的数据帧有1500字节,而对于低速的帧有187字节。帧的作用是分配带宽给不同的数据传送方式。 一个最小的USB的数据块叫做包,包通常有同步信号,包标识,地址、传送的数据和CRC。包的ID 由八位组成,其中后四位是纠错位。 2 WindowsUSB驱动程序接口 USB的驱动程序和以往的直接跟硬件打交道的Win95的VxD驱动程序不同,属于WDM类型, Win98、Win2000等操作系统均支持该类型的驱动程序。WD M定义了一个基本的核心驱动程序模型,处理所有类型的数据,使驱动程序模型的内核实现更加固定。WDM驱动程序还是一种分层的程序结构,可看做是WindowsNT驱动程序的改进,WD M驱动程序支持即插即用、电源管理和W MI特性。 3 USB接口10M以太网卡的实现 3.1选择器件 介绍一种使用廉价USB接口芯片USB N9602加高速的51单片机实现10M以太网卡的方案。 设计之前一定要计算好外设所要求的带宽和USB的速度是否匹配。一个USB以太网卡应该包括USB通信接口、8051单片机以及IEE E802.3的MAC层和物理层。USBN9602在全速工作方式下可以达到12Mbit/s,采用USBN9602基本可以满足10M以太网的带宽需求。 3.2开发USB网卡驱动程序 开发USB设备驱动程序通常采用Windows DDK来实现,但现在有许多第三方软件厂商提供了各种各样的生成工具,(下转第19页)

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

智能数据采集器设计及应用

智能数据采集器设计及应用 1 传统数据采集器与智能数据采集器的区别 就目前而言,我国用得最多的计量仪器仪表有气表、水表、热表、电表等,普遍应用的还有IC卡预付费智能表,这类智能表或者是有线远传表,以及无线远传表。除此以外,因为成本等因素限制,仍旧有非常多的地区在使用传统机械计量仪表,依然采用入户查表的方式进行收费。可随着我国社会经济和城市建设的高速发展,人们日常生活标准以及居住环境都发生很大的改变,传统数据采集器具的缺点开始逐渐显露出来,其性能与智能数据采集器的性能存在着非常明显的差别。 过去传统收费模式:入户查表方式。这种模式,最大的问题是入户。因为入户需要选在人们休息在家的时间,但现在人们生活节奏快,生活压力大。在人们进入休息时,对于上门查表的行为通常是很反感的,而且也会存在一定的抵触情绪。而这种收费模式对于查表工作者来说,工作时间不定,强度大,效率又不高。并且,进行入户查表工作一定要有非常多的查表工作者,这将会使能源企业产生很大一笔人工成本支出。同时查表入户模式还需要对用户信息进行记录工作,而我国人员流动性非常大,重复进行用户信息录入工作,出现信息记录错误几率也将非常高。 关于智能计量仪表所使用的收费模式:对于智能计量仪表来说,它的收费方法非常多,例如,IC卡预付费表,无线远传表,或者有线远传表等,这些付费方法全部都借由电子传感设备执行数据信息的采集工作,随后把采集起来的数据上传给各能源企业的能源数据管理平台,最后再由平台执行统计、分析、查询等相关操作。 虽然我国IC卡表以及有线远传表的应用技术相对成熟,可靠性也很高,不过仍具有一些问题。例如:IC卡表的客户信息需要在客户购气时进行采集,这会经常引发客户信息更新慢的问题,除此以外,

基于JESD204B的高速串行数据收发接口设计

第40卷第5期2018年10月 指挥控制与仿真 Command Control &Simulation Vol.40 No.5Oct.2018 文章编号:1673-3819(2018)05-0129-04 基于JESD204B 的高速串行数据收发接口设计 徐凤萍1,龚至诚2,王 巍1 (1.江苏自动化研究所,江苏连云港 222061;2.江苏科技大学电子信息学院,江苏镇江 212003) 摘 要:目前的ADC /DAC 多采用并行传输接口,在进行数据采用分析时,存在着串扰高二传输同步困难的一系列难题,为了解决这些问题,推出了以JESD204B 为基础的高速串行数据传输接口三接口基于Xilinx 公司的Virtex-7系列FPGA 为核心控制单元设计电路,对于单通道来讲,其对应的传输速率是6Gb /s ,进行有关信息收发检测,证明了传输信息的同步性以及整个方案的可行性三结果证明,基于JESD204B 的串行传输办法不仅有效化解了并行传输存在的缺陷,同时有效降低了PCB 布线难度,并且节约了成本三 关键词:高速串行协议;JESD204B ;数据传输接口设计;FPGA ;模数/数模转换器 中图分类号:TP368.1 文献标志码:A DOI :10.3969/j.issn.1673-3819.2018.05.026 Design of High Speed Serial Data Transceiver Interface Based on JESD204B XU Feng-ping 1,GONG Zhi-cheng 2,WANG Wei 1 (1.Jiangsu Automation Research Institute,Lianyungang 222061,China;2.Jiangsu University of Science and Technology,Zhenjiang 212003,China) Abstract :In order to solve the problems of large crosstalk and difficult synchronization between the parallel sampling data in traditional ADC /DAC applications,a data transceiver interface based on high-speed serial protocol JESD204B is designed.With Xilinx company V7series FPGA as the core control unit circuit design,the single channel transmission rate of 6Gb /s under the condition of complete data transceiver test,verify the feasibility of synchronization,accuracy and overall scheme of data transmission in the process of.The design results show that this serial transmission mode not only solves many problems caused by parallel transmission,but also reduces the complexity of PCB routing,reduces the number of boards and saves the cost. Key words :High-speed serial protocol;JESD204B;Interface of data transmission;FPGA;ADC /DAC 收稿日期:2018-05-28 修回日期:2018-07-03 作者简介:徐凤萍(1984-),女,山西宁武人,工程师,研究方 向为嵌入式计算机及网络三 龚至诚(1993-),男,硕士研究生三 JESD204B 是一种新型的基于高速SERDES 的AD /DA 数据收发传输接口,而高速AD /DA 数据收发传输接口是集成电路当中最关键的设计实现环节,其涵盖了模数转换(ADC,Analog-to-Digital Converter)和数模转换(Digital-to-Analog Converter,DAC)[1]三在此之前,绝大多数高速AD /DA 转换数据收发接口采用LVDS 接口,目前随着数字信号处理方法不断发展以及科技的持续进步,对集成电路传输及转换的速度和带宽要求也越来越高,以往的普通转换模块已经不能满足需求,这样就促进了高速ADC /DAC 等集成电路在高速传输技术方面的急速发展[2]三 以往采样数据的传输方式在传统用法上多采用如 LVDS 传输等并行方式,但是并行方式容易出现时钟同步困难二串行干扰大等问题,使信号容易受到干扰三同时并行传输方式会产生PCB 板设计繁琐二层数增多二花费高等众多难题三本文在JESD204B 的基础上,对高速 串行数据收发接口的设计方法和实现途径进行了研究,通过在Xilinx 公司的Virtex-7系列FPGA 内集成,完成基于JESD204B 协议的高速SERDES 的AD /DA 数据收发传输接口设计与集成实现,并完成信息的传输验证及相关试验三 1 JESD204B 协议的优势 数据转换器与FPGA 与的接口电平标准最常见的有两种,一种是互补金属氧化物半导体(简称CMOS),另一种是低电压差分信号(简称LVDS)三上述两种类型的区别主要在于CMOS 的瞬态电流随信息转换率的升高而逐渐变大,而LVDS 的电流则比较稳定,可是因为LVDS 对应的最高支持接口速率相对目前的应用需求也是相对较低的,最高只有2Gb /s 左右[3]三随着相关技术的进步,对相关转换器传输率二低功耗二高带宽等层面的要求逐渐提高,对应的传统的CMOS /LVDS 两种接口电平方式逐渐无法满足应用需求,特别是在转换速度二数据带宽二分辨率二功耗等方面无法满足高速 AD /DA 的发展与应用的需求三 针对高带宽二高速率二低功耗需求的,JESD204B 传 输协议提出了一种高效地基于高速串行数据接口的解决方案,JESD204B 协议的主要技术优势在于:简化系 万方数据

微机原理课程设计报告--数据采集系统三(中断法)

微机原理课程设计 课设题目:数据采集系统三(中断法) 实验者姓名: 实验者学号: 学院: 数据采集系统三(中断法) 一、实验目的 进一步掌握微机原理知识,了解微机在实时采集过程中的应用,学习、掌握编程和程序调试方法。 二、实验内容 1、用中断法,将ADC 0809通道0外接0 ~ 5V电压,转换成数字量后,在七段LED 数码管上,以小数点后两位(几十毫伏)的精度,显示其模拟电压的十进值;0809通道0的数字量以线性控制方式送DAC0832输出,当通道0的电压为5V时,0832的OUT为0V, 当通道0的电压为0时,0832的OUT为2.5V;此模拟电压再送到ADC 0809通道1,转换后的数字量在CRT上以十六进制显示。 2、ADC 0809 的CLK 脉冲,由定时器8254的OUT0提供;ADC 0809的EOC信号,用作8259中断请求信号。 3、要有较好的人机对话界面;控制程序的运行。 三、总体设计 1 、ADC 0809的IN0采集电位器0 — 5V电压,IN1采集0832输出的模拟量。 2 、DAC 0832将ADC 0809的IN0数字量后重新转换成模拟量输出。 3、8259用于检测ADC 0809转换是否结束和向CPU发送INTR信号 4、 8255为七段LED数码管显示提供显示驱动信息。 5、七段LED数码管显示ADC 0809的IN0的值。 6、8254提供ADC 0809的采样时钟脉冲。 7、有良好的人—机对话界面。系统运行时,显示主菜单,开始数据采集, 在数据采集时, 主键盘有键按下, 退出返回DOD系统。 四、硬件设计 因采用了PC机和微机实验箱, 硬件电路设计相对比较简单, 主要利用微机实验箱上的8255并行口、ADC 0809、DAC 0832、七段LED数码管单元、8254定时/计数器、74LS574输出接口、电位器等单元电路, 就构成了数据采集系统, 硬件电原理框图4-3-1所示。 五、软件设计 本设计通过软件编程,实现模/数转换器0809分别对IN0 0-5V直流电压的采样,和

基于FPGA的高速数据采集器

基于FPGA的高速数据采集器 摘要:介绍了一种基于fpga的高速数据采集器,给出了系统方案设计,并对系统各部分电路设计进行了详细介绍。对高速数据采集系统中串并转换功能的实现方法进行了详细阐述。该高速数据采集器由于采用了fpga+dsp平台设计,使得该系统具有较强的通用性和应用价值。 关键词:高速数据采集 fpga 带通采样串并转换 作者简介:赵冬琦,女,汉族,1962年出生,工程师,河北省秦皇岛市北戴河联通公司。主要从事通信设备维护工作。 随着数字信号处理技术的迅猛发展,数字设备逐渐取代模拟设备。而数据采集技术作为现代检测技术的基础,越来越多地被应用于雷达、通信、遥感、智能仪器等各个领域。随着数据采集技术的广泛应用,人们对其技术指标的要求也越来越高,包括采样速率、分辨率、存储量和实时性等技术指标。 数据采集系统发展的趋势是往高速高分辨率方向发展,但是受到器件和工艺的限制,特别是采样速率和分辨率这一矛盾指标的限制,实现高速高分辨率的采样系统依然具有一定的难度。目前国外高速采集器的采样速率可以达到几十gsps,但国内尚不具备该类型的高速采集器。本文设计了一种基于fpga的高速数据采集器,由于采用了at84as003作为采样芯片,因此该高速数据采集器可实现1gsps的采样速率,同时其分辨率可达到10bit。该高速数据采集器的数据存储、处理均可以在fpga内部实现,具有设计方便、灵

活的特点。 1 高速数据采集理论及技术 高速数据采集系统的理论基础是低通采样定理和带通采样定理。 1.1 低通采样定理 低通采样定理即nyquist第一采样定理,假设有一模拟信号x(t),其带宽限制在(0,fm),以采样频率fs进行等间隔采样,当fs2fm 时,该模拟信号可由采样值无失真恢复。 当fm较大时,往往对采样速率fs要求较高,即需要a/d转换器采样速率较高,这样对器件提出了较高要求。 1.2 带通采样定理 假设一个频率带限信号,频率范围(),如果,如果按照低通采样定理,则要求采样速率较高,至少,这不仅对a/d转换器采样速率较高,同时对后续信号的实时处理要求过高,不便于实现。而带通采样定理恰好的解决了这个问题。 假设一个带限信号,频率限制在(),如果采样频率满足: (1) 其中取能保证条件的最大正整数,则得到的采样离散序列可以准确地恢复原信号,这个过程即称为带通采样定理。 如果用信号的中心频率表示式(1),得到: (2) 其中取能满足(为频带宽度)的最大正整数[3]。 高速数据采集器方案设计

多路数据采集器设计报告

多路数据采集器设计 1.设计要求 所设计的数据采集器,共有16路信号输入,每路信号都是直流0~20mV信号,每秒钟采集一遍,将其数据传给上位PC计算机。本采集器地址为50H。要求多路模拟开关用4067,A/D转换用ADC0809,运算放大器用OP07,单片机用89C51,通信用RS232接口,通信芯片用MAX232。 与PC机的RS232串口进行通信。 设计采集器的电原理图,用C51语言编制采集器的工作程序。 2.方案设计 按要求,设计数据采集器方案如下所示: 数据采集器采用AT89C51单片机作为微控制器,模拟开关4067的地址A、B、C、D分别与P1.0~P1.3连接,通过控制P1口输出来选择输入信号,将直流信号依次输入ADC0809的模拟信号输入端,ADC0809共有8路输入通道,在使用模拟开关时,仅将模拟开关的输出端连接到ADC0809的1路输入通道即可,本方案中使用0通道。ADC0809的转换结果通过P0口传给单片机,单片机将采集结果通过串行通信RS232接口上传给上位PC机,实现数据的采集。 数据采集器方案示意图

3.电路原理图 a)AT89C51单片机电路 本实验中选取8位单片机AT89C51作为微控制器,需要片外11.0592MHz的振荡器,4K字节EPROM,128字节RAM,与51单片机有很好的兼容性。在本此实验中程序及数据不多,故无需另加外部程序存储器。单片机部分的电路如下所示: AT89C51单片机电路 b)数据输入部分

数据输入部分由模拟开关4067实现多路信号的切换。CD4067是单16路(单刀16位)模拟开关,各开关由外部输入二进制的地址码A、B、C、D来切换。其中脚10、11、14和13是地址码A(LSB)、B、C、D(MSB)的输入端;脚2~9和16~23是开关的输入/输出端(开关位);脚1是开关的输出/输入公共端(开关刀);脚15为控制端,低电平有效(选通),高电平禁止(开关开路)。 输入脚A、B、C、D分别与单片机P1.0~P1.3相连,改变P1输出即可切换输入通道,控制脚与P2.4相连。输出脚1后接电压放大电路。 c)电压调理放大电路 电压调理电路 由于输入信号均为0~20mV的微弱电压信号,而模数转换器ADC0809的输入量要求为0~5V 直流电压,所以必须后接电压放大电路。放大器选用OP07,将0~20mV电压放大到0~5V,其放大倍数为250倍,一般情况下,放大器的放大倍数最好小于200倍,安全起见,选用两个OP07进行两级放大,前级放大25倍,后级放大10倍,放大电路如上图所示。 d)模数转换部分 ADC0809数模转换电路 模数转换元件选用ADC0809,其主要特性有: 8路8位A/D转换器,即分辨率8位;

FPGA与DSP的高速通信接口设计与实现(精)

集成电路应用 ApplicationofIntegratedCircuits FPGA与DSP的高速通信接口设计与实现 金鹏,邓欣,宋万杰,吴顺君 (西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071)摘要:对ADI公司TigerSHARC系列的两种典型DSP芯片TS101[1]和TS201[2]的链路口性能进行了分析和比较,并给出了FPGA与这两种DSP芯片通过链路口进行双工通信的设计,为FPGA+DSP实时处理系统的内部数据通信提供了更加稳定和完善的通道。 关键词:TS101TS201实时处理系统链路口通信 在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。由于FPGA芯片在大数据量的底层算法处理上的优势及DSP芯片在复杂算法处理上的优势,DSP+FPGA的实时信号处理系统的应用越来越广泛。ADI公司的TigerSHARC系列DSP芯片浮点处理性能优越,故基于这类DSP的DSP+FPGA处理系统正广泛应用于复杂的信号处理领域。同时在这类实时处理系统中,FPGA与DSP芯片之间数据的实时通信至关重要。 了具体的设计实现方法。其中TS101的设计已经成功应用于某信号处理机中。 1TS101和TS201的链路口分析与比较 TS101和TS210都是高性能的浮点处理芯片,目前两 者都广泛应用于复杂的信号处理领域。TS201是继TS101之后推出的新型芯片,核时钟最高可达600MHz,其各类性能也相对优于TS101,而且TS201的链路口采用了低抗噪声性能更好。表1压差分信号LVDS技术,功耗更低、 列出了两种芯片链路口性能的详细比较,其中TS101核时钟工作在250MHz,TS201核时钟工作在500MHz。 TigerSHARC系列DSP芯片与外部进行数据通信主 要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多 序号 项目结构片内结构数据传输数据形式速率 表1TS101与TS201链路口性能对照表 TS101 4个双向复用的链路口每个链路口可以通过内部三条 总线分别映射到存储区M0/M1/M2

相关主题
文本预览
相关文档 最新文档