当前位置:文档之家› 年产五万吨PVC的氯乙烯合成工段的工艺设计

年产五万吨PVC的氯乙烯合成工段的工艺设计

年产五万吨PVC的氯乙烯合成工段的工艺设计
年产五万吨PVC的氯乙烯合成工段的工艺设计

年产五万吨聚氯乙烯的氯乙烯合成工段工艺初步设计

姓名:指导教师:

摘要:本设计是年产5万吨聚氯乙烯的氯乙烯合成工段的初步工艺设计,本设计根据株洲化工集团现场实习有关资料及有关文献,完成物料衡算、热量衡算。此设计配有说明书一份、图纸三份。

说明书内容:1.PVC和VC的发展及发展趋势。2.合成工段的生产原理、流程。3.物料衡算、热量衡算。4.主要设备的设计和选型.5.管道的设计及选型。6.三废处理安全与防火技术。

三副图纸:1.带控制点的物料流程图。2.车间平面布置图。3.主要设备的装配图。

关键词:合成、PVC、VC、工艺、设计。

The Preliminary Design about the Synthesis Construction Section of Vinyl Chloride of PVC 50000 tons per year

Speciality: Chemical engineering & technology Author: Su Lin Supervisor: Zeng Wennan Abstract:This graducation design is a primary designed about synthesis construction section of vinyl chloride of PVC 50000 tons every year.According to the Zhuzhou chemical industry group scene practice pertinent dates and related dates,the design was completed with the calculation of the balance of material and heat quantity.During the sign,the instruction booklet and three diagrams have been worked out.

The main contention of the instruction booklet can be briefly illustrated as follows:1.The development history of producing PVC &VC and its trendency.2.The production way to produce VC.3.The calculation of the balance of material and calculation of heat quantity.4.The design and choice about the main equipments.5.The design and choice about the main pipelines.6.The disposal of three wastes processing security and fire protection technology.

There are three diagrams as follows:1.The technique flow chart with controlled point.2.The factory floor-plan diagram.3.The main equipment installing picture.

Key words:synthesis、PVC、VC、technological、design.

目录

中文摘要

英文摘要

前言

1 绪论 (5)

1.1 聚氯乙烯(PVC) (5)

1.1.1 聚氯乙烯工业的发展概况 (5)

1.1.2 聚氯乙烯工业在国民经济中的作用 (5)

1.1.3 聚氯乙烯系列聚合物的性质 (6)

1.1.4聚氯乙烯制品的开发与应用技术 (6)

1.1.5 聚氯乙烯合成方法 (8)

1.2 氯乙烯(VC) (12)

1.2.1 氯乙烯的合成 (12)

1.2.2 生产工艺流程简述 (15)

1.2.3 主要工艺参数 (16)

1.2.4 主要原料和产物的物化性质 (16)

2 工艺计算 (18)

2.1 物料衡算 (18)

2.1.1 计算依据 (18)

2.1.2 计算 (18)

2.2 热量衡算 (26)

2.2.1 衡算方法 (26)

2.2.2 标况下有关物化数据表 (26)

2.2.3 计算 (27)

3 主要设备的设计与选型 (33)

3.1 石墨冷却器的选型 (33)

3.1.1 已知条件 (33)

3.1.2 计算两流体的平均温度差 (34)

3.2 石墨预热器的选型 (34)

3.2.1 已知条件 (34)

3.2.2 计算两流体的平均温度差 (35)

3.3 石墨冷却器Ⅱ的选型 (35)

3.3.1 已知条件 (35)

3.3.2 计算两流体的平均温度差 (36)

3.4 转化器的设计 (36)

3.4.1 已知条件 (36)

3.4.2 计算 (37)

3.4.3 手孔 (38)

3.5 泡沫水洗塔的设计 (39)

3.5.1 已知条件 (39)

3.5.2 塔径的计算 (39)

3.5.3 孔的布置 (39)

3.5.4 塔板的压降 (40)

3.5.5 稳定性 (40)

3.5.6 液泛 (41)

3.5.7 物沫夹带 (41)

3.6 主要设备一览表 (42)

4 主要管道管径计算和选型 (42)

4.1 HCl进料管 (42)

4.2 乙炔气进料管 (43)

4.3 石墨冷却器的进料管 (43)

4.4 多筒过滤器进料管 (43)

4.5 转化器进料管 (44)

4.6 转化器出料管 (44)

4.7 石墨冷却器进口管 (45)

4.8 40%盐水进料管 (45)

4.9 循环水管 (45)

4.9.1 石墨预热器 (45)

4.9.2 转化器 (45)

4.9.3 石墨冷却器 (46)

4.10 总进水管 (46)

4.11 部分管道一览表 (46)

5 合成工段中三废的产生及处理 (47)

5.1 氯化汞触媒的产生中毒机理及处理 (47)

5.1.1 氯化汞触媒的产生 (47)

5.2 尾排氯乙烯外逸的产生中毒机理及处理 (47)

5.2.1 尾排氯乙烯外逸的产生 (47)

5.2.2 中毒机理 (47)

5.3 废水的处理 (48)

5.3.1 废水排放标准 (48)

5.3.2 废水的处理方法 (48)

5.4其他三废的处理 (49)

6 安全生产防火技术 (49)

6.1 厂区安全生产特点 (49)

6.2 乙烯合成的安全技术 (49)

6.2.1 原料及中间提的闪点、自燃点、爆炸范围 (49)

6.3乙炔爆炸 (50)

6.3.1 氧化爆炸 (50)

6.3.2 分解爆炸 (50)

6.3.3 乙炔的化合爆炸 (50)

6.4 氯乙烯的燃烧性能 (50)

6.5 安全措施 (51)

结论 (52)

参考文献 (53)

致谢 (54)

前言

本设计是根据设计任务书的要求,对年产5万吨聚氯乙烯的氯乙烯合成工段进行初步设计,广泛收集了PVC工艺和化工设计的相关资料作为设计的理论依据。

本设计对PVC的工艺发展状况、工艺选择、性质、工艺流程及合成原理,相关的物料性质、物料衡算、设备选型、管道设计作了较为详细的阐述,以理论设计为主,参考了大量资料和书籍,力求接近实际、切合实际。

在此次设计中,自始至终都得到了曾文南老师的悉心指导和同学们的热心帮助,在此表示衷心的感谢。

由于水平有限,设计经验不足,设计汇总难免存在纰漏和不足之处,敬请各位老师和同学批评指正。谢谢!

1 绪论

1.1 聚氯乙烯(PVC)

1.1.1 聚氯乙烯工业的发展概况[1]

20世纪的30年代50年代是塑料工业迅速发展的时期。在此期间有许多合成塑料如聚氯乙烯、聚苯乙烯等形成工业化。

自1835年法国化学家V.Regnault首先发现了氯乙烯,于1838年他又观察到聚合体,这就是最早的聚氯乙烯。1872年包曼(Baumann)报导了氯乙烯的制备,并观察到在强烈阳光照射后,氯乙烯逐渐变成一种无定形的白色固体物。经历数十年直到1910年德国与美国研究了氯乙烯在紫外线和过氧化物存在下的聚合反应。1910年,Ostromislensky在进行氯乙烯研究时,也获得氯乙烯聚合物,称之为Cauprene chloride。1920年,德国研究聚氯乙烯已相当活跃,这时美国联碳化学公司与杜邦公司对氯乙烯聚合物的制备发表了专利。这标志着氯乙烯及其聚合物的制造已进入实用技术阶段。1920年,在美国的柏寨森(BURGHAUSAN)的瓦克(W ACKER)公司制取聚醋酸乙烯,用它与氯乙烯共聚制得一种新材料。该材料易加工,且不再发生分解因它具有内增塑性,可用作涂料和硬模塑制品,开辟了以内增塑的办法解决了聚氯乙烯的加工。另一方面也为聚氯乙烯从共聚改性作出了开拓性的工作。对聚氯乙烯发展起到积极的推动作用。又于1932年发现聚氯乙烯的低分子增塑剂。英国帝国化学公司于1937年采用高沸点液体如磷酸酯类增塑聚氯乙烯,得到了类似橡胶的物质,从而第一次打破了传统的橡胶市场,成为橡胶材料的代用品。

德国法本公司于1932年采取乳液聚合法生产聚氯乙烯,定名为“伊奇利特”(Igelit),以后于1933年美国碳化物和碳化学公司系统的“贝克菜特”(BAKBLITE)公司等用溶液聚合法建立了小型工厂,商品定名为“维尼”利特(ViNYILITE)。

聚氯乙烯自工业化问世至今,六十多年来仍处不衰之势。占目前塑料消费总量的29%以上。到上世纪末,聚氯乙烯树脂大约以3%的速度增长。这首先是由于新技术不断采用,产品性能亦不断地得到改进,品种及牌号的增加,促进用途及市场的拓宽。其次是制造原料来源广、制造工艺简单。产品质量好。在耐燃性、透明性及耐化学药品性能方面均较其它塑料优异。又它是氯碱行业耗“氯”的大户,对氯碱平衡起着举足轻重的作用。从目前世界主要聚氯乙烯生产国来说:一般耗用量占其总量的20~30%。特别是60年代以来,由于石油化工的发展,为聚氯乙烯工业提供廉价的乙烯资源,引起了人们极大的注意,因而促使氯乙烯合成原料路线的转换和新制法以及聚合技术不断地更新,使聚氯乙烯工业获得迅猛的发展。

从上述期间可看出聚氯乙烯树脂在主要生产国的产量与消费量均有近2%的增长率,而在其余国家和地区均略高于3%。

1.1.2 聚氯乙烯工业在国民经济中的作用

合成树脂是塑料工业的基本原料,在一定条件下塑制成一定形状的材料,在常温下它的形状不变,是材料工业的重要组成部分。

作为热塑性塑料的原料之一的聚氯乙烯树脂,在世界各国合成树脂的生产、品种及消费上均处领

先地位。我国也是如此,聚氯乙烯塑料制品居于各树脂及加工制品之主。这主要由于以下原因:(1)聚氯乙烯材料制品性能优良。有独特的使用功能。

(2)基础原料资源广,为聚氯乙烯树脂生产发展奠定了物质基础。

(3)以聚氯乙烯制取的合成材料可代替钢铁和木材使用,而且节能显著,每生产1立方米。通用塑料,其能耗为148.6千焦,而生产1立方米钢材能耗为356.7×106千焦。

(4)用于农业生产,如地膜、大棚等,为农业生产提供保障。

(5)聚氯乙烯塑料不仅在建筑、农业及包装工业上有着广泛的用途,在电子器件、交通运输、机械和人民生活等各方面,也均得到重用。

1.1.3 聚氯乙烯系列聚合物的性质

聚氯乙烯在常温下为白色粉末,比重为1.392~1.4不溶于水,汽油,酒精,氯乙烯,可溶于酮类和氯烃类溶剂,无毒无臭。具有很高的化学稳定性和良好的介电性能。

表1 质量标准GB5761-93

型号

平均聚合

温度/℃

粘数

/(ml/g)

K值聚合度/P 参考用途

SG-1 482 154~144 77~75 1800~1650 高级电绝缘材料

SG-2 505 143~136 74~73 1650~1500

电绝缘材料,一般软制

品SG-2 530 135~127 72~71 1500~1350

电绝缘材料,农膜,塑

料鞋SG-4 565 126~119 70~69 1250~1150

一般薄膜,软管,人造

革,高强度硬管SG-5 580 118~107 68~66 1100~1000

透明硬制品,硬管,型

材SG-6 618 106~96 64~63 950~850

唱片,透明片,硬板,

焊条,纤维SG-7 655 95~87 62~60 850~750 吹塑瓶,透明片,管件

SG-8 685 86~73 59~55 750~650 过氯乙烯树脂

1.1.4聚氯乙烯制品的开发与应用技术

聚氯乙烯作为世界五大通用塑料之一,今年发展非常迅速,由于它综合性能优异,广泛应用于农业、工业、国防、人类日常生活等许多领域。当前高速发展的建筑行业的旺盛需求,也推动着中国聚氯乙烯产业的蓬勃发展。当今世界上,还没有一个地区或国家的聚氯乙烯产业,有像中国今天这样拥

有一个广阔的应用市场和高速发展态势的局面展现于世人面前。原料和能源圆满解决之际,将是迎来巨头争霸之时。届时中国的聚氯乙烯无论是产量还是市场消费都会跃居世界第一位,中国的聚氯乙烯有着璀璨的前景。

聚氯乙烯树脂广泛地用于塑料加工行业,建材,轻工等行业。可用来加工成金属线包皮,薄片,板材,软管,管道配件,皮革,软质制品和玩具,也可用来加工成食品包装膜,包装盒,食品机药物装瓶,以及硬管,透明片,型木等。

⑴PVC 型材技术应用

在西欧,每年大约有150万t的PVC 用于制作管材(主要用作输水管) ,是最大的PVC 市场,约占PVC 材料的60%。为了增强竞争力,近几年人们致力于管材的新材料、新工艺的应用开发。新改良的加工技术在使用少量的主要原料后,提高了材料的强度和承受力,同时也降低了制造成本。如今用于污水排放管的芯层发泡管内径逾500 mm。在压力管方面,列式或脱机式执行的分子方向达到了相同的爆裂压力要求,但只需近一半的壁厚。通过挤压成型生产双壁式内管是一种新技术,在满足高强度的情况下可以减轻管材质量。

PVC 门窗型材以及含有EV A 与PE 改性剂的PVC 是一种新型材料,可用作护栏杆。在管子改造方面,可将一根预先变形弯曲的管子从破裂的旧管子中穿过,然后用过热蒸汽使其恢复整形。破裂的旧管子宽度最大达450 mm ,该改造工艺简单,管子安装方便、密封性好。

2002 年西欧PVC 挤出型材消费量为130万t ,其中大约有一半用于制造高强度塑钢门窗,其它重要用途如做百叶窗、电缆槽以及发泡型材或实心型材,用于建筑装潢及制造冬季花园、门框以及鞋模等。

⑵PVC 改性技术

在改性方面,有PVC 接枝共聚物、PMMA 改性及丙烯酸酯改性,这些PVC 改性材料在市场上平均分布。德国PVC 接枝共聚物的消费量逾20万t/ a,占欧洲首位,采用的一种工艺可生产高散重物料,这种物料具有极好的均匀分布,并且可达到人们希望的聚合釜的高产量、高效率以及型材的高品质。

⑶PVC 专用料应用

硬膜占PVC 原料的最大份额,除了K值为57~60的标准产品外,还有氯乙烯共聚物和醋酸乙烯酯,这种材料提高了包装膜的拉伸强度,并且也提高了家具膜、信用卡的胶合力和粘合力。乳液PVC明显加快了物料的成形过程,提高了熔融均匀度,减少了流水作业的故障,也提高了抗静电能力。超细粉末PVC 树脂这种超高分子质量专用料有助于消光及表面的结构成形。PVC 接枝共聚物提高了硬膜制品的强度,提高了压延过程的分离作用。

在软膜方面优先发展透气的K值为70的PVC制品。这种特殊制品属于超高分子质量PVC ,用于做软膜具有更好的机械强度,属增强性的EV A 或丙烯酸酯PVC 接枝共聚物。该PVC 软制品减少了增塑剂的迁移,同样也减少了软膜脆化,减少了污染,提高了冷脆性。

2001 年,西欧糊状PVC 树脂加工量为60万t 。该产品的专门用途为地板夹、人造夹、汽车底

层保护漆、乙烯护墙纸、平面图、金属板涂层、转轴的旋转铸品以及各种各样的零部件。

一种微细孔径的超细粉末PVC 专用料通过添加增塑剂可形成用于涂料的孔隙率稳定的糊状树脂,这种糊状树脂基体可着色或加热成形,同时可以熔融成PVC 软制品。

根据乳液法生产的PVC 新产品改进了发泡过程,通过发泡可以生产专用精细发泡人造革、高白度墙纸,还可以进一步制成无发泡产品和配方,并可以生产高档快速涂料。

针对糊粘度的下沉问题,在投用橡胶稀释剂过程中,使用了约30μm 的PVC 均聚物或聚乙烯异分子共聚物,或者是醋酸乙烯酯异分子共聚物。开发的单釜生产时间最短的技术,一方面需提高低冷脆性温度,另一方面还需提高快速熔融特性,使专用单分散体橡胶稀释剂在微量的增塑剂作用下用于生产低粘度糊状树脂。

重质乳液糊状树脂用于涂地板夹表层,目的是使其高透明、低吸水,并且保持低浊度。新的超高分子质量专用料提高了研磨性,成为人们理想的无光泽表层涂层。

1.1.5 聚氯乙烯合成方法

⑴聚氯乙烯(PVC) 是由氯乙烯在引发剂作用下聚合而成的热塑性树脂,也是世界上最早实现工业化的塑料品种之一。在世界众多的塑料品种中,PVC 以其优良的综合性能,便宜的价格以及与氯碱工业关系密切,自30 年代工业化以来,一直受到各工业国的普遍重视,保持着长盛不衰的发展势头,是目前世界上仅次于聚乙烯的第二大宗塑料品种。

到目前为止,世界上PVC 生产的聚合工艺主要有5 种,即悬浮、本体、乳液、微悬浮及溶液聚合工艺。其中悬浮聚合工艺一直是工业生产的主要工艺,绝大部分均聚及共聚产品都是采用悬浮聚合工艺。就拿美国为例,聚氯乙烯生产工艺中,悬浮聚合占87.8 % ,本体聚合占4.4 % ,乳液和微悬浮聚合占6.4 % ,溶液聚合占1.4 %。与美国相比,西欧乳液和本体聚合的比例较大,而日本则悬浮聚合占的比例较大。

⑵典型聚合工艺概述

ⅰ悬浮聚合

悬浮聚合是一种成熟的工艺,典型的悬浮聚合过程是向聚合釜中加入无离子水和悬浮剂,加入引发剂后密闭聚合釜,真空脱除釜内空气和溶于物料中的氧,然后加入单体氯乙烯之后开始升温,搅拌,反应开始后维持温度在50 ℃左右,压力0.88~1.22 MPa ,当转化率达到70 %左右开始降压,在压力降至0.13~0.48 MPa 时即可停止反应。聚合完毕抽出未反应单体,料浆进行汽提,回收氯乙烯单体。汽提后的料浆进行离心分离,使聚氯乙烯含水25 %,再进入干燥器干燥至含水0.3 %~0.4 % ,过筛后即得产品,工艺流程见图1 。

未聚合乙烯水水蒸气

产品

图1 悬浮聚合流程

ⅱ本体聚合

本体聚合工艺不以水为介质,也不加入分散剂等各种助剂,而只加入氯乙烯和引发剂,因此可大大简化生产工艺。由于本体聚合过程中物料状态是由低粘液相逐渐变成粘稠而最终形成粉料,所以聚合就被分为“预聚合”和“后聚合”两个过程,预聚合是在一个有剧烈搅拌的立式反应釜中进行,反应热靠反应釜冷却水套及回流冷凝器传出。氯乙烯转化率达到7%~12%时即将物料送入后聚合釜继续反应,后聚合釜是本体聚合的关键设备,在此物料经历从液相低粘度到糊状再到粉末相的转化。聚合反应结束后,对未反应的氯乙烯进行回收。离开聚合釜的物料是干粉,通过气流送到聚氯乙烯贮斗中,经多层振动筛分后产品送至称量包装机中包装。

ⅲ乳液聚合

乳液聚合是生产糊树脂的方法,通常采用水溶性引发剂(H2O2或K2S2O8等) 。把氯乙烯单体、水溶性引发剂、水、乳化剂及非离子型表面活性剂加入聚合釜中,在40~55℃下聚合达到预定转化率(85%~90%) 时停止聚合反应,聚合物胶乳经喷雾干燥,即得产品。回收未聚合单体。

ⅳ微悬浮聚合

微悬浮聚合工艺,首先将氯乙烯单体、无离子水、乳化剂、油溶性引发剂以及其它助剂按比例预混合均化,使含引发剂的氯乙烯均化成小液珠,然后将其均化料通入聚合反应釜,升温至聚合温度。待达到预定的转化率时停止反应,回收未聚合单体,聚合所得胶乳经喷雾干燥即得产品。

ⅴ溶液聚合

溶液聚合是在聚合釜中氯乙烯单体在醋酸丁酯、丙酮等各种溶剂中进行聚合。这种方法有溶剂回收和使用时氯乙烯单体污染问题,并且生产成本高,所以仅适用于特殊用途。

⑶典型聚合工艺技术特性比较

表2 4种主要聚合工艺特性比较

序号项目悬浮法本体法乳液法法微悬浮法

1 工业类型间歇间歇间歇间歇

2 生产能力(万t/a)20 10 5 5

续表2

序号项目悬浮法本体法乳液法法微悬浮法

3 反应器/ m36×133 第一第二

1×38 5×63

6×35 6×35

(1)类型立式立式立式立式(2)效率/t/a/ m3251 283 238 238

4. 反应条件

温度/℃57 67 70 52 50 时间/h 6.0 0.25 3.0 6.0 10 批量时间/h 8.2 1.80 7.65 7.8 11.8 转化率/% 88.0 8.0 67.0 82.3 91.8 总收率/% 99.3 99.0 98.7 98.9

5. 原料(以氯乙烯计)

(1) 氯乙烯100.00 59.65 40.35 100.00 100.00

(2) 水200.00 —90.88 87.50

(3) 引发剂Ⅰ0.0667 0.009 0.0227 0.0011 —

(4) 悬浮剂Ⅰ0.1000 0.0066 —0.1000

(5) 悬浮剂Ⅱ0.1000 — 1.1400 0.0200

(6) 乳化剂Ⅰ—— 1.1400 0.0200

(7) 乳化剂Ⅱ——0.2100 0.0079

(8) 乳化剂Ⅲ—— 1.2200 0.3000

就以上 4 种主要聚合工艺来讲,本体法具有工艺流程简单,装置占地面积小,同时基本上无废液排放,排气可以达到最低程度,因而环境污染少且产品质量好、纯度高,特别适用透明包装材料和电缆料等特点。悬浮法是一种相对最成熟的工艺,在目前世界聚氯乙烯生产中占有绝对的份额,且产品转化率最高,产品品种最多,容易适应市场。乳液法是生产糊树脂的方法,工艺复杂、成本较高且树脂质量较差。而微悬浮法也是生产糊树脂的方法,只用于特殊用途。

⑷本设计采用技术最成熟的悬浮法工艺,所以在此重点介绍一下悬浮法。

ⅰ悬浮法PVC生产技术进展

目前,世界发达国家聚氯乙烯树脂生产技术都较为成熟,普遍采用大釜密闭技术,先进的防粘釜工艺,改进了搅拌装置,用后掠式搅拌器代替平桨式搅拌器,并在搅拌器和挡板中通冷却水,提高了聚合釜的传热能力。目前,世界最大的聚合釜是德国许尔斯公司使用的200m3聚合釜。美国吉昂公司采用75m3悬浮聚合釜,由于采用深冷水作冷却介质,除传热效果好、聚合釜生产效率高外,单釜年生产PVC 树脂可达到2.5万t 。欧洲索尔维公司和日本信越公司采用的聚合釜容积在127m3左右。为了增加移热能力,大釜普遍采用了釜顶设计回流冷凝器、釜夹套采用大循环回流水量的方式来增加传热系数,以强化换热效果。

目前,在聚合配方上采用高油水配比,以增加聚合釜的产量;采用氨水和碳酸氢铵混合溶液取代氢氧化钠溶液作pH 值调节剂,提高了产品白度,缩短了PVC 加工塑化时间;采用无毒溶剂和过碳酸类引发剂取代偶氮腈根类引发剂,使产品的环境安全性能更高;采用多元高效引发剂复合取代二元引发剂,提高了聚合引发速度和反应放热的均匀性,缩短了聚合时间;采用多元分散体系取代二元分散体系,改善产品的加工性能;采用反应中补加水技术有效地提高反应换热能力,缩短聚合反应时间,目前国内聚合反应时间已有厂家缩短到3~4h/釜左右;采用高温热脱盐水技术和水乳性引发剂取代溶剂型引发剂,使聚合釜能在加料结束后直接达到反应温度,节约了聚合升温时间,且对产品质量没有影响;采用同时加料及釜外VCM(氯乙烯)回收的方式减少聚合辅助时间。

对超低聚合度PVC 的生产采用添加链转移剂的方法,以降低反应温度和压力,提高品质量;对于高聚合度和超高聚合度PVC 的生产采用添加扩链剂的方法来提高反应温度,以提高聚合釜的移热能力和缩短反应时间;对于通用树脂,在PVC 生产中采用添加改性剂的方法来降低产品的“鱼眼”数,提高产品白度,缩短产品塑化时间,改善加工质量;添加纳米无机材料或者优化分散剂种类和比例来提高PVC 颗粒的表观密度,提高后加工的速度;添加特殊助剂生产如抗静电PVC、阻燃PVC、消光PVC、耐放射线PVC 等;与其他单体共聚生产耐热PVC、内增塑PVC 等。

VCM 回收压缩单元改变了原来直接全部进气柜后再压缩冷凝的过程。充分利用回收气体的固有压能,回收气体压力高时直接冷凝,压力稍低一点时增压冷凝,压力低于0.12MPa 时进行抽压和压缩冷凝,取消了气柜,节约了设备投资和电耗。目前,VCM 尾气中VCM 的回收方法主要有活性炭吸附、膜法吸附和溶剂吸附3种,前两种方法目前采用较多,最后一种方法因成本较高采用较少。

PVC 浆料汽提技术的发展是从汽提槽发展到穿流筛板汽提塔,再发展到溢流筛板汽提塔,PVC 浆料中VCM 含量有大幅度降低。上海氯碱化工股份有限公司汽提过程采用螺旋板换热器进行余热回收,不仅节约50%左右的蒸汽,提高汽提塔处理能力20%左右,而且使PVC浆料中VCM含量进一步降低。

锦化化工(集团) 有限责任公司对沸腾床干燥技术进行了改进,通过降低前几室的温度,取消了后室冷却的工艺,可降低蒸汽单耗20%左右。上海氯碱化工股份有限公司等采用了旋风干燥器技术,。进一步有效降低了干燥蒸汽单耗。江苏北方氯碱化工集团有限公司等采用国内开发的旋流床干燥工艺,据介绍,该工艺比旋风干燥器技术蒸汽单耗还低5%。江苏华苏塑料有限责任公司采用了滴流床工艺,据说该工艺技术蒸汽单耗更低。

干燥蒸汽冷凝水已得到普遍回收利用,离心水已得到部分回收利用,天津LG大沽化学有限公司采用臭氧氧化废水处理工艺,上海氯碱化工股份有限公司采用生化方法处理废水,效果均很好。

ⅱ生产工艺流程简述

湿式发生清静混合脱水

+H2O

+NaClO

+NaOH 加热风

图2 悬浮法PVC生产工艺流程

1.2 氯乙烯(VC)

氯乙烯是生产聚氯乙烯树脂的原料,本设计就是电石法合成聚乙烯的合成氯乙烯单体的工段。

1.2.1 氯乙烯的合成[1]

氯乙烯是由乙炔与氯化氢在升汞催化剂存在下的气相加成的。

⑴反应机理

++ 124.8kJ/mol

CH CH HgCl2CH2CHCl

上述反应实际上是非均相的,分5个步骤来进行,其中表面反应为控制阶段。

ⅰ外扩散乙快、氯化氢向碳的外表面扩散;

ⅱ内扩散乙炔、氯化氢经碳的微孔通道向外表面扩散;

ⅲ表面反应乙炔、氯化氢在升汞催化剂活化中心反应发生加成反应生成氯乙烯;

ⅳ内扩散氯乙烯经碳的微孔通道向外表面扩散;

ⅴ外扩散氯乙烯自碳外表面向气流中扩散。

⑵催化剂

ⅰ载体活性炭

用作催化剂载体的活性炭,一般是由低灰分的煤加工制成,并经750~950℃高温水蒸气活化,以氧化(或称“烧掉”)成型后炭粒内部的挥发组分,使形成许多微细的“孔穴”和“通道”。因此,活性炭具有非常惊人的表面积,如利用低湿氮气吸附法或苯蒸气动态吸附法,可测得目前常用的活性炭其每克重量就有800~1000m2的表面积,这一数值又称为活性炭的比表面积。活性炭的这一特性使它具有优异的吸附能力,被广泛地应用于气体或液体中微量杂质的吸附分离过程,各种有毒、有害气体的防毒面具以及催化剂的载体。

ⅱ升汞

在常温下是白色的结晶粉末,分子式HgCl2分子量271.52,升华点302℃。在此温度下固态升汞

可以直接升华变成蒸气态。

升汞在水中具有一定的溶解度,且依温度上升而增加,升汞在水中的离解(或称水解)作用很小,只占溶解的升汞分子总数中的0.1%,且水溶液实际上不导电,说明这种化合物为共价键的性质,升汞在水中的微量离解不产生Hg2+离子,而按独特的方式进行:

-

++

Cl

HgCl

Hg

←Cl

+

?→

2

纯的升汞粉末(无载体活性炭时)对氯乙烯合成反应并无活性,而一旦吸附于活性炭表面,由于两者的相互作用使对该反应有优异的活性和选择性,是迄今为止该化学反应最为理想的催化剂。工业生产中宜选用纯度>99%的升汞试剂作为催化剂的原料。

ⅲ催化剂及其催化作用

众所周知,催化剂是一种能改变化学反应速度而本身并不发生化学变化也不能改变化学反应平衡的物质,即当进行可进反应时,催化剂对两个相反方向的反应速度具有相同的效力。以乙炔与氯化氢气相合成氯乙烯的反应来说,在100~180℃范围的热力学平衡常数是很高的,说明在上述温度下该反应如达到平衡,则有获得高收率氯乙烯产品的可能。但反应动力学实验证实,当无催化剂存在时,该反应在上述温度范围的速率几乎等于零,而以升汞的活性炭催化剂用于反应时,反应过程就大大地被加速,这时的平衡常数是很大的,催化剂与乙炔生成了中间络合物,再由中间络合物进一步生成氯乙烯,也即催化剂的存在改变了反应的历程(机理)和反应所需的活化能,以达到加速反应的效果。由于催化剂并不参加化学反应,而只是升华或中毒造成一些损失,所以1kg上述催化剂可合成1000kg 以上的氯乙烯单体。目前,工业生产用催化剂,系以活性炭为载体,浸渍吸附8~12%左右的升汞制备而成,这里的含汞量系指每100份活性炭(干基)合升汞8~12份(摩尔比)。如前所述,纯的升汞对合成反应并无催化作用,纯的活性炭也只有较低的催化活性,而当升汞吸附于活性炭表面后(比表面积下降到600~800m3/g,即具有很强的催化活性。

⑶对原料气的要求

氯乙烯合成反应对原料气乙炔和氯化氢的纯度和杂质含量均有严格的要求。

ⅰ纯度

如果原料气纯度低,使二氧化碳、氢等惰性气体量增多,不但会降低合成的转化率,还特使精馏系统的冷凝器传热系数显著下降,尾气放空量增加,从而降低精馏总收率。

一般要求乙炔纯度≥98.5%,氯化氢纯度≥93%。

ⅱ乙炔中磷、硫杂质

乙炔气中的磷化氢、硫化氢等均能与合成汞催化剂发生不可逆的化学吸附,使催化剂中毒而缩短催化剂使用寿命。此外,它们还能与催化剂中升汞反应生成无活性的汞盐。

HgCl2+H2S HgS+2HCl

3HgCl2+PH3(HgCl)3P+3HCl

工业生产采用浸硝酸银试纸在乙炔样气中不变色,作为检测磷、硫杂质地标准。

ⅲ水分

水分过高易与混合气中氯化氢形成盐酸,使转化器设备及管线受到严重腐蚀,腐蚀的产物二氯化铁、三氯化铁结晶体还会堵塞管道,威胁正常生产。水分还易使催化剂结块,降低催化活性,导致转化器阻力上升,使乙炔流量增高产生困难。此外,水分还易与乙炔反应生成聚合有害的杂质乙醛:

CH CH H2O HgCl2

+

22

CH3CHO

水分的存在还促进乙炔与升汞生成有机络合物,后者覆盖于催化剂表面而降低催化剂活性。

一般,原料气含水分≤0.06%,能满足生产需要。

ⅳ氯化氢中游离氯

氯化氢中游离氯的存在是由于合成中的氢和氯配比不当,或氯化氢气压力波动造成的,游离氯一旦进入混合器与乙炔混合接触,即发生激烈反应生成氯乙炔等化合物,并放出大量热量引起混合气体的瞬间膨胀,酿成混合脱水系统的混合器、列管式石墨冷凝器等薄弱环节发生爆炸而影响正常生产,因此必须严格控制。作为生产安全措施,一般借游离氯自动测定仪或在混合器出口安装气相温度报警器,设定该温度超过56℃时即关闭原料乙炔气总阀,作临时紧急停车处理,待游离氯分析正常时再通入乙炔气开车。

正常生产中,应严格控制氯化氢中无游离氯析出。

ⅴ含氧量

原料气(主要存在于氯化氢中)中含量用较高时,将威胁安全生产、特别当合成转化率较差,造成尾气放空中含乙炔量较高时,氧在放空气相中也被浓缩.就更有潜在的危险,系统中的氧能与活性碳在高温下反应生成一氧化碳和二氧化碳,使精馏系统出现问题。

更值得注意的是,氧在精馏系统中能与氯乙烯单体反应形成氯乙烯过氧化物:

H2C CH Cl+O2CH2H

C O O

n

n

n

后者与精馏系统中微量水分相遇时,会发生水解而产生盐酸,甲酸、甲醛等酸性物质, 从而降低单体pH值,造成设备管线的腐蚀,则产生的铁离子则污染单体,最终还影响到聚合产品的白度和热稳定性。

因此,原则上应尽量将原料气中含氧量降低到最低值甚至零。仅工业生产上由于电解槽以及氯气、氢气和氯化氢气体的输送处理系统难免将空气泄漏,故一般规定控制在0.5%以下。

⑷生产条件的选择

ⅰ摩尔比

提高原料气乙炔或氯化氢气的浓度(即分压)或使一种原料气配比过量,都有利于反应速度和转化率增加。但当乙炔过量时,易使催化剂中升汞还原为甘汞或水银.造成催化剂很快失去活性,而当氯化氢过量太高,则不但增加原料消耗定额,还会增加已合成的氯乙烯与氯化氢加成生成1,1-二氯乙烷副产物的机会。因此,宜控制乙炔与氯化氢摩尔比在1:1.05~1.10范围,实际生产操作中,应结合合成气中转化氯化氢及乙炔含量的分析值来实现摩尔比控制的。

ⅱ反应温度

提高反应温度有利于加快氯乙烯合成反应的速度,获得较高的转化率。但是,过高的温度易使催化剂吸附的氯化高汞升华而随气流带逸,降低催化剂活性及使用寿命;此外,在较高温度下,催化剂在乙炔气流中可收集到45~70℃馏分的液体,属二氯乙烯类物质,而催化剂上的升汞被还原成甘汞或水银。因此,工业生产中尽可能将合成反应温度控制在100~180℃范围。

ⅲ空间流速

空间流速是指单位时间内通过单位体积催化剂的气体量(气体量习惯以乙炔量来表示,其单位为m3乙炔/m3催化剂·h。

乙炔的空间流速对氯乙烯的产率有影响,当空间流速增加时,气体与催化剂的接触时间减少,乙炔的转化率随之降低。反之,当空间流速减少时,乙炔转化率提高,但高沸点副产物量也随之增多,这时生产能力随之减小。在实际生产中,比较恰当的乙炔空间流速为25~40m3乙炔/m3催化剂·h。此时,既能保证乙炔有较高的转化率,又能保证高沸点副产物含量减少。

1.2.2 生产工艺流程简述

⑴生产工艺流程

图3 生产工艺流程

由乙炔工段送来的精制乙炔气,经乙炔砂封,与氯化氢工序送来的氯化氢气体经缓冲罐通过孔板流量计调节配比(乙炔/氯化氢=1/1.05~1.1)在混合器中充分混合,进入石墨冷却器,用-35℃盐水间接冷却,冷却到-14℃±2℃,乙炔氯化氢混合气在此温度下,部分水分以40%盐酸排出,部分则夹带于气流中,进入串联的酸雾过滤器中,由硅油玻璃棉捕集器分离,然后混合气经石墨冷却器,由流量计控制进入串联的第一组转化器,在列管中填装吸附于活性炭上的升汞催化剂,在催化剂的作用下使乙炔和氯化氢合成转化为氯乙烯,第一组出口气中尚有20~30%未转化的乙炔,再进入第二级转化器继续转化,使出口处未转化的乙炔控制在3%以下,第二组转化器填装活性较高的新催化剂,第一组则填装活性较低的,即由第二组转化器更换下来的旧催化剂即可。合成反应放出的热量通过离心泵送来的95~100℃左右的循环水移去。粗氯乙烯在高温下带逸的氯化汞升华物,在填活性炭吸附器中除去,接着粗氯乙烯进入水洗泡沫塔回收过量的氯化氢。泡沫塔顶是以高位槽低温水喷淋,一次(不循环)

接触得20%盐酸,装大贮槽供罐装外销,气体再经碱洗泡沫塔,除去残余的微量氯化氢后,送至氯乙烯气柜,最后去精馏工段。

1.2.3 主要工艺参数

本设计工艺参数如表3所示

表3 本设计工艺参数

设备名称指标名称单位指标

压力atm ﹤1.5

混合器

乙炔流量:氯化氢流量1: 1.05

混合气温度℃25

石墨冷却器

进料温度℃25 出料温度℃-13 盐水进口温度℃-35 盐水出口温度℃-20

多筒过滤器混合气含水% ﹤0.08

石墨预热器

进料温度℃-13 出料温度℃75 循环水进口温度℃110 循环水出口温度℃95

转化器反应温度(新触媒)℃≤150反应温度(旧触媒)℃≤180卸大盖温度

循环水进口温度

循环水出口温度

放酸

转化率

℃≤60

次/小时

%

95

110

1

≥95

1.2.4 主要原料和产物的物化性质

⑴乙炔:

分子式:C2H2 分子量:26

性质:

在常温常压下为无色气体,具有微弱的醚味,工业用乙炔因含有氯化氢、磷化氢等杂质而具有特殊的刺激性臭气。

乙炔是一种易燃易爆的不稳定化合物。易分解放出大量的热而发生爆炸。压力对乙炔有特殊的意义。压力增加时,乙炔气体分子间相密聚,因此,一旦某处乙炔分解,就能迅速扩展到全部气体中。加工业气体乙炔的压力在147kPa(1.47bar)以上温度超过773~823K时,使会全部分解,发生爆炸。当

温度低于723K(并有接触物质存在时,可能发生爆炸。

乙炔可以发生加成反应,聚合反应。

乙炔具有弱酸性,其分子中的氢能被某些金属取代而成盐。例如含有水成氨的工业乙乙炔与氯化亚铜作用,生成具有爆炸性副乙炔铜。所以,工业上乙炔发生系统不能使用铜制的旋塞及管件。

规格[2]:

纯度:≥98.5%

不含硫、磷、砷等杂质。

⑵氯化氢:

分子式:HCl 分子量:36.5

性质:

是一种无色有刺激性的气体,遇到湿空气则呈白色烟雾,鼓可做烟雾剂。

标准状况下比重为1.639kg/m2,低温低压下可以成为液体,熔点为-114℃,沸点为-85.03℃。

易溶于水,标准状况下,1升水可溶解525.2升的HCl气体。

在潮湿状态下,容易与多种金属作用生成该金属的氯化物。

属强酸,可使蛋白质凝固造成凝固性坏死,严重时可引起受损器官穿孔,斑痕形成,狭窄及畸形。

规格[2]:

纯度≥93%

水分≤0.06%

⑶氯乙烯:

分子式:CH2=CHCl 分子量:62.50

性质:

沸点:-13.9℃熔点:-160.0℃

蒸汽相对密度:2.15(空气为1) 液体相对密度:0.9121(20℃)

爆炸极限:在空气中3.6~26.4%(体积)

氯乙烯在常温常压下为易燃、无色的气体,具有类似醚一般气味,溶于水,溶于乙醚、乙醇、四氯化碳、丙酮和二氯乙烷。

规格[3]:

主要质量要求(均为重量百分数)

氯乙烯≥ 99.99% 乙炔≤ 0.8ppm

乙烯≤ 2ppm 氯甲烷≤50ppm

丁二烯≤ 6ppm 铁≤ 0.5 ppm

HCl ≤0.5ppm 水≤80ppm

重组分≤ 50ppm

2 工艺计算

2.1 物料衡算

假设各化工单元操作连续进行,采用倒推法,根据转化率或损失率计算出原料投料,然后再按照操作顺序对各单元操作进行物料衡算。

2.1.1 计算依据:

⑴计算标准

生产能力:年产5万吨的聚氯乙烯

年工作日:以300天计算

日产量:5×104×103/300=1.667×105 kg

小时产量:1.667×105/24=6944.4 kg

∵聚合物一般进行到转化率为85%~90%[2],再加上在洗涤树脂、包装工段的损失,这里取转化率为85%。

H2C CH Cl CH2H

C

Cl

n

n

x·85% 6944.4 kg

x=6944.4/85%=8169.9 kg

∴每小时要合成氯乙烯8169.9 kg

⑵化学反应式

主反应:

CH CH HgCl2CH2CHCl

+

副反应:

H2C CH Cl+HCl CHCl2CH3

CH CH H2O HgCl2

+

22

CH3CHO

CH CH HgCl2HgCl2HCClCHHgCl

+

ClCHCHHgCl+HgCl2+HgCl2

⑶倒推法计算

精馏:(氯乙烯的收率:99.5%)8169.9/99.5%=8211.0 kg=8211.0/62.5kmol=131.376kmol 转化器:(乙炔转化率:95%)131.376/95%=138.291kmol

∴进气中CH≡CH需138.291kmol(3595.566kg)

2.1.2 计算:

⑴混合器的物料衡算

图4 混合器的物料衡算方框图

计算依据:

CH≡CH和HCl的摩尔比为:1:1.05~1.1[1]。

本设计选取:n CH≡CH:nHCl=1:1.08

ⅰ进料气组成

表4 进料气组成

进料气组分含量/%

乙炔气

CH≡CH99.9

H2O 0.1

氯化氢HCl 99.95 H2O 0.01 O20.04

∴进料气需乙炔气:138.291/99.9%=138.429kmol

进料气需氯化氢:138.429×1.08/99.95%=149.429kmol

∴CH≡CH:1.38291kmol(3595.566kg)

HCl:138.291×1.08=149.354kmol(5451.421kg)

O2:149.429×0.04%=0.0598kmol(1.9136kg)

H2O:1.38.429×0.1%+149.429×0.01%=0.1534kmol(2.7612kg)

ⅱ出料:

依据:水分以酸雾的形式进入下一层,有微量水分以浓盐酸形式流出,这里计算时忽略流出的浓盐酸的量[3]。

CH≡CH:138.291 kmol(3595.566kg)

HCl:138.291×1.08=149.354 kmol(5451.421kg)

O2:149.429×0.04%=0.0598 kmol(1.9136kg)

H2O:1.38.429×0.1%+149.429×0.01%=0.1534 kmol(2.7612kg)

ⅲ混合器物料衡算表

表5 混合器物料衡算表

进料 质量/kg W/% 出料 质量/kg W/% CH≡CH 3595.566 39.723 CH≡CH 3595.566 39.723 HCl 5451.421 60.226 HCl 5451.421 60.226 O 2 1.9136 0.021 O 2 1.9136 0.021 H 2O 2.7612 0.031 H 2O 2.7612 0.031 Σ

9051.6618

100.0

Σ

9051.6618

100.0

⑵ 石墨冷却器

图5 石墨冷却器物料衡算方框图

根据:在石墨冷却器中,用-35℃盐水(尾气冷凝器下水)间接冷却,混合气中水分一部分则以40%盐酸的形式排出,部分则夹带与气流中。[10] 设混合器中水分以40%盐酸排出的量占水总量的30%。

ⅰ 进料:

CH≡CH :138.291 kmol ,3595.566 kg HCl :149.354 kmol ,5451.421 kg O 2:0.0598 kmol ,1.9136 kg H 2O :0.1534 kmol ,2.7612 kg ⅱ 出料:

CH≡CH :138.291 kmol ,3595.566 kg O 2:0.0598 kmol ,1.9136 kg H 2O :

()kg

9332.1kmol 1074.0%3011534.0==-?

%40%100m m m HCl HCl

=?+水

∴水m 6

.04

.0m HCl = HCl :

年产万吨聚氯乙烯生产工艺设计

设计课题 年产10万吨聚氯乙烯生产工艺设计方案 2014年 10 月16日

设计说明 聚氯乙烯(PVC)是一种热塑性合成树脂,有优良的电绝缘性,难以自燃,主要用于生产透明薄膜、塑料管件、各类板材等。其再加工产品在全球不同领域都有着非常广泛的应用。 根据设计任务书,本设计进行了年产10万吨聚氯乙烯(PVC)工艺的设计。在查阅、参考大量文献以及对以往部分车间设计的研究学习下,进行了科学的设计以及对相关物料的衡算。 本设计计划采用悬浮聚合法生产聚氯乙烯,原料为氯乙烯单体以及混合用有机过氧化物和偶氮类引发剂、明胶分散剂和去离子水。结合所选择的生产工艺方案和产品生产实际情况,进行了有关物料和热量平衡的计算。安排每日三班次,每班8小时的生产强度,设计可达到日产303吨年产达10万吨的聚氯乙烯生产车间。 本设计也充分考虑到工作人员的工作环境以及工作安全性,尽可能将车间规划为安全的,绿色的,在工作人员遵守车间操作规程的情况下,工作更加安全高效。 本设计由许春华副教授指导,在反应确定、生产流程安排等整个设计过程中提出了许多宝贵意见,使得设计能更高效地完成,在此表示衷心感谢。 鉴于知识和实际经验所限,设计难免存在欠缺,恳请批评指正。

目录 1总论 .................................................... 1.1 概述.................................................................................................................................. 1.1.1 聚氯乙烯(PVC)概述与应用范围......................................................................... 1.1.2 聚氯乙烯(PVC)改性品种..................................................................................... 1.1.3 聚氯乙烯(PVC)生产行业现状及发展前景......................................................... 1.2 聚氯乙烯(PVC)产品的分类和命名............................................................................ 1.2.1 聚氯乙稀(PVC)产品分类..................................................................................... 1.2.2 聚氯乙稀(PVC)产品命名..................................................................................... 1.3 聚氯乙烯(PVC)生产方法[5]......................................................................................... 1.3.1 悬浮聚合法[6] ............................................................................................................ 1.3.2 乳液聚合法............................................................................................................... 1.3.3 本体聚合法............................................................................................................... 1.3.4 溶液聚合法............................................................................................................... 1.4 设计规模原料选择与产品规格 ...................................................................................... 1.4.1设计规模.................................................................................................................... 1.4.2主要原料规格及技术指标 ........................................................................................ 1.4.3产品规格.................................................................................................................... 2工艺设计与计算 .......................................... 2.1 工艺原理.......................................................................................................................... 2.2 工艺条件影响因素 .......................................................................................................... 2.2.1 聚氯乙烯(PVC)聚合主要影响因素................................................................... 2.3 工艺路线选择.................................................................................................................. 2.3.1 工艺路线选择原则................................................................................................... 2.3.2 悬浮法聚氯乙烯(PVC)工艺流程具体工艺路线................................................. 2.3.3 工艺流程示意图..................................................................................................... 2.4 工艺配方与工艺参数 ...................................................................................................... 2.4.1 工艺配方(质量份): ........................................................................................... 2.4.2 工艺参数:............................................................................................................... 2.5 物料衡算........................................................................................................................ 2.5.2 物料衡算的方法与步骤 ........................................................................................... 2.5.3 物料衡算...................................................................................................................

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排: 三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这种简单的除尘方式很难达到环保要求,除尘效率不高。 ②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。 (3)袋式过滤除尘 布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程

聚氯乙烯PVC介绍及配方介绍分解

目录 一、聚氯乙烯 (2) 1聚氯乙烯 (2) 2聚氯乙烯的分类 (2) 3聚氯乙烯的性质 (3) 4 PVC板材性能: (3) 二、PVC配方各物配料比 (3) 高级装饰用软板(质量份) (3) 1.硬质PVC板材基本配方 (4) 2.普通防火板参考配方 (4) 3. 泡沫夹心型防火板参考配方 (4) 4.彩色艺术面层防火板配方 (5) 5.发泡防火板或超轻型防火板参考配方 (6) 6.复合材料珍珠岩板 (6) 三、聚氯乙烯配方介绍 (7) 1.树脂的选择 (7) 2.增塑剂体系 (8) 3.稳定剂体系 (8) 4.润滑剂 (10) 5.填充料 (10) 6.着色剂 (11) 7.发泡剂 (11) 8.阻燃剂 (11)

一、聚氯乙烯 1聚氯乙烯 (英文:PolyVinyl Chloride,简称:PVC)是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加。无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态。其抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并自动催化分解引起变色,在实际应用中必须加入稳定剂以提高对热和光的稳定性。PVC很坚硬,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。 2聚氯乙烯的分类 生产方法的不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。 软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂,容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的开发应用价值。 PVC发泡板具有防腐、防潮、防霉、不吸水、可钻、可锯、可刨、易于热成型、热弯曲加工等特性,因此广泛应用于家具、橱柜、浴柜、展览架用板、箱体芯层、室内外装饰、建材、化工等领域用板,广告标示、印刷、丝印、喷绘、电脑刻字、电子仪表产品包装等行业。 PVC硬塑板具有优良的耐腐蚀性、绝缘性,并有一定的机械强度;经二次加工后可制成硫酸(盐酸)槽(桶箱);医药用空针架,化程架;公共卫生间水箱;加工产品的模板、装饰板、排风管道、设备衬里等各种异型制品、容器。是化工、建材、装饰及其他工业的理想选择材料。 60年代后期退居第二位。由于PVC树脂合成原料丰富,价格低廉需求量增加很快,地位逐渐加强。通用型PVC平均聚合度500~~150高聚和度型PVC平均聚合度为1700以上。我们常用的PVC树脂都为通用型。

Pvc生产工艺设计以和流程

Pvc生产工艺以及流程 其中SG-1型用生产高级电绝缘材料,SG-2型用于生产电绝缘材料、一般软制品和薄膜,SG-3型用于生产电绝缘材料、农用薄膜、日用塑料制品,SG-4型用于生产工业与民用微膜、软管、高强度管材,SG-5型用于生产透明制品、型材、硬管、装饰材料、生活日用品等,SG-6型用于生产透明片、硬板、焊条,SG-7型、SG-8型用于生产透明片、硬质注塑管件。依据的质量标准为GB/T5761-1993。 聚氯乙烯树脂质量标准GB/T5761-1993

电石制乙烯,乙烯制pvc(某塑料),烧碱吸收氯碱工业的尾气 聚氯乙烯简称PVC,是我国重要的有机合成材料,广泛用于工业、建筑、农业、日用生活、包装、电力、公用事业等领域。我国是全球最大的PVC生产和消费国。 根据生产方法的不同,PVC可分为通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。根据氯乙烯单体的获得方法来区分,可分为电石法、乙烯法和进口(EDC、VCM)单体法,习惯上把乙烯法和进口单体法统称为乙烯法。我国国内聚氯乙烯总产能的75%采用以煤化工为基础的电石法装置。中国电石法聚氯乙烯装置的总能力已经占全球聚氯乙烯装置总能力的25%甚至更高。 电石法以煤炭为上游原料,烟煤在隔绝空气的条件下,经过高温干馏生成焦炭。焦炭和石灰石(CaCO3)反应生成电石(CaC2),电石遇水,就生成了乙炔。乙炔和氯化氢发生加成反应就生成氯乙烯,氯乙烯聚合生成聚氯乙烯。 PVC生产过程中的关键一步是原盐水解生成氯气和烧碱(NaOH)。氯气进一步制成次氯酸钠、聚氯乙烯、甲烷氯化物等氯产品,其作用自不待言。烧碱在工业生产中也有广泛的应用,使用最多的部门是化学药品的制造,其次是造纸、炼铝、炼钨、人造丝、人造棉和肥皂制造业等等。鉴于氯和烧碱在这些行业中的巨大作用,工业上就将与这两种化学品相关的产业称作烧碱产业。 烧碱项目出来的产品主要是:氯气、氢气和烧碱,烧碱是主要出售的产品,而氯气和氢气则不好出售,所以需要PVC来平衡,正好PVC生产需要氯气和氢气来生产氯化氢气体,所以……HCl需要烧碱项目提供,所以要上烧碱项目,离子膜法是当前生产烧碱最先进最流行的方法,是因果关系 企业要考虑化工产品的平衡,前面的产品后面要有消耗的,聚氯乙烯生产需要消耗氯气,而较之其他的像氯化石蜡项目等量要大,而且利润上要差好多。烧碱项目产生的氯气就是被PVC消耗掉,烧碱只是单独的一个产品,有的做液碱销售,也有的要蒸发成固碱 PVC的生产主要有两种制备工艺,一是电石法,主要生产原料是电石、煤炭和原盐;二是乙烯法,主要原料是石油。国际市场上PVC的生产主要以乙烯法为主,而国内受富煤、贫油、少气的资源禀赋限制,则主要以电石法为主,截至到2007年12月,电石法约占我国PVC总产能的70%以上。 在PVC生产成本这部分,影响价格的主要因素应该考虑煤炭、焦炭、电力、电石、原油、乙烯、VCM等价格成本,另外,原盐的价格也会通过氯的价值传导对PVC 的价格进行一定程度的影响。 原盐的主要消费领域就是氯碱产品的生产。原盐电解后产生的氯部分用于生产PVC 和其他氯产品,钠部分用于生产纯碱和烧碱。 根据应用范围不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC 树脂。 根据氯乙烯单体的聚合方法,聚氯乙烯的获得又有悬浮法、乳液法、本体法和溶液法

聚氯乙烯生产毕业论文设计

聚氯乙烯生产毕业论文设计

毕业设计(论文) (化工系) 题目年产40万吨电石法氯乙烯生产工艺设计专业 班级 姓名 学号 指导教师 完成日期2011年6月25日~2011年10月10日

(论文) 摘要....................................................................... I I 前言 (4) 第一章文献综述 (8) 1.1化学品名称 (8) 1.2成分组成信息 (8) 1.3危险性概述 (8) 第二章电石法制氯乙烯所用的原料及其性质错误!未定义书签。 2.1乙炔氧氯化法生产氯乙烯 ... 错误!未定义书签。 2.2电石乙炔法生产氯乙烯错误!未定义书签。第三章电石法制氯乙烯工艺流程...错误!未定义书签。 3.1乙炔性质 (10) 3.2生产方法 (11) 3.3影响因素 (12) 第四章电石法制氯乙烯工段物料及热量衡算方法......................................... 错误!未定义书签。

4.1制备方法 (13) 4.2盐酸脱吸法生产氯化氢 (15) 4.3副产盐酸脱吸法生产氯化氢 (17) 第五章电石法制氯乙烯工段的主要设备错误!未定义书签。 5.1合成部分设备.............. 错误!未定义书签。 5.2列管式石墨换热器 ..... 错误!未定义书签。 5.3吸收部分设备.............. 错误!未定义书签。总结 ............................................................................................... 错误!未定义书签。致谢 ............................................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。 摘要 氯乙烯的制备在PVC的生产过程中是一个非常重要的环节,它把从氯化氢装置送来的干燥氯化氢气体和从乙炔装置送来的精制乙炔气体在这里合成反应生成粗氯乙烯,并经过脱水、净化、精馏等工序后,制成精制氯乙烯,即单体,用来满足聚合的需要。 本设计主要论述了电石法生产氯乙烯,以及原料气的物理性质和化学性质,以及它的用途;还介绍了生产氯乙烯的主要设备,基本原理和工

制备氯乙烯方法比较

制备氯乙烯方法比较 班级:10化工(1)班姓名:吴倩学号2010115146 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。 乙烯、乙炔和混合烯炔法的特点如下: 一.乙烯氧氯化法 氧氯化法是利用氯化氢合成有机物的一般称呼。其反应如下 CH2=CH2 +2HCl+1/2 O2→ClCH2CH2Cl+ H2O ClCH2CH2Cl→CH2=CHCl +HCl 二.乙炔法 在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯: CH≡CH+H Cl→CH2=CHCl 其过程可分为乙炔的制取和精制,氯乙烯的合成以及产物精制三部分。 此法工艺和设备简单,投资低,收率高;但能耗大,原料成本高,催化剂汞盐毒性大,并受到安全生产、保护环境等条件限制,不宜大规模生产。电石乙炔法已基本被世界淘汰,但这是我国目前主要的氯乙烯的生产方法。该法的氯乙烯产量占总产量的50%以上。这种方法在我国煤炭和矿石资源丰富的地区,在当前石油涨价的世界经济背景下仍然可获得较高的经济效益。 三.乙烯直接氯化法 CH2=CH2+Cl2→CH2=CHCl+HCl 这是石油化工发展后以石油为基础开发的生产工艺。此法的最大缺点是伴随反应生成了大量的1,2-二氯乙烷,产率较低。该工艺比目前广泛采用的乙烯平衡氧氯化法流程短,能耗

聚氯乙烯合成方法及主要用途

聚氯乙烯 氯乙烯单体制备: 工业上制备氯乙烯的方法主要有乙炔法、联合法、乙烯氧氯化法、乙烯平衡氧氯化法等。 1、乙炔法 乙炔与氯化氢反应生成氯乙烯是最早实现工业化的方法乙炔可由电石(碳化钙)与水作用制的。此法能耗大,目前用此法生产氯乙烯制造聚氯乙烯树脂厂家主要集中在我国,占我国聚氯乙烯树脂总量的70%。 2、联合法 由石油裂解制得的乙烯经氯化后生成二氯乙烷,然后在加压条件下将其加热裂解,脱去氯化氢后得到氯乙烯,副产品氯化氢再与乙炔反应,又制得氯乙烯。 3、乙烯氧氯化法 使用乙烯、氯化氢和氧气反应得到二氯乙烷和水,二氯乙烷再经裂解,生成氯乙烯。副产品氯化氢再回收到氧氯化工段,继续反应。 4、乙烯平衡氧氯化法 是将直接氯化和氧氯化工艺相结合。乙烯与氯反应生成二氯乙烷,二氯乙烷裂解产生氯乙烯和氯化氢。氯化氢与乙烯和氧气反应又生成二氯乙烷,二氯乙烷裂解再产生氯乙烯和氯化氢。氯化氢回收后,继续参与氧氯化反应。 聚氯乙烯聚合工艺: 在工业化生产氯乙烯均聚物时,根据树脂应用领域,一般采用五种方法生产,即本体聚合、悬浮聚合、乳液聚合、微悬浮聚合和溶液聚合。 (1)本体聚合法 一般采用“两段本体聚合法”,第一段称为预聚合,采用高效引发剂,在62~75°C温度下,强烈搅拌,使氯乙烯聚合的转化率为8%时,输送到另一台聚合釜中,再加入含有低效引发剂的等量新单体,在约60°C温度下,慢速搅拌,继续聚合至转化率达80%时,停止反应。 本体聚合氯乙烯单体中不加任何介质,只有引发剂。因此,此法生产的氯乙烯树脂纯度较高,质量较优,其构型规整,孔隙率高而均匀,粒度均一。但聚合时操作控制难度大,聚氯乙烯树脂的分子量分布一般较宽。 (2)悬浮聚合法 液态氯乙烯单体以水为分散介质,并加入适当的分散剂和不溶于水而溶于单体的引发剂,在一定温度下,借助搅拌作用,使其呈珠粒状悬浮于水相中进行聚合。聚合完成后,经碱洗、汽提、离心、干燥得到白色粉末状聚氯乙烯树脂。 选取不同的悬浮分散剂,可得到颗粒结构和形态不同的两类树脂。国产牌号分为SG-疏松性(“棉花球”型)树脂和XJ-紧密型(“乒乓球”型)树脂。疏松性树脂吸油性好,干流动性佳,易塑化,成型时间短,加工操作方便,适用于粉料直接成型,因而一般选用悬浮法聚合的疏松性树脂作为聚氯乙烯制品成型的基础原料。目前各树脂厂所生产的悬浮法聚氯乙烯树脂,基本上都是疏松型的。 (3)乳液聚合法 氯乙烯单体在乳化剂作用下,分散于水中形成乳液,再用水溶性的引发剂来引发,进行聚合,乳液可用盐类使聚合物析出,再经洗涤、干燥得到聚氯乙烯树脂粉末,也可经喷雾干燥得到糊状树脂。 乳液法聚氯乙烯树脂粒径极细,树脂中乳化剂含量高,电绝缘性能较差,制造成本高。该树脂常用于聚氯乙烯糊的制备。因此,该法生产出来的树脂俗称糊树脂。

聚氯乙烯的生产工艺

第一章概述 第一节聚氯乙烯简述 氯乙烯的聚合物。英文缩写PVC。聚氯乙烯是仅次于聚乙烯的第二大塑料品种。玻璃化温度80~85℃,密度1.35~1.45克/厘米3,使用温度-15~60℃。PVC具有优良的耐酸碱、耐磨、耐燃及绝缘性能,与大多数增塑剂的混合性好,因此可大幅度改变材料的力学性能。加工性能优良,价格便宜,但对光、热稳定性差,100℃以上或光照下性能迅速下降。 聚氯乙烯用自由基加成聚合制备,方法有悬浮、本体、乳液和溶液等,其中以悬浮法为主,以过氧化物等引发,加分散剂后可得到疏松树脂颗粒,加工性能好。聚合温度高,链转移速率高,产物分子量小,一般应稳定在±0.5℃以内。溶液聚合产物直接用作涂料胶粘剂,乳液聚合产物也可直接应用,或喷雾干燥为固体。 聚氯乙烯(PVC)是五大通用塑料之一,其产量仅次于聚乙烯居第二位。PVC以其具有的阻燃、绝缘、耐磨损等优良的综合性能赢得了广阔市场,广泛应用于轻工、建材、农业、日常生活、包装、电力、公用事业等部门,尤其在建筑塑料、农用塑料、塑料包装材料、日用塑料等领域占有重要地位。 聚氯乙烯(PVC)用途广泛,并是最早用于工业化生产的塑料管道材料,至今仍是管道生产的主导材料。PVC的强度高、造价低、可回收利用、性能受环境影响小、安全卫生,可用于压力和重力管道,也可用于塑料包装、制品等领域,其低廉的价格和突出的均衡性能,已经在工业和消费用途方面成为十分理想的材料。 聚氯乙烯是由液态的氯乙烯单体经悬浮,乳液,本体或溶液法工艺聚合而成,其中悬浮工艺在世界PVC生产装置中大约占百分之九十的比例。在世界PVC总产量中均聚物也占大约百分之九十的比例。PVC是应用最广泛的热塑性树脂,可以制造强度和硬度制品。硬质品目前占PVC总消费量的百分之六十五左右,今后PVC消费量进一步增长的机会主要是在硬质制品应用领域。目前PVC在建筑领域中的消费量占总消费量的一半以上。 第二节国内生产及应用状况

聚氯乙烯氯乙烯合成实用工艺原理讲解

合成工艺讲解课件 1、合成工序的生产任务:本工序的主要任务是将盐酸工序送来的HCL和乙炔工序送来的C2H2经混合脱水、转化、清净、压缩、精馏过程生产出纯度为99.99%的氯乙烯单体供聚合使用。 合成工序是烧碱和PVC的衔接工序,前为盐酸工序和乙炔工序,后供聚合,是PVC的工艺核心。 2、氯乙烯 C2H3Cl 分子量:62.5 物理性质:在常温常压下氯乙烯是一种无色有乙醚香味的气体,其沸点为-13.9℃,凝固点为-159.7℃。 爆炸性: 氯乙烯易燃,与空气混合形成爆炸性混合物,爆炸范围4-21.7%(体积比)。 毒性:氯乙烯对人有麻醉作用,对肝脏有影响,可使人中毒。当其浓度在0.1%以上时,开始有麻醉现象,表现为困倦,注意力不集中,随后出现视力模糊,走路不稳,在其浓度达20-40%时,可使人产生急性中毒,呼吸缓慢以致死亡,长期接触能引起消化系统疾病。空气中允许浓度为30mg/m3 3、乙炔:C2H2 ,分子量:26 物理性质:在常温下纯乙炔为无色气体,工业乙炔因含有硫化氢、磷化氢等杂质,而具有特殊的刺激性的气味。沸点:-83.66℃凝固点:-85℃ 爆炸性:下列情况下可以爆炸: A:高温(550℃)加压(>1.5表压)或有某些物质存在时,如电石氧

化铝、铜屑、氢氧化铁等。 B:与空气混合在2.3-81%范围时,特别在含乙炔7-13%时。 C:与氧混合在2.5-93%范围时,特别在含乙炔30%时。 D:当乙炔和氯气混合时,在阳光下即能爆炸。 E:与铜、汞、银接触生成相应的金属化合物时。空气中允许浓度为500mg/m3。 4、氯化氢:HCl,分子量:36.46 物理性质:是一种无色有刺激性气味的气体。沸点:-84.8℃,极易溶于水 化学性质:性质活泼,除贵金属外能与大多数金属反应,生成金属氯化物,对各种植物纤维亦有强烈的腐蚀性。 空气中允许浓度为15mg/m3 5、阻火器及乙炔砂封的工作原理。 目前阻火器普遍使用的是金属丝网过滤器,筒体内部布置了较多的金属丝网, 目的是吸收热量,因为金属是热的良导体,从而阻断了燃烧三要素之一:燃烧所需要的热量。 燃烧三要素是可燃物、助燃物、燃烧所需的热量。由于吸收了大量的热量,使的即使存前两个因素都存在,但是由于热量不够,使得可燃物达不到燃烧(自燃)所需要的温度,自然就燃烧过程就无法继续进行,只能终止。 简单的说阻火器的灭火原理是当火焰通过狭小孔隙时,由于冷却

聚氯乙烯生产工艺说明

第一部分氯乙烯的制备 工艺流程: 乙炔工段送来的精制乙炔气(纯度≥98.5%),经乙炔沙封后,与氯化氢工段送来的氯化氢(纯度≥93%,不含游离氯)在混合器以一定比例(1:1.05)混合后进入一级石墨冷却器,用-35℃冷冻盐水冷却至(2±4)℃,再经二级石墨冷却器用-35℃冷冻盐水间接冷却至(-14±2)℃左右,在这两级石墨设备内各依重力作用除去大部分冷凝液滴后依次进入一级酸雾过滤器、二级酸雾过滤器,由氟硅油玻璃棉过滤捕集除去少量粒径很小的酸雾,排出40%的盐酸送氯化氢脱吸或作为副产品包装销售。得到含水分≤0.06%的混合气依次进入石墨预热器,蒸气预热器预热至70~80℃温度送入串联的两段装有氯化高汞触媒的转化器,可分别由数台并联操作,反应生成粗氯乙烯,第一段转化器出口气体中尚有20%~30%的乙炔未转化,在进入第二段转化器继续反应,使其出口处的乙炔含量控制在3%以下。第二段转化器装填的是活性高的新催化剂,第一段转化器装填的则是活性较低的催化剂,即由第二段更换下来的旧催化剂。合成反应热,通过转化列管间的循环热水移支去。精氯乙烯经过装有活性炭填料的除汞器填料塔的稀酸及解吸后的稀酸吸收混合气中的大部分氯化氢气体,制得氯化氢含量为28%~30%的盐酸送氯化氢脱吸或作为副产品包装销售;经过吸收后的粗氯乙烯气体进入二级填料水洗塔二次清洗,水洗后含有极微量的氯化氢酸雾、二氧化碳及惰性气体,进入碱洗塔用8%~20%的NAOH溶液洗涤,净化后的气体经汽水分离器部分脱水后送入压缩工序。生产间的波动则由设置的氯乙烯气柜来实现缓冲。工艺原理: 混合气脱水:利用氯化氢吸湿性质,预先吸收乙炔气中的绝大部分水,生成40%左右的盐酸,降低混合气中的水分,利用冷冻方法混合脱水,是利用盐酸冰点低,盐酸上水蒸气分压低的原理,阄混合气体冷冻脱酸,以降低混合气体中水蒸气分压来降低气相中水含量,达到进一步降低混合气中的水分至所必需的工艺指标。在混合气冷冻脱水过程中,冷凝的40%的盐酸,除少量是以液膜状自石墨冷却器列管内壁流出外,大部分呈极细微(≤2μm)的“酸雾”悬浮于混合气流中,形成“气溶胶”,该“气溶胶”无法依靠重力自然沉降,要采用浸渍3%~5%憎水性

聚氯乙烯反应釜的设计

摘要 随着国内聚氯乙烯行业的竞争越来越激烈,小规模聚氯乙烯生产设备将越来越表现出不经济性。考虑到今后国内新建聚氯乙烯生产设备规模至少将在20万t/a 以上,60m3聚氯乙烯反应釜及其成套工艺技术具有很大的推广前景。由于引进国外60m3以上聚氯乙烯反应釜及其成套工艺技术的设备和技术费用相当昂贵,在今后较长一段时期内,国产化60m3聚氯乙烯反应釜及其成套工艺技术将是企业的理想选择。因此,60m3聚氯乙烯反应釜的设计和成套工艺技术的开发,将极大的推动国内PVC行业的技术进步和长远发展。本次毕业设计是设计一个60m3聚氯乙烯反应釜,考虑到了筒体所受的内压和外压,进行了罐体和夹套内压强度计算,对罐体进行了外压强度校核,另外还设计了搅拌装置与传动装置,并对其进行了强度和刚度校核。 关键词:聚氯乙烯; 反应釜;设计 Abstract With the domestic PVC industry more competitive, PVC production equipment for small-scale will become more and more non-economic. Tacking into account the future of domestic new PVC production equipment will be at least more than 200,000t/a, 60m3PVC reactor and packaged process have a great spread. The equipment investments and construction investments for bring in the 60m3 PVC reactor and packaged process is so expensive that the companies should choose the 60m3 PVC reactor and packaged process that we have in the near future. So, the design of the 60m3PVC reactor and the study of packaged process have great historical significance and far-reaching impact in the history of domestic PVC production, will greatly promote the development of domestic PVC industry.This graduation design is to design a 60m3PVC reactor.This design considered the cylinder body from the internal pressure and the external pressure,Tank and jacket were calculated compressive strength,and the tank strength of the external pressure was checked.In addition, I also designed a mixing device and transmission device and checked its strength and stiffness. Key words: PVC; reactor; design

氯乙烯的制备

氯乙烯单体的制备 培训教材

第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 二、反应基本原理 三、产品说明 四、工艺流程简述 五、工艺流程方框图 六、生产中原辅材料和成品的性质 第二章工艺流程 第一部分混合脱水和合成系统 一混合脱水系统 二、氯乙烯的合成系统 三、氯乙烯合成对原料气的要求 四、氯乙烯合成反应条件的选择 五.混脱和合成系统工艺流程方框图 第二部分粗氯乙烯的净化和压缩 一、净化的目的 二、净化原理—水洗和碱洗 三、盐酸脱吸 四、粗氯乙烯的压缩 五、粗氯乙烯的净化和压缩系统工艺流程方框图 第三部分氯乙烯的精馏 一、精馏的目的和方法 二、精馏的一般原理 三、精馏操作的影响因素

四、单体质量对聚合的影响 五、先除低沸物后除高沸物精馏工艺的优点 六. 氯乙烯精馏系统工艺流程方框图 第四部分精馏尾气变压吸附回收 一. 工艺原理 二、吸附平衡 三、工艺生产过程 四、变压吸附部分操作条件表 第五部分氯乙烯的贮存及输送 第三章、安全技术措施:

氯乙烯的制备培训教材 第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 本工段的生产任务是将精制后的乙炔气(纯度≥98.5%)、与氯化氢工段送来的氯化氢气体(纯度≥93%)按一定量配比(1:1.05)混合,经混合脱水、预热后进入装有氯化高汞触媒的转化器合成粗氯乙烯气体,并经水洗、碱洗、加压、精馏制得纯度达99.9%以上的合格氯乙烯单体,供聚合聚氯乙烯树脂使用。 二、反应基本原理 HCL+C H≡CH→CH2=CHCL+124.6KJ/mol 氯乙烯的物化性质: 氯乙烯在常温、常压下是比空气重一倍的微溶于水的无色气体,带有一种麻醉性的芳香气味。氯乙烯分子式是C2H3CL,分子量62.51。 主要参数: 沸点:-13.9℃凝固点:-159℃ 爆炸范围(空气中)3.6%~32%(体积含量) 爆炸范围(氧气中)4%~70%(体积含量) 冲N2或CO2可缩小其爆炸浓度范围。 纯的氯乙烯气体加压到0.5MPa时,可用工业水冷却得到比水略轻的液体氯乙烯。 液态氯乙烯无论从设备或从管道向外泄漏,都是极其危险的,一方面它遇到外界火源会爆炸起火,另外,由于它是一种高绝缘性液体,在压力下快速喷射,就会产生静电积聚而自发起火爆炸。因此,输送液态氯乙烯时宜选用低流速(一般≤3m/s),并将设备与管道进行防静电接地。 +

聚氯乙烯生产工艺

PVC塑料的工艺 聚氯乙烯(PVC)塑料是以聚氯乙烯树脂为基础的多组份混合材料。在生活中拥有广泛的应用。聚氯乙烯(PVC)是一种无毒、无臭的白色粉末。聚氯乙烯由氯乙烯单体通过自由基聚合而成,聚合度n一般在500~20000范围内,其分子结构式如下: 由于它具有优良的耐化学腐蚀性、电绝缘性、阴燃性、物理及机械性能、抗化学药品性能、质轻、强度高且易加工、成本低,可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,是一种能耗少、生产成本低的产品。因而聚氯乙烯(PVC)制品广泛用二工业、农业、建筑、电子电气、交通运输、电力、电讯和包装及人们生活中的各个领域。 一主要原料:单体氯乙烯,分散剂聚乙烯醇(PVC),去离子水和引发剂等 其他辅助试剂:脱盐水,PH调节剂碳酸氢铵和氨水,聚合物分子量调节剂(-巯基乙醇),引发剂过氧化二碳酸二乙基己酯(EHP)和过氧化二碳酸二异丙酯(IPP),可塑剂,防粘釜剂,终止剂二乙基羟胺(DEHA),缓释阻垢剂(H-9),碱液(40%)等 1单体:氯乙烯主要用乙炔法和乙炔氧氯化法制备,用于悬浮聚合的氯乙烯单体纯度在%以上。生产原料对聚氯乙烯质量很重要。氯乙烯杂质含量应尽可能低一些,其中脱盐水PH值要近乎中性,为,导率应小于2um/cm 2分散剂:主分散剂主要是纤维素醚和部分水解的聚乙烯醇。纤维素应为水溶性衍生物,如甲基纤维素、羟乙基纤维素、羟丙基纤维素等,聚乙烯醇应由聚醋酸乙烯酯经碱性水解得到,影响其分散效果的因素为其聚合度和水解度,而且-OH基团为嵌段分布时效果最好;副分散剂主要是小分子表面活性剂和地水解度聚乙烯醇。常用非离子型的脱水山梨醇单月硅酸酯。用88%聚乙烯醇和%的聚乙烯醇。 ) 3引发剂:引发剂的有效溶度对VC悬浮聚合速率有着直接的影响,因此溶剂型引剂的有效溶度为引发剂最重要的质量指标。引发剂在较低温度下就会逐步分解,因此除了必须按要求在低温条件下进行储运外,对于储运时间过长或可能经历非低温放置的引发剂必须进行有效溶度的分析,再确定聚合的实际用量。单独使用高活性引发剂虽可提高聚合平均速率、缩短聚合时间,但会出现聚合前中期聚合速率过大、后期聚

聚氯乙烯合成工艺设计

聚氯乙烯的生产工艺流程 作者:许文 单位:08化学工程与工艺 摘要:本文主要介绍年产5万吨的聚氯乙烯(PVC)这种大宗化学品的生产过程和工艺,以及聚氯乙烯(PVC)的生产装置。我们用“乙烯氧氯化法”的“古德里奇法”制取氯乙烯单体,然后就氯乙烯单体的聚合的“悬浮聚合法”和正式生产做出进一步的说明。 关键词:PVC,乙烯氧氯化法,悬浮聚合法,古德里奇法 引言: 1,PVC的特性和设计背景 聚氯乙烯树脂是世界五大著名的树脂之一,全称Polyvinyl chloride polymer,简称PVC。聚氯乙烯本色为微黄色半透明状,有光泽。透明度胜于聚乙烯、聚丙烯,差于聚苯乙烯,随助剂用量不同,分为软、硬聚氯乙烯,软制品柔而韧,手感粘,硬制品的硬度高于 低密度聚乙烯,而低于聚丙烯,在屈折处会 出现白化现象。常见制品:板材、管材、鞋 底、玩具、门窗、电线外皮、文具等。是一 种使用一个氯原子取代聚乙烯中的一个氢原 子的高分子材料。 它柔韧性好,绝缘性高,强度也高,不易溶解等等,广泛的应用于人们的生产生活。PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5万~12 万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加;无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa左右,冲击强度 5~10kJ/m2;有优异的介电性能。 2,我国的发展概况 近几年来我国的PVC从无到有发展迅速,但仍然赶不上发展更快的PVC制品加工需求,自给率只能保持在70%左右。需求的旺盛,国内乙烯资源的不足,反倾销终裁后进口量的下降,国际原油和石化产品的价格不断上升使乙烯法生产成本相应升高,也使得电石法成为许多企业的首选工艺。 中国PVC产业主要有三个发展的方面: 一,企业向规模化、大型化和集约化发展。据有关统计资料表明,我国聚氯乙烯生产能力已达到年4000万吨。根据我国石油化工发展规划,到2010年,已经有几套年产20万吨以上的聚氯乙烯装置在我国落户。这些项目如期完成,使新增聚氯乙烯能力约为年200万吨。 二,采用先进生产工艺。引进和采用先进的二氯乙烷法等多种生产工艺,改进聚合釜,以提高聚氯乙烯生产装置的性能;应用计算机自动化控制系统,使生产实现现代化,

相关主题
文本预览
相关文档 最新文档