当前位置:文档之家› INVT变频器在拉丝机上的应用

INVT变频器在拉丝机上的应用

INVT变频器在拉丝机上的应用
INVT变频器在拉丝机上的应用

INVT变频器在拉丝机上的应用

引言

大部分使用拉丝机的国内金属加工企业来说,对变频调速器并不陌生,这是因为变频调速器很早之前就有在拉丝机械中得到广泛应用,但大多配置的都是国外品牌的变频器,原因是国内变频调速技术的研发与市场推广起步较晚,在一段时间内落后于国外变频器产品,无论从软件控制算法的先进性,还是从硬件平台的稳定性上来讲,都有一定的差距。

国产变频行业经过十几年的发展,技术与市场推广都得到了长足的进步,所研制开发的产品也能够胜任绝大部分工业现场的需要。针对拉丝机械的应用特点,深圳市英威腾电气有限公司自主开发研制的INVT系列变频器,集矢量控制技术(VC、SVC)、转矩控制技术、V/ F控制技术于一体,同时,设计了便于收线使用的同步控制功能和张力控制功能,真正全面解决了拉丝机的控制需要,从而打破进口品牌一统天下的局面。

拉丝机工艺简介

拉丝机,又名牵伸机。从产品终端来说,拉丝机可以分为大拉机、中拉机、小拉机、微拉机;从拉丝机内部控制方式和机械结构来说,又可以分为水箱式、滑轮式、直进式等主要的几种。对于不同要求,不同精度规则的产品,不同的金属物料,可选择不同规格的拉丝机械。对电线电缆生产企业,双变频控制的细拉机应用比较广泛,相对而言,其要求的控制性能也较低,而对大部分钢丝生产企业,针对材料特性,其精度要求和拉拔稳定度高,因此使用直进式拉丝机较多。尽管拉丝工艺不同,但其工作过程基本相同(如下图):

● 放线:金属丝的放线,对于整个拉丝机环节来说,其控制没有过高的精度要求,大部分拉丝机械,放线的操作是通过变频器驱动放线架实现的,但也有部分双变频控制的拉丝机械,甚至直接通过拉丝环节的丝线张力牵伸送进拉丝机,实现自由放线;

● 拉丝:拉丝环节是拉丝机最为重要的工作环节。不同金属物料,不同的丝质品种和要求,拉丝环节有很大的不同,文章的后面将详细说明水箱式拉丝机与直进式拉丝机具体操作过程;

● 收线:收线环节的工作速度决定了整个拉丝机械的生产效率,也是整个系统最难控制的部分。在收线部分,常用的控制技术有同步控制与张力控制实现金属制品的收卷;

下面,将以双变频控制水箱式拉丝机与多变频同步控制直进式拉丝机为例,介绍我公司产品在拉丝机行业的应用。

1、江苏某拉丝机厂细拉机双变频控制

1.1 系统主要参数

1.2 细拉机双变频控制原理

系统为塔轮式水箱拉丝机。塔轮式水箱拉丝机,通过塔轮的速比,逐步拉伸金属丝,并允许金属丝在塔轮内打滑,因此,加工的金属丝必须韧性较好。此种拉丝机加工铜丝的场合应用较多。主机采用CHE100开环矢量变频器(CHE100-004G/5R5P-4),收卷采用CHF100高性能V/F控制变频器(CHF100-1R5G-4)。两台电机用同一个运行信号K1,并在收卷的运行信号上并联一个开关量信号K2。因为主机的减速时间较长(30s),收卷减速时间很短(0.1s),保证在有停机命令时,收卷变频器还可正常运行。其并联的运行信号K2由

主机的集电极输出Y控制一个中间继电器给定。电气原理图如图2所示:

1.3 速度同步控制

主控操作开关K1控制主机启停。牵引拉伸级变频器控制整个系统的运行线速度,控制面板上的电位器发出主机拉丝速度信号,此模拟电压信号(0~10V)通过AI1口输入拉丝机主变频器,作为其频率给定,决定伸线机总车速。同时,拉丝主变频器的运行频率,通过模拟量(AO)输出到收卷变频器(AI2),作为收卷变频器线速度同步给定。注意,对于收卷变频器所对应的运行频率应该等于收卷轮径最大时的运行频率。卷曲级变频器输出频率跟随拉丝级变频器运行频率变化,考虑到设备机械特性、一定的速度要求,主机加减速时间设定为3 0s,收卷变频器加减速时间设定为0.1s。

在拉丝机出线端与收线端之间安装有张力摆杆,用来检测输出金属丝的张力,作为拉丝收线张力信号反馈输入收卷变频器,收卷变频器将此反馈量通过内部PID运算和各种补偿后,与收卷的当前同步速度(模拟量AI2输入)进行叠加,调节变频器的输出频率,从而控制收卷电机转速相对拉丝机出丝线速度达到同步,同时,也使线材张力保持了恒定。

1.4 变频器主要功能参数设置

1.4.1 主机变频器(CHE100-004G/5R5P-4)P0.01:1 端子指令通道;

P0.03:1 AI1给定;

P0.08:30 加速时间;

P0.09:30 减速时间;

P6.00:1 正转运行中;

P6.01:3 故障输出;

1.4.2 收卷级变频器(CHF100-1R5G-4)

P0.03:1 外部端子运行

P0.07:0.1 加速时间

P0.08:0.1 减速时间

P3.01:6 PID控制

P3.02:1 AI2设定

P3.04:2 A+B

P5.17:43 AI2上限对应设定

P9.01:50 PID给定值

P9.03:1 PID为反特性

P9.04:10 比例增益

P9.05:1.0 积分时间

其他详情参见《CHE系列矢量变频器说明书》、《CHF通用变频器说明书》。

2、杭州某拉丝机厂直进式拉丝机变频控制

2.1直进式拉丝机简要说明

在金属制品生产及加工中,直进式拉丝机是最常用的一种制造设备,在以前通常都采用电动机组及力矩电机来实现,但其控制的灵活性、自动化程度及能耗上,传统的控制方式越来越不适应行业的发展。随着控制技术和变频调速技术的大量推广,变频控制开始在直进式拉丝机中大量使用,系统并可借助PLC来实现拉丝速度、品种设定、过程闭环控制、定长控制等功能。

直进式拉丝机,是由多台拉伸电机同时对金属丝进行拉伸,作业的效率很高。由于不锈钢金属丝特性比较生脆,且不允许钢丝在模道内打滑,因此容易在拉伸的过程中拉断,故严格要求金属丝在各级模道中线速度同步,这样,对各级电机的同步控制性能、速度稳态精度以及电机的动态响应的快慢都有较高的要求。

2.2 控制系统的描述

杭州某拉丝机厂,为专业的直进式拉丝机生产厂家。简易电气控制示意图如下,本系统共使用五台CHV100-015G-4高性能矢量变频器实现拉伸部分的传动控制,一台CHV100-7R5 G-4高性能变频器配备张力控制卡进行收卷控制。每个模道前面都装有摆臂,采用位置传感器可以检测出摆臂的位置,用于检测金属丝的张力,该信号(0~10V)作为PID的反馈。6台电机都采用变频异步电机,同时带有机械制动装置。拉丝机系统的逻辑控制较为复杂,因工艺不同也有所区别,各级联动,由PLC控制。同步方面的控制则由变频器内部控制,其工作原理是:根据操作工在面板设定决定作业的速度,该速度的模拟信号进入PLC,PL C考虑加减速度的时间之后按照一定的斜率输出该模拟信号。这样做的目的主要是满足点

动、穿丝等一些作业的需要。PLC输出的模拟电压信号同时接到所有变频器的AI2输入端,作为频率的主给定信号。各摆臂位置传感器的信号接入到对应的模道变频器作为PID控制的反馈信号。根据摆臂在中间的位置,设定一个PID的给定值。这个系统是非常典型的带前馈的PID控制系统,一级连一级,PID作为微调量与主给定作为叠加。

本拉丝系统的稳定状况在很大程度上取决于PID作用速度、变频器控制电机的转速精度、输出转矩的响应速度等,为了提高电机运行速度的稳态精度,在很多情况下也采用有PG矢量控制技术(英威腾的CHV100系列变频器的有PG矢量控制的稳态精度可达1/1000)来调节拉伸电机的速度,因此对其参数的设定必须考虑周全,在低速、中速、高速,以及加速和减速速等情况都需要加以考虑。

另外,收卷部分,是由CHV100加张力控制专用模块来实现的。收卷线速度是由最后一级(第五级)模道控制变频器提供,作为卷径计算的线速度信号。系统的张力可通过电位器设定,收卷级变频器采用转矩控制,需要在收卷电动机的轴上安装编码器,编码器接入CHV 100内置的PG卡,作为电机转速的采集输入。

其控制原理如下:

通过收卷的当前线速度(模拟量AI2输入),计算出当前收卷的卷曲直径。

计算方程式如下:D =(i×N×V)/(π×f)

其中i 机械传动比N 电机极对数V 线速度f 当前匹配频率

由设定的张力和卷筒的卷径(由线速度卷径计算模块获得)计算出变频器的输出转矩。

计算方程式为:T =(F×D)/(2×i)

其中:T 变频器输出转矩F 张力设定

D 转筒的转径i 机械传动比

从而控制电机输出相应的转矩,达到线材上张力F的恒定。

CHV100张力控制专用模块中,增加了转动惯量补偿,可以很好地解决张力控制系统在加、减速的过程中,因克服系统惯量而出现的张力不稳定的现象。

整个拉丝系统开动时,六台变频器同时起动,逐渐调节线速度给定,使系统加速,最终达到要求的生产线速度。

2.3变频器主要参数的设置

2.3.1拉丝变频器

P0.01 1:端子指令通道

P0.03 6:PID控制设定

P0.04 0:模拟量AI2设定

P0.06 2:A+B

P9.00 0:键盘给定

P9.02 0:模拟通道AI1反馈

P0.03 依据实际情况进行设定

P0.04 依据实际情况进行设定

P0.05 依据实际情况进行设定

P0.06 依据实际情况进行设定

采样周期T(P0.07)、PID控制偏差极限(P0.08)、PID输出缓冲时间(P0.08)均依据实际情况进行设定。

2.3.2收卷变频器

P0.00 1:有PG矢量控制

P0.01 1:端子指令通道

P1.08 1:自由停车

P3.10 PG参数(编码器线数,以实际情况为依准)

P5.02 1:S1端子功能选择:正转运行

PF.00 1:无张力反馈转矩控制

PF.01 0:收卷模式

PF.04 最大张力设置(以实际情况为依准)

PF.05 1:模拟量AI1作为张力设定

PF.11 机械传动比(以实际情况为依准)

PF.12 最大卷曲直径

PF.14 卷轴直径

PF.18 0:线速度法计算卷径

PF.22 最大线速度(以实际情况为依准)

PF.23 2:模拟量AI2作为线速度设定源

PF.33 系统惯量补偿系数(以实际情况为依准)

其他详细情况请参阅《CHV矢量变频器说明书》及《CHV张力控制功能说明书》。

总结

在拉丝机的控制上,英威腾变频器构成的电气控制系统,结构简单、逻辑清晰,成本与原来相比还有较大的降低,而且,在拉丝工艺,节能上来讲,都是非常优良的方案。实践证明,上述两种控制方案,分别控制水箱式拉丝机与直进式拉丝机上,在同步和恒张力收线控制上完全能够满足工艺要求。

变频器在水泵行业的应用

变频器在水泵行业的应用 一、概述 交流电机变频调速技术是一项业已广泛应用的节能技术。由于电子技术的飞速发展,户变频器的性能有了极大提高,它可以实现控制设备软启软停,不仅可以降低设备故障率,还可以大幅减少电耗,确保系统安全、稳定、长周期运行。长期以来区域的供水系统都是由市政管网经过二次加压和水塔或天面水池来满足用户对供水压力的要求。在小区供水系统中加压泵通常是用最不利用水点的水压要求来确定相应的扬程设计,然后泵组根据流量变化情况来选配,并确定水泵的运行方式。由于小区用水有着季节和时段的明显变化,日常供水运行控制就常采用水泵的运行方式调整加上出口阀开度调节供水的水量水压,大量能量因消耗在出口阀而浪费,而且存在着水池“二次污染”的问题。变频调速技术在给水泵站上应用,成功地解决了能耗和污染的两大难题。用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平确保系统安全、稳定、长周期运行。即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。 恒压供水系统对于某些工业或特殊用户是非常重要的。例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如发生火灾时,若供水压力不足或或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。。 随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。 二、恒压供水的变频应用方式 1、变频恒压供水系统组成 变频恒压供水系统通常是由水源、离心泵(主泵+休眠泵)、压力传感器、PID调节器、变频器(主泵+休眠泵)、管网组成。工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化,及时将信号(4-20mA或0-10V)反馈PID调节器,PID调节器对比设定控制压力进行运算后给出相应的变频指令,改变水泵的运行或转速,使得管网的水压与控制压力一致。 2、变频恒压供水系统的参数选取 (1)、合理选取压力控制参数,实现系统低能耗恒压供水。这个目的的实现关键就在于压力控制参数的选取,通常管网压力控制点的选择有两个:一个就是管网最不利点压力恒压控制,另一个就是泵出口压力恒压控制。选择管网最不利点的最小水头为压力控制参数,形成闭环压力自控系统,使得水泵的转速与PID调节器设定压力相匹配,可以达到最大节能效果,而且实现了恒压供水的目的。 (2)、变频器在投入运行后的调试是保证系统达到最佳运行状态的必要手段。变频器根据负载的转动惯量的大小,在启动和停止电机时所需的时间不相同,设定时间过短会导致

变频器在风机上的应用

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

变频器在数控机床上的应用

数控机床变频改造解决方案 一数控机床说明 数控机床的主运动是主轴通过卡盘或顶尖带动工件的旋转运动,是电动机带动齿轮箱来传动和调速的。在机械加工过程中,需要经常对主轴的旋转有不同的运行速度要求,操作人员通过手柄组合的多个位置来控制离合器的分与合,得到齿轮的多种组合,从而得到多档的转速,操作不方便,维修量也比较大,实践证明,调速用的电磁离合器损坏率较高。原有机床的主轴传动的这一特点已经不能适应经济的快速发展对数控机床的需求,目前,数控机床配套使用变频器对主轴进行调速控制越来越普遍和实用。 二系统简介 整个电气系统由数控机床CNC、迈凯诺变频器、时间继电器、制动组件等组成。接线图如下图所示: (1)交流电源通过断路器连接至主电路的电源端子(R、S、T)。变频器输出端子(U、V、W)按正确相序连接主轴电动机。当运行命令和电动机的旋转方向不一致时,可在U、V、W三相中任意更改两相接线,或将控制电路端子FWD/REV调换一下。 (2)频率给定命令由CNC以0-10V(或-10V~10V)的形式给定,从变频器的AI1和GND 接入。电机的转向和运行控制由变频器数字输入端口(DI)的状态决定。 (3)当数字端子D1与端子COM接通时,端子D1上为高电平,电机正转;当数字端子D2与端子COM接通时,端子D2上为高电平,电机反转;当数字端子D1和端子D2均不与端子COM接通时,端子D1和端子D2上均为低电平,电机停止。端子D1与端子COM之间的接通或断开、端子D2与端子COM接通之间的接通或断开,由两对继电器触点控制,这两个继电器可由数控系统所发出的主轴正转和主轴反转指令控制。同时,变频器的两路数字输出端口分别设置为:TIA和TIC(功能设置为:运行输出);T2A和T2C(功能设置为:故障输出)。

变频器在水泵控制系统中的应用

变频器在水泵控制系统中的应用 [摘要]传统水泵的控制均依赖于传统的变压控制模式,这种模式使得电机长期处于满负荷的运转状态,既减损了设备的使用寿命,又浪费了大量的能源,更无法建立严格的科学管理体制。随着变频器的广泛投入使用,变频水泵控制能有效提高水泵的工作效率,且还使水泵的运转更加节能。本文基于此从主要特点以及应用价值等角度对变频器进行了概述,然后在此基础上深入分析和研究了变频器在水泵控制系统中的具体应用。 [关键词]水泵控制系统;变频器;应用;效果 水泵是冶金行业作业过程中不可缺少的重要设备之一,在生产供、补水过程中发挥着不可替代的作用。水泵在启动的时候需要的扭矩以及功率非常大,且在具体的运转过程中所需要的扭矩和功率又非常小,因此针对水泵的不同运转状态对水泵的转速进行有效的调节,变频器便是调节水泵转速的关键部件。所以要进一步深入分析和研究变频器在水泵控制系统中的应用,使变频器在水泵控制系统中发挥更大的作用,促进水泵工作效率的提高,使其更加节能环保。 一、变频器概述 为了更好地分析和研究变频器在水泵控制系统中的应用,首先要深入了解变频器的主要特点以及具体的应用价值,使变频器在水泵控制系统的应用过程中发挥更大的作用。 (一)变频器的主要特点 首先,变频器可以为用户提供很多套程序,从而使用户可以根据自己的实际情况和具体需求进行选择。具体而言,变频器的主要程序有标准工厂宏、自动控制宏、PID控制宏以及水泵控制宏等。其次,变频器所提供的水泵控制宏有很大的优越性,采用该水泵控制宏可以不必使用专用盼恒压基板,进而使设备的故障率大大降低,同时也在很大程度上减少了设备的投资。第三,变频器可以使水泵的电机更加灵活高效,它可以对电机进行定时的自动切换,既可以使水泵的电机自动睡眠,也可以使水泵的电机自动唤醒,因此采用变频器可以让水泵进行自由的睡眠和工作,既提高工作效率又节省能源。最后,变频器的控制精度非常高,变频器的控制精度可到达标称速度的0.2%,由此可见,变频器代表着高精尖的变频技术。 (二)变频器的应用价值 变频器的主要功能特点决定了它在水泵控制系统中的应用价值。一般情况下,普通的水泵采用额定流量和额定功率来进行运转的,但是水量并不是恒定的,水量会随着时间的变化而改变,有时处于高峰,有时处于低峰。当水量处于低峰时,如果仍然用额定流量和额定功率使水泵进行满负荷运转,在很大程度上造成

(完整版)变频器原理与应用试卷

变频器原理及应用试卷 一.选择题 1.下列选项中,按控制方式分类不属于变频器的是(D )。A.U/f B.SF C.VC D.通用变频器 2.下列选项中,不属于按用途分类的是(C )。 A.通用变频器B.专用变频器C.VC 3.IPM是指( B )。 A.晶闸管B.智能功率模块C.双极型晶体管D.门极关断晶闸管 4.下列选项中,不是晶闸管过电压产生的主要原因的是(A )。 A.电网电压波动太大B.关断过电压 C.操作过电压D.浪涌电压 5.下列选项中不是常用的电力晶体管的是(D )。A.单管B.达林顿管C.GRT模块D.IPM 6.下列选项中,不是P-MOSFET的一般特性的是(D )。A.转移特性B.输出特性C.开关特性D.欧姆定律

7.集成门极换流晶闸管的英文缩写是(B )。A.IGBT B.IGCT C.GTR D.GTO 8.电阻性负载的三相桥式整流电路负载电阻 L R上的平均电 压 O U为(A )。 A.2.34 2 U B.2U C.2.341U D.1U 9.三相桥式可控整流电路所带负载为电感性时,输出电压 平均值 d U为为(A ) A.2.34 2cos U B.2U C.2.341U D.1U 10.逆变电路中续流二极管VD的作用是(A )。 A.续流B.逆变C.整流D.以上都不是11.逆变电路的种类有电压型和(A )。 A.电流型B.电阻型C.电抗型D.以上都不是 12.异步电动机按转子的结构不同分为笼型和(A )。A.绕线转子型B.单相C.三相D.以上都不是 13.异步电动机按使用的电源相数不同分为单相、两相和(C )。 A.绕线转子型B.单相C.三相D.以上都

变频器 个典型应用领域

变频器32个典型应用领域 变频器应用的一些场合 1、空调负载类 写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。目前,全国出现不少专做空调节电的公司,其中主要技 术是变频调速节电。 2、破碎机类负载 冶金矿山、建材应用不少破碎机、球磨机,该类负载采用变频后效果显著。 3、大型窑炉煅烧炉类负载 冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采用直流、整流子电机、滑差电机、串级调速或中频机组调速。由于这些调速方式或有滑环或 效率低,近年来,不少单位采用变频控制,效果极好。 4、压缩机类负载 压缩机也属于应用广泛类负载。低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。 采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。 5、轧机类负载 在冶金行业,过去大型轧机多用交-交变频器,近年来采用交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如宁夏民族铝制品厂的多机架铝轧机组采用通用变频器,满足低频带载启动,机架间同步运行,恒张力控制,操作简单可靠。 6、卷扬机类负载 卷扬机类负载采用变频调速,稳定、可靠。铁厂的高炉卷扬设备是主要的炼铁原料输送设备。它要求启、制动平稳,加减速均匀,可靠性高。原多采用串级、直流或转子串电阻调速方式,效率低、可靠性差。用交流变频器替代上述调速方式,可以取得理想的效果。 7、转炉类负载

转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。 8、辊道类负载 辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。 9、泵类负载 泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。 许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。 10、吊车、翻斗车类负载 吊车、翻斗车等负载转矩大且要求平稳,正反频繁且要求可靠。变频装置控制吊车、翻斗车可满足这些要求。 11、拉丝机类负载 生产钢丝的拉丝机,要求高速、连续化生产。钢丝强度为200Kg/mm2,调速系统要求精度高、稳定度高且要求同步。 12、运送车类负载 煤矿的原煤装运车或钢厂的钢水运送车等采用变频技术效果很好。起停快速,过载能力强,正反转灵活,达到煤面平整、重量正确(不多装或少装), 基本上不需要人工操作,提高了原煤生产效率,节约了电能。 13、电梯高架游览车类负载 由于电梯是载人工具,要求拖动系统高度可靠,又要频繁的加减速和正反转,电梯动态特性和可靠性的提高,边增加了电梯乘坐的安全感、舒适感和效率。过去电梯调速直流居多,近几年逐渐转为交流电机变频调速,无论日本还是德国。我国不少电梯厂都争先恐后的用变频调速来装备电梯。如上海三菱、广州日立、青岛富士、天津奥的斯等均采用交流变频调速。不少原来生产的电梯也进行了变频改造。 14、给料机类负载 冶金、电力、煤炭、化工等行业,给料机众多,无论圆盘给料机还是振动给料机,采用变频调速效果均非常显著。吉化公司染料厂硫酸生产线的圆盘给料机,原为滑差调速,低频转矩小,故障多,经常卡转。采用变频调速后,由于是异步机,可靠性高、节电,更重要的是和温度变送器闭环保证了输送物料的准确,不至于使氧化剂输送过量超温而造成事故,保证了生产的有序性。

变频器在工业生产中的应用.docx

变频器在工业生产中的应用 电动机是工业生产中最主要的动力提供装置,而这些动力是从消耗电能所产生的。在提倡建立节约型社会的今天,降耗节能成为生产生活中必不可少的一部分。这就要求我们使用最少的电能让电机提供最可靠的动力。在这其中,变频器扮演了相当重要的角色。本论文介绍变频器在工业生产中的具体应用。 变频器 变频器,它产生于上世纪60年代,伴随着大功率晶体管的问世和集成电路的迅速发展,使得变频器的性能有了很大的提高。因为变频器拥有能够实现异步电动机的恒转矩和恒功率的无级调速,其调速范围广、平滑性好、机械特性较硬,而且节能效果明显,有利于实现自动控制等这些优点使得变频器的应用也越来越广,基本上涵盖了所有领域。 变频器在生产中的应用 总体来说,变频器在工业生产中主要来对电动机进行调速。那么变频调速和传统的调速相比有哪些优点呢?主要有两点:一是便于实现自动控制。变频器是电力技术与电子技术的结合,也是强弱电的有机整体,在实现自动控制方面有着先天的优势;二是能够节能降耗。下面以恒压循环水系统为例进行分析说明。 变频器在自动控制系统中的应用 在循环水系统中,由于各个车间和部门用水时间和用水量的不同,使得系统内的水压会经常变化,这就要求,根据不同的用水量,使得整个

系统中的水压保持恒定不变。解决这个问题一般有以下几种做法。 第一,采用水阀限制水流量,从而达到限制水压的目的。此方法有几个缺点。首先,水阀的调节精确度不够,水压的波动范围较大;其次,不易实现自动控制,也不便于实时监测。 第二,修建水塔,利用液体压强定律来保持水压的恒定。相对于前一种方法,该法的压力较恒定,但仍不便于实现自动控制和实时监测,且占地面积较大,通用性差。 我们在循环水系统的管路中装上压力传感器做为反馈信号的采样,然后将采样得来的水压与给定的水压相比较,根据比较所得到的误差来调节变频器的频率,从而达到控制电机的转速,最终控制整个循环水系统的压力保持恒定。 从以上分析来看,利用变频器的闭环控制系统,由于变频器的响应特性好,所以使得控制更加方便,精确,通用性好,操作界面也更加友好。 变频器在节能降耗中的作用 关于变频器在节能降耗中的作用,一直存在着争论。我认为,不能一概而论,要视具体的情况而定。 对于纺织加工、轧钢等,负载基本恒定的场合,电机一般工作在额定功率,主要是利用了变频器在平滑加减速、高精度力矩控制、运行可靠性好等方面表现出来的优异性能。在这些场合中,非但不节能,且因为变频器本身造价成本高,其自身也有能耗,从而使得整个系统更加昂贵和耗能。 但是,在风机、水泵等应用场合,节能降耗特性就显得十分明显。在

时代变频器在机床(镗床)上的应用.

时代变频器在机床(镗床)上的应用 一般情况下机床的拖动系统是由齿轮箱来传动和调速的。它具有以下特点:1.恒功率性质由于齿轮箱变速时,转矩的变化与转速的变化成反比。若不计齿轮箱的损耗,则在全功率范围内,都具有恒功率的特点。2.低速时的过载能力强在低速段,拖动系统经齿轮降速后的额定转矩将远远高于负载的最大阻转矩,具有极强的过载能力。应用时代变频器实现调速系统的基本考虑:1、由于时代变频器调频范围很广,可在0—300Hz之间实现任意点的无级调速。 一般情况下机床的拖动系统是由齿轮箱来传动和调速的。它具有以下特点:1. 恒功率性质由于齿轮箱变速时,转矩的变化与转速的变化成反比。若不计齿轮箱的损耗,则在全功率范围内,都具有恒功率的特点。2.低速时的过载能力强在低速段,拖动系统经齿轮降速后的额定转矩将远远高于负载的最大阻转矩,具有极强的过载能力。 应用时代变频器实现调速系统的基本考虑: 1、由于时代变频器调频范围很广,可在0—300Hz之间实现任意点的无级调速。 2、使用变频调速,可满足镗床所要求的具有较硬的机械特性。 3、使用变频调速,可满足镗床所需要的低速时的强过载能力。 4、使用变频调速,省去齿轮变速箱等原有复杂的机械拖动,自动化程度高,操作简单,维修方便。 应用实例: 某机床厂主要生产各类机床,由于调速用的电磁离合器损坏率较高,了解到时代变频调速系统具有以上优点,故改用时代变频器实现变频调速。具体情况如下: 1.系统构成:(见图3) 2.原拖动系统概况 1)转速档次调速箱有8档转速:75、120、200、300、800、1200、 2000r/min。 2)电动机的主要额定参数 额定容量:3.7kw 额定转速:1440r/min 负载特性:恒功率 3)控制方式由手柄组合的8个位置来控制四个离合器的分与合,得到齿轮的8种组合,从而得到8档转速。 3.使用时代变频调速的方案 1)转速档次及控制方式可采用手柄结合变频器面板控制或电位器调节获得所需的理想转速。 2)时代变频器主要参数 调速范围:0——-300HZ 加减速时间:0.1——-1800S 过载能力:150% 4.结果在所有各档转速下,经反复试验,都完全符合设计要求,取得了令人满意的结果。现该产品已批量生产,投放市场。(图3)

变频器在真空泵上的应用

变频器在真空泵上的应用 The Application of Inverter in Vacuum Machine 摘要:介绍了变频调速器在真空泵上的应用,并简要说明了节能原理及变频器参数设置。 英文摘要: The Application of vector Inverter in Vacuum Pump Machine in this paper, and breic fly explain the theory of energy s avig and parameter setting of inverter. 关键词:变频器水循环真空泵节能有效抽率 1、引言 在生产行业,由于电费的成本已成为原材料成本,人工成本之后的第三大开支;在用电紧张的今天,节省电费已成为企业经营者考虑的一件大事;而水循环真空系统是广泛地运用到生产的各行业中,成为生产中的重要设备之一,同时是主要的耗电设备之一。按照生产工艺的要求,我公司有3台水循环真空泵组成的真空系统。在使用中,有2台真空泵长期固定在最大的转速下运行,另一台备用。在实际生产工况中,真空系统的实际机械有效抽率在绝大部分时间内远比设计的容器有效抽率高;在转速固定的情况下,实际真空度远远大于生产要求的真空度,这样就造成真空泵电机功耗的严重浪费,故对谁循环真空泵进行变频节能自动化控制改造具有一定的现实意义。 2、水循环真空泵运行工况分析 2.1 水循环真空泵的基本原理 水环式真空泵是液环式真空泵中最常见的一种。液环式真空泵是带有多叶片的转子偏心装在泵壳内。当它旋转时,把液体抛向泵壳并形成与泵壳同心的液环,液环同转子叶片形成了容积周期变化的旋转变容真空泵。当工作液体为水时,

变频器工作原理及讲解

博客首页 中国工控首页 产品专栏 PLC DCS PAC PC-BASED CPCI-PXI 嵌入式系统 SCADA 工业以太网 现场总线 无线通讯 自动化软件 人机界面 低压变频器 高压变频器 运动控制 机械传动 机器视觉 传感器 现场仪表 显示控制仪表 分析测试仪表 执行机构 工业安全 低压电器 电源 行业专栏 纺织机械 包装机械 塑料机械 橡胶机械 印刷机械 烟 草机械 起重机械 电梯 机床 冶金 建材 石化 电子 电力 造纸 矿业 汽车 轨道交通 水处 理 资讯专栏 厂商搜索 产品中心 技术中心 有奖互动 商务采购 新闻中心 市场研究 展会 媒体 历史首页 今日更新 俱 乐 部 工控论坛 有奖互动 人才交流 rzb123 的博客 rzb123 的博客 言发表文章:登录 变频器工作原理及讲解 圈子类别:低压变频器 ( 未知 ) 2011-1-8 18:27:00 [我要评论 ] [加入收藏 ] [加入圈子 ] 变频器主要由整流(交流变直流) 、滤波、再次整流(直流变交流) 、制动单元、驱动单元、 检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为 rpm. 例如: 2 极电机 50Hz 3000 [r/min] 4 极电机 50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。 感应式交流电机 (以后简称为电机) 的旋转速度近似地确决于电机的极数和频率。 由电机的 工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为 2 的倍数, 例如极数为 2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机, 这样电机的旋转速度就可以被自 由的控 制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 加入收藏 个人首页:管理博客 我的文章:我的相册:我的圈子:我的播客:给我留

变频器在工业生产中的应用(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 变频器在工业生产中的应用 (2020年) Safety management is an important part of production management. Safety and production are in the implementation process

变频器在工业生产中的应用(2020年) 电动机是工业生产中最主要的动力提供装置,而这些动力是从消耗电能所产生的。在提倡建立节约型社会的今天,降耗节能成为生产生活中必不可少的一部分。这就要求我们使用最少的电能让电机提供最可靠的动力。在这其中,变频器扮演了相当重要的角色。本论文介绍变频器在工业生产中的具体应用。 变频器 变频器,它产生于上世纪60年代,伴随着大功率晶体管的问世和集成电路的迅速发展,使得变频器的性能有了很大的提高。因为变频器拥有能够实现异步电动机的恒转矩和恒功率的无级调速,其调速范围广、平滑性好、机械特性较硬,而且节能效果明显,有利于实现自动控制等这些优点使得变频器的应用也越来越广,基本上涵盖了所有领域。 变频器在生产中的应用

总体来说,变频器在工业生产中主要来对电动机进行调速。那么变频调速和传统的调速相比有哪些优点呢?主要有两点:一是便于实现自动控制。变频器是电力技术与电子技术的结合,也是强弱电的有机整体,在实现自动控制方面有着先天的优势;二是能够节能降耗。下面以恒压循环水系统为例进行分析说明。 变频器在自动控制系统中的应用 在循环水系统中,由于各个车间和部门用水时间和用水量的不同,使得系统内的水压会经常变化,这就要求,根据不同的用水量,使得整个系统中的水压保持恒定不变。解决这个问题一般有以下几种做法。 第一,采用水阀限制水流量,从而达到限制水压的目的。此方法有几个缺点。首先,水阀的调节精确度不够,水压的波动范围较大;其次,不易实现自动控制,也不便于实时监测。 第二,修建水塔,利用液体压强定律来保持水压的恒定。相对于前一种方法,该法的压力较恒定,但仍不便于实现自动控制和实时监测,且占地面积较大,通用性差。

iNVOEE VC610系列变频器数控机床应用快速设定指南v1.04

iNVOEE VC610系列变频器数控机床应用 ——— 快速设定指南v1.04 基本接线图 系统安系统安装装完成完成后后,且用户参数已恢复出厂值且用户参数已恢复出厂值((新机不用执行此操作,[F07.05]=4可用于将所有用户参数恢复出厂值,),进行如下进行如下3个步骤即可保证系统正常运行个步骤即可保证系统正常运行:: 步骤1:设定电机特性参数:(对于对于没有铭牌的电机没有铭牌的电机没有铭牌的电机,,可用相应功率等级的可用相应功率等级的出厂出厂出厂默认值默认值) 按照电机铭牌参数准确输入F02组参数:电机额定频率[F02.01](通常情况下为50.00Hz )、电机额定电压[F02.02](通常情况下为380.0V )、电机额定电流[F02.03]、电机额定转速[F02.05](4极电机一般为1440RPM ,6极电机一般为960RPM )。 注意注意::请尽量按照实际的电机铭牌参数设定该组参数请尽量按照实际的电机铭牌参数设定该组参数,,准确的铭牌参数有利于控制特性的提升准确的铭牌参数有利于控制特性的提升,,错误 的参数会导致力矩丢失甚至无法正常运行的参数会导致力矩丢失甚至无法正常运行。。提高提高电机额定电流电机额定电流[F02.03]的设定并不能提高转矩输出输出。。电机空载电流[F02.04]不用手工设定不用手工设定,,变频器变频器会通过自学习自动设定会通过自学习自动设定会通过自学习自动设定。。 步骤2:电机参数自学习电机参数自学习:: 1) 设定[F02.06]=1,让变频器进入电机参数学习准备状态,此时面板显示“P.tESt ”; 2) 通过系统启动变频器(亦可通过修改[F01.00]=0,用面板启动,结束后将[F01.00]=1,重新设定为外部端子控制),变频器开始自动学习电机参数。如果电机参数学习成功,面板显示“SUCCE ”,[F02.06]会自动被改回0;若失败,[F02.06]会保持1,下次启动后会再次进入电机学习状态。 注意注意::通过参数自学习操通过参数自学习操作作,变频器可以自动测试并保存电机铭牌参数以外的电机内部参数变频器可以自动测试并保存电机铭牌参数以外的电机内部参数,,提高电 机输出转矩及运行特性机输出转矩及运行特性。。学习过程可以不拆卸主轴皮带习过程可以不拆卸主轴皮带,,但最好将机床档位打到最低档位但最好将机床档位打到最低档位((接近空载空载))或挂空挡或挂空挡,,以获得最佳学习效果以获得最佳学习效果。。更换电机后需要重新设定电机特性参数和做自学习更换电机后需要重新设定电机特性参数和做自学习。。 电机参数学习刚开始时主轴保持静止电机参数学习刚开始时主轴保持静止((大约6秒钟秒钟),),随后主轴随后主轴随后主轴会会自行自行加速加速加速运转运转运转,,学习完成后主轴会自行自行减速减速减速停止停止停止。。整个学习过程中整个学习过程中请不要操作机床请不要操作机床请不要操作机床,,以免造成意外伤害以免造成意外伤害。 。 步骤3:将主轴实际转速与系统给定转速进行校准将主轴实际转速与系统给定转速进行校准::(亦可按照经验值设定[F00.00]和[F01.18]) 首先在机床数控系统中,将主轴最高转速参数设定为设计值Nmax 。然后试运行系统,稳定后记录变频器输出频率Fo(Hz),及机床主轴对应实际转速Nz 。变频器输出频率Fo 可以在监视状态下(可用ESC 键切换到监视状态) F.oUt 对应实际转速Nz 可以在数控系统面板上观察到。最后按照下式进行设定: 最高频率[F00.00]= 上限频率[F01.18]=(Nmax×Fo)/Nz 注意注意::最高工作转速时不应最高工作转速时不应让电机超过额定转速让电机超过额定转速让电机超过额定转速,,以免造成电机损坏或意外伤害以免造成电机损坏或意外伤害, ,并确保系统可以长时间可靠工作时间可靠工作。。 根据需要调整加速时间[F01.11]和减速时间[F01.12]。制动电阻建议使用厂家标配制动电阻建议使用厂家标配:: 机型范围 4.0kW 及以下 5.5~9.0kW 11.0~22.0kW 电阻配置 50欧姆/600W 40欧姆/1000W 40欧姆/1500W 南京英沃变频技术有限公司 系统 系统启信号

英威腾变频器维修中遇到的故障代码及解决方法

英威腾变频器维修中遇到的故障代码及解决方法 内容来源网络,由深圳机械展收集整理! 更多变频器及自动化技术,就在深圳机械展-自动化展区! 1、逆变单元故障(OUT) 此故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 【检修思路】OUT故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT 保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。

汇川变频器的行业应用方案汇总

1.自动扶梯 NICE2000是当今最先进的自动扶梯一体化控制系统,集成了变频驱动和扶梯逻辑控制,辅以简单的外设就可构成完整的扶梯控制系统,该一体化控制系统申请了两项国家发明专利。NICE2000的出现解决了困挠变频扶梯多年的三大难题:成本居高不下、重载下行的安全隐患、变频工频切换的振动。 旁路变频 取消制动电阻能量直接反馈电网 模块化的优点 ■结构紧凑、安装方便; ■先进的矢量控制算法、电机参数自动调谐(静止调谐和完全调谐两种)、运行接触器控制、抱闸接触器控制、旁路变频节能控制、全变频节能控制、速度跟踪控制等多种扶梯控制专用功能;

5.5kW变频器轻松拖动11kW电机。无需PLC 控制变频一体化 高度集成的一体化驱动器,无需PLC,轻松实现旁路变频、全变频、自启动、故障显示、自动加油、方向显示等所有扶梯功能。 2. 电梯专用ME320L是一款专为电梯开发的专用变频器,分为异步变频器和IP后缀同步变频器。ME320L标准配置PG卡、直流电抗器和制动单元,全部功能专为电梯设计,调试简单、性能优越。同步和异步系列的功率范围均从2.2kW到55kW,适合别墅电梯、住宅电梯、商用电梯、载货电梯以及各种速度场合。 1、主回路适用于ME320L-4002~ME320L-4030系列变频器,大于30kW请加装制动单元 2、状态信号输入输出(功能定义全部为默认值) 3、模拟量速度给定

4、多段速速度给定 5、编码器分频输出(编码器输入,根据编码器类型选择相应PG卡,根据PG卡说明接编码器进线) 假设多段速1为高速、多段速2为爬行、多段速3为检修,以1m/s为例 3. 拉丝机专用 MD系列变频器—拉丝行业应用方案专家 产品特点: 高端: 主拉、收线采用电流矢量控制变频器:超强的低频转矩、快速的动态特性、优秀的稳速精度;

变频器在工业中的应用

变频器在工业中的应用 在工业和民用上都有很多的电机拖动系统,例如:风扇、水泵、机床、卷绕机、电梯、传送带、起重机、卷扬机、注塑机等。这些负载有的偏重要求电机转速、有的要求转矩、有的要求功率,变频器能够在满足这些要求的同时,还能改善拖动系统的性能,这就是变频器能够在市场上广泛应用的原因。 变频器的(原始)功能是将频率、电压都固定的交流电变换成频率、电压都连续可调的三相交流电源。在电机上的应用就是通过改变电源频率而改变电机速度,因为电机的速度公式是: 其中,n是转速,f是频率; 在拖动系统中,变频调速有以下优点: 1,节能;节能是变频器应用最典型的例子,诸如风机、泵类、卷扬机等负载。 (空调用送风机、压缩机) 2,省力化、自动化及提高生产效率;传送带的防止跌落,闭环控制自动调整风压等,相对于直流调速、齿轮箱更有明显的优势。 3,提高质量;电梯的平滑启动,卷绕机的斜线缠绕及张力控制等。 中国变频器市场分析 变频器自20世纪60年代问世,到20世纪80年代在主要工业化国家已广泛使用。20世纪90年代以来,随着人们节能环保意识的加强,变频器的应用越来越普及,广泛应用于国民经济的各行各业和人民的日常生活中,变频器产品也从以大功率双极晶体管(GTR)为主的时代发展为以绝缘栅晶体管(IGBT)为主的时代。国际知名的“ARC机构”研究统计1998年世界交流电动机实施调速控制的传动产品的销售额为48.5亿美元,其中北美占21%,日本占27%,日本之外的亚洲占12%,欧洲、中东及非洲占39%,拉丁美洲占1%。1999年,国际大功率交流调速装置的销售额为24亿美元。 目前,我国电机的总装机容量已达4亿kW,年耗电量占全国用电量的近60%,但我国电机驱动系统的能源利用率却非常低,基本上要比国外平均水平低20%,70%的电机只相当于国际20世纪50年代的技术水平,电机驱动系统能效比国外低20%左右,节能潜力巨大。 市场现状:相对于工业化国家来说,我国变频器行业起步比较晚,到20世纪90年代初,国内企业才开始认识变频器的作用,并开始尝试使用,国外的变频器产品正式涌进中国的市场。最先进入中国变频器市场的是日本厂家,1986年我国传统电机厂开始引进日本的变频设计和制造技术,1988年日本三垦公司的第一台低压变频器进入中国,较早进入的还有东芝、三菱等。此时进入国内的变频器多为以大功率晶体管为逆变元件的产品,属于变频器的第二代产品。随后进入中国的有日本的其他厂家以及其他国家的一些厂家,如日本的富士、日立,德国的西门子、德国的伦茨(Lenze)、法国的施耐德,芬

变频器在电厂工业水泵上的节能应用

变频器在电厂工业水泵上的节能应用 简述水泵变频调速节能原理,对某电厂工业水泵采用变频调速节能改造的措施和取得的节能效益进行分析,揭示了水泵采用变频调速装置进行节能改造具有很大的实践空间。 标签:泵类负载工业水泵变频调速节能 0引言 在热电厂中,机组必须配备的水泵主要有锅炉给水泵、循环水泵和凝结水泵,其次还有射水泵、低压加热器疏水泵、热网水泵、冷却水泵、灰浆泵、轴封水泵、除盐水泵、清水泵、过滤器反洗泵、生活水泵、工业水泵、消防水泵和补给水泵等。这些水泵数量多,总装机容量大:50MW火电机组的主要配套水泵的总装机容量为6430KW,占机组容量的12.86%;100MW机组为10480kW/,占10.48%;200MW机组为15450KW,占7.73%。100MW机组主要配套水泵的总耗电量约占全部厂用电量的70%左右。由此可见,水泵确实是火力发电厂中耗电量最大的一类辅机。因此,提高水泵的运行效率,降低水泵的电耗对降低厂用电率具有举足轻重的意义。国外火电厂的风机和水泵已纷纷增设调速装置,而目前我国火电厂中除少量采用汽动给水泵,液力耦合器及雙速电机外,其他风机和水泵基本上都采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于风机和水泵的运行偏离高效点,使运行效率大大降低,结果是白白地浪费掉大量的电能,已经到了非改不可的地步。 1泵类负载的流量调节方法及原理 泵类负载通常以输送的液体流量为控制参数,为此目前常采用阀门控制和转速控制两种方式。 1.1阀门控制这种方法是借助改变出口阀门的开度大小来调节流基的,其实质是通过改变管道中流体阻力的大小来改变流量的。因为泵的转速不变,其扬程特性曲线H-Q保持不变,如图1所示 当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,流量为Qa,泵出口压头为Ha。若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时流量为Qb,泵出口压头升高到Hb。则压头的升高量为△Hb=Hb-Ha。于是产生了阴线部分所示的能量损失:△Pb=AHb×Qb。

变频器的工作原理及作用

变频器的工作原理 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? (1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,

变频器在各行业的应用

变频器在各行业的应用 变频器应用于冶金、采油、石化、化工、塑胶、纺织、矿山、卷烟、医药、造纸、建材、饮料等行业 1、轴承行业 代替中频发电机组, 2、电厂 1)锅炉送风机、引风机 2)锅炉给水泵 3)排粉风机 4)循环水泵 5)低压疏水泵 6)凝结水泵水位控制 7)冷却塔用给水泵 8)灰浆(渣)泵 9)给煤(粉)机 3、钢铁行业 VVVF调速精度高,节电效果好,并可以频繁起动、制动,控制灵活,容易形成闭环。因此在轧机辊道、转炉、圆盘给料机、振动给料机、拉丝机、风机、水泵、卸车机、软水供水等多处应用。 4、有色冶金行业 与钢铁行业相同,有色冶金行业也大量地采用交流技术,除风机、水泵外,已应用到转炉、球磨机、泥浆泵、给料(矿)自控等领域,效果均很显著。 5、油田行业在我国的各大油田,交流技术已广泛应用于油田的大量的泵站,比如采油中的脱水泵、潜油电泵,输油的输油泵,输气管道中的风机、压缩机等中。 6、炼油行业 对器有广泛的需求,如各类泵、供水、搅拌装置和锅炉引风机、送风机、输煤、送水以及污水处理等等,均有显著的经济效益。 7、化工塑胶行业 除将器用于风机、水泵外,各工艺生产线,各类搅拌机、挤压机、挤出机、注塑机、卷取辅机等用量也非常大,可在抽丝、纺丝、切片、造粒、烘干等生产工艺中替代滑差电机、换向器电机等传统设备。 8、纺织行业 纺织印染对VVVF有大量的需求,除大量的风机水泵外,精纺机、整经机、经编机以及印染设备等采用后,效果非常理想。 9、医药行业 除风机水泵外,大量的搅拌机、翻动机、离心机等均需器调速。 10、造纸行业 1) 造纸机流水线主频调速 2) 造纸机分布传动自动控制 11、卷烟行业 我国卷烟行业中不少卷烟机,只有低、高两档速度,在由低速向高速转换时,往往将纸拉断,还要重新起动,再由低速向高速转换,影响香烟的产量和质量。即使进口的卷烟机,也是如此。当采用后,实现无级调速和软起动性能,出现明显的效果。 12、水工业

相关主题
文本预览
相关文档 最新文档